Outline

- Rundown of the current state in ROS2 manipulators
- Video time!
 - Teleop, trajectory execution, compliance
- Capabilities
- Limitations
 - Jerk-limited trajectories
 - Velocity control
- Request for Beta testers
- Challenges
 - Launch file args
 - Evolving ros2_control API/ABI
- Contributors
Manipulators having ROS2 Drivers

Acutronic, 2019
(Now closed)

Hello Robot
Stretch R1 mobile manipulator
May demo for ROS2 Groovy

Doosan Robotics
Announced today

Universal Robots
7 supported robot models
Beta release today!
Supported UR Models - all of them!

Payloads: 3kg, 5kg, 16kg, 10kg

As well as the UR3, UR5, UR10.
What can UR robots do in ROS2?

- For the most part, it can do the same things as the ROS1 package
- **Teleoperation**
- **Compliance**
- **Trajectory execution**
- End-effector GPIO
- Force/torque sensors
- Motion speed scaling via teach pendant
 - Thanks FZI

Streaming commands

Series of waypoints

![Speed slider](image)
Video time!

“*A video is worth a thousand words*”
Trajectory Execution

This video uses ROS2 exclusively
Supervised autonomy with MoveIt Studio
Notice gripper integration
Streaming Commands - the Jeff Bezos video

This video uses ROS1 -- but it should be possible in ROS2 now
Shadow Robot and HaptX Dexterous Hand at Amazon re:MARS
Streaming Commands - Compliance

This video uses ROS1 -- but it should be possible in ROS2 now
FZI Karlsruhe
Benefits of flexible control modalities

Especially for startups and researchers, it’s great to have a robot that --

- Is ROS-compatible
- Offers many control modalities
 - Streaming vs. trajectories
 - Position vs. velocity control
- Is somewhat hackable at a low level, when desired
 - Example:
 - We have a project where fast cycle time is critical
 - For a demonstration, we increased the robot acceleration limit by 4X
 - Hardware longevity will suffer but we don’t care

For people who “usually try to do unusual things”
Performance Benefits of ROS2

- “Nodes” → shared library, launched as a component in a single process
 - Often called “node components”
 - Less internal data transfer
 - Decreased latency

- Improved security
 - Tunable DDS middleware

- Improved communication between nodes
 - Tunable DDS middleware

- Deterministic launching
 - Node A needs to wait on Node B
Request for Beta testers

https://github.com/PickNikRobotics/Universal_Robots_ROS2_Driver
Limitations of the Beta release

- Trajectories cannot be executed in velocity mode yet
 - Easy to add, coming soon

- Yes acceleration-limited trajectories, no jerk-limited trajectories
 - Usually required by large industrial robots
 - Two promising new open-source packages have been released
 - TopiCo
 - Ruckig
 - Should be integrated with MoveIt in ~6 mos.

- Cannot run the kinematics calibration routine
Development challenges

- Continuously evolving ros2_control ABI/API
- Found it difficult to add arguments to launch files
 - Example from ROS1:
    ```xml
    <arg name="robot_ip" value="192.168.1.14"/>
    ```
ROS2 launch file arguments

- **Declare arguments**

  ```python
  declared_arguments = []
  declared_arguments.append(
    DeclareLaunchArgument(
      "robot_ip",
      description="IP address by which the robot can be reached."
    )
  )
  ```

- **Initialize arguments**

  ```python
  robot_ip = LaunchConfiguration("robot_ip")
  ```

- **Use the arguments**

  ```python
  robot_launch = IncludeLaunchDescription(
    PythonLaunchDescriptionSource([ThisLaunchFileDir(), 
      "/ur_control.launch.py"])
  )
  launch_arguments={
    "robot_ip": robot_ip,
  }
  ```
Contributors

- **PickNik Robotics**
 - Denis Stogl, Lovro Ivanov, Abi Sivaraman, Andy Zelenak, Nathan Brooks
- **FZI Forschungszentrum Informatik**
 - Marvin Besselmann
- **Delft University of Technology**
 - Gijs van der Hoorn
- **Universal Robots**
 - Rune Søe-Knudsen