Industrial Calibration Update

Dr. Chris Lewis
August 2021
Industrial Calibration Update

• A tale of two github repositories
 • Ros-industrial/Industrial_calibration
 • Jmeyer1292/robot_cal_tools

• What are they?
 • Intrinsic calibration
 • Eye-hand calibration
 • Multi-camera extrinsic calibration
 • Stereo-calibration
 • Network of cameras for Close Range Photogrammetry
 • RGBD calibration
 • Robot kinematic calibration
 • Analysis
Underlying Principle – Perspective Projection

- Perspective Projection
- Focal Point
- Image of object
- Object
- Image plane
- Focal length
- Focal Point
- Image plane

\[u = \frac{f_x x}{z}, \quad v = \frac{f_y y}{z} \]

- Predict the image of an object
Ceres-Solver

- Known – VS – Unknown
 - Knowns => cost constructor
 - Unknowns => cost Evaluator

- Adjust Unknowns to minimize SSE (prediction-observed)
Eye-Hand Example
Difference in Intended Use

• Robot cal tools:
 • Provide stand-alone (not ROS) "optimization functions" take your data files and produce an answer to your calibration problem.
 • How you collect data and what you do with the answer is left to you.
 • Every application runs loads images, TF etc from files in designated directories.

• Industrial Calibration Library
 • Provide automated calibration that executes as part of a ROS installation. Captures and manipulates TF, Joint States, Image topics.
 • Requires significant setup/expertise to use.

• Lots of Duplicated Code
 • Ceres cost functions
 • Image processing tools to locate target features
Plan for future

• Unify Robot Cal Tools with Industrial Calibration

• Ical-Apps
 • Data
 • Standalone_apps
 • R1_apps
 • R2_apps

• Ical-Core (Pure Cmake)
 • Cost functions
 • Optimizers (heavy lifting objects for apps, both R1, R2 and Stand alone)
 • Targets
 • Plugins
 • GUI