ROS-I Americas

2022 Annual Meeting

ROS as in Interface Layer

- Table of Contents:
- Who we are Aerobotix, Inc
 - Fanuc Robotic Integrator
 - Software Team
- Why we chose ROS as an Interface
- How we used ROS
 - Radome Inspection Robot (Mobile Industrial Robot)
 - ROS Python
 - Part Detection System
 - ROS C++
- Contact Us

FANUC

Sanding Systems

Inspection Systems

Mobile-Platform
Systems

Robots installed in:

Alabama Georgia
Arkansas Louisiana

California Missouri

Colorado New Hampshire

Florida Texas

Aaron Feick

- Software Development Team Lead

- 5 Years with Aerobotix, Inc
- Assisting in Controls Engineering, Robotic Integration, and Software Development
- Currently leading a team of 4 Software Developers

Structured light scanning

Model Inspection

Data Acquisition – (ROS)

Navigation/Path Planning – (ROS)

ROS as in Interface Layer

- Why we chose ROS
 - Easy device integration
 - Lidars
 - KAARTA
 - VELODYNE
 - SICK
 - Motor Controllers
 - Zaber
 - Adaptable Framework
 - Error Handling
 - Contractor Support

Traditional Robotic setup

In this setup the PLC acts as the primary interface for communication between the robot and the other devices. It acts as the master of the system

ROS Robotic setup

In this setup the PLC handles all the important <u>robotic</u> interfacing. Meanwhile the ROS system is used to interface with the vision system. The PLC and the ROS system can be joined though a ROS bridge link.

MIR - Inspection

Customer Requirements:

Plot a navigation path from a home position to a radome, so that the robot arm may begin inspection process.

Aerobotix ROS Implementation :

Aerobotix used ROS to handle all MIR motion. The ROS system handled Manual Joystick control, Global planner, Local planner, and Obstacle Avoidance.

MIR - Inspection

MIR - Movement

MIR - Inspection

Difficulties

- First implementation of ROS
 - Learning all about Services, Nodes, Publishers, and Topics
- First implementation of the KAARTA System and understanding Lidar technology
 - Learning more about the range, accuracy, and blind spots
- First experience with a navigation stack
 - Understanding how cost maps work and how to better tune a mobile platform for its work envelope.

Part Detection System

• Customer Requirements:

Find flight controls (i.e. Rudder, Flap, Aileron, ..ect) with a non-contact, non-robotic motion solution.

Aerobotix ROS Implementation :

Aerobotix used ROS to aid in the point cloud data acquisition. The Velodyne Puck Lidars (VLP-16) came with some ROS packages that were easily configured in linux. WEBVIZ came in handy to display the point clouds as we did our alignment process.

Part Detection System

Difficulties

- Using WSL on Windows
 - Driver Support
- Using ROS in WSL
 - No Graphical support
 - "Welcome to the Command Line"

Thank You

Sources:

This presentation has resources ROS.org

This presentation has resources Auburn.edu

This presentation has resources FanucAmerica.com

This presentation has resources Aerobotix.net

This presentation has resources Flaticon.com

'PLC.png: Flaticon.com'.
'Robot.png: Flaticon.com'.
Vision.png: Flaticon.com'.

'PaintGun.png: Flaticon.com'. 'Computer.png: Flaticon.com'. Aaron Feick

Software Development Team Lead

Aerobotix, Inc

www.Aerobotix.net

info@aerobotix.net

