ROS-Industrial Consortium
Americas Community Meeting

Matt Robinson
ROS-Industrial Consortium Program Manager
September 21, 2023
Q3 2023

Agenda

• 10:00 – Welcome
• 10:05 – ROS-Industrial Consortium Activities
 • Status on Activities and Initiatives
 • Training Update
 • Workshop Planning at ROSCon (REACH)
 • FTP – Collaboration Project Updates
• 10:30 – SWORD Update
• 10:55 – ROS 2 Integration on Embedded Devices: overview and alternatives, Pablo Garrido, Project Manager, eProsima
• 11:20 – Open Forum
ROS-I Mission

• Mission
 • What do we work on?
 • How should our tools work?

• Where are we now?
• Where do we want to be?
Shaping a Roadmap - Feedback

• Workshops over last handful of years providing feedback

• OEM outreach and more resources for education and enable more contributions and leverage on hardware
Supporting ROS 2 and manipulators

• Inquiries regarding porting of industrial_core and use of legacy drivers

• There is NO Plan to port industrial_core

• The goal is to leverage OEM provided external motion interfaces and incentivize OEMs to create interfaces between their interfaces and ROS 2
 • UR – via ros2_control
 • Yaskawa – MotoROS2 + micro-ROS

• Highlight OEM provided solutions to encourage more OEMs to offer an interface solution they can support
Supporting ROS 2
Moving Forward

- Additional paths to offering interfaces
- More OEMs offer external motion interfaces
 - Minimal interface development
 - Able to leverage tools like ros2_control & micro-ROS
Actions

• Create an Industrial Robot Driver Specification for ROS 2
 • Planning phase
 • Provide pathway for OEMs to build out
• Continue to add roadmaps to ROS-I repositories
 • Noether -
Strategy for Development

Environment Layer (MoveIt, Tesseract, Dart, etc.)

ROS 1 / ROS 2 / Middleware Layer

Messages, Topics

Build ROS1 or ROS2, these are independent

Independent of ROS

- Collision Detection
- Motion Planners
- Kinematic Solvers
- Connectivity Structure

Continue to support deployed end-user ROS1 systems with new capabilities as they are developed even if for a ROS2 solution.
Teaching Application

https://github.com/ros-industrial-consortium/scan_n_plan_workshop
Developers’ Meeting Overview: https://youtu.be/GgTxvIaekjE
Training for 2023 & 24

• Planned three training events for ‘23
 • Feb 2023 – registration opening soon!, San Antonio
 • Advanced Topic: Motion Planning Pipeline
 • July 2023 – San Antonio, TX
 • October 2023 – San Antonio, TX – registration open!
 • Advanced Topic: Motion Planning Pipeline

• Seeking options for additional training topics/workshops
 • Will bring more lab exercises to Day 3 in ROS 2

• Bite Size Learning – recorded educational on a smaller topic – targeting 3-6 minutes in length – stay tuned
 • Submit topics to Matt Robinson, RIC Americas PM
Workshop(s)

• Seeking to set up a Scan-N-Plan workshop

• Current locations considered:
 • Columbus, OH
 • Pittsburgh, PA
 • Other? – interested in hosting? Ping the PM!

• ROSCon23 Workshop
 • REACH
 • https://roscon.ros.org/2023/
ROSCon 2023

• ROSCon 2023 will be in New Orleans in October!
• ROS-I will be exhibiting
• REACH Workshop still has space available
 • Register:
 https://roscon.regfox.com/roscon-2023
• Additional events co-located
 • MoveItCon -
 https://picknik.ai/moveitcon2023
Continue to foster collaboration

• In person conferences, training events, meetups

• Write ups and additional broader reach collaborative initiatives beyond the ROS community
 • American Welding Society
 • Steel Founders’ Society of Americas
 • Remanufacturing Industries Council
 • Manufacturing Innovation Institutes
Updated to the website!

- Hoping to launch in time for ROSCon in October
- Easier ties to the repos and resources – both open source and for Consortium members
Project Updates

- Robotic Blending M5
- SWORD
Job Shop Automation for the Foundry

• Introductions
 • SwRI
 • SFSA
 • Iowa State
 • PushCorp
 • Yaskawa

• SwRI Scan-N-Plan core software demo and UI review
Job Shop Automation for the Foundry

• Goal – To enable an intuitive agile automation solution for the high mix environment of the foundry
 • Ease of use
 • Able to handle a broad range of parts without a ton of upfront programming on the teach pendant
 • Reduce reliance on part specific tooling
 • Robust

• Extend the Scan-N-Plan framework built on by 4 prior milestones of ROS-I FTP to realize capability at an SFSA member site in collaboration with a broad team
Robotic Blending Milestone 5

FTP Champion: SFSA

Scan-N-Plan Process

M5 – Reconfigurable Process; Improved Performance, Characterization Based Processing; Ease of Use/Set UP; Distributed (Cloud)

Refer to links for milestone 4 outcomes:
- Video: https://youtu.be/PWCpehyKnTY
- 1-pg. description: ros-i.org/scan-n-plan

Motivation/Objective
- **Motivation:** Manual blending/surface finishing is a repetitive motion injury risk. If >80% of the work could be automated, this risk would be greatly reduced.
- **Objectives:**
 - Reconfigurable Work Flow – Fast & Easy Set Up/Configuration
 - Shop Floor Capable
 - Characterization Based Path Planning
 - Improve 3D segmentation
 - Time & Resolution to Enable Improved Performance
 - Improved Performance – Human in the Loop
 - Documentation!

Scope of Work

<table>
<thead>
<tr>
<th>SwRI</th>
<th>Iowa State</th>
<th>Yaskawa</th>
<th>PushCorp</th>
<th>SFSA/FCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Project mgmt</td>
<td>• Human in the loop region selection</td>
<td>• Furnish test cell</td>
<td>• Furnish Grinding Equipment</td>
<td>• Provide Functional Requirements</td>
</tr>
<tr>
<td>• ROS software dev</td>
<td>• Interpolation from riser to bulk material</td>
<td>• Production solution integration</td>
<td>• Use Cases</td>
<td></td>
</tr>
<tr>
<td>• Host 1st meeting</td>
<td>• Replicate solution at their lab</td>
<td>• On-Site workcell support</td>
<td>• Sample Materials</td>
<td></td>
</tr>
<tr>
<td>• On-site support for final demos</td>
<td></td>
<td></td>
<td>• Provide Site for End of Project Demo</td>
<td></td>
</tr>
</tbody>
</table>

Metrics for success:
- **Hardware Demos at Each Participant Site:** Add value to real/surrogate production parts; speed of configuring to new set ups, ease of setting up new parts

Cost/Schedule

<table>
<thead>
<tr>
<th></th>
<th>Month 1-2</th>
<th>Month 3-4</th>
<th>Month 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft. Development</td>
<td></td>
<td>@SwRI</td>
<td>@SFSA</td>
</tr>
<tr>
<td>Tech Transfer</td>
<td></td>
<td></td>
<td>Partner</td>
</tr>
<tr>
<td>Site Demos</td>
<td>@SwRI</td>
<td>@ ISU</td>
<td></td>
</tr>
<tr>
<td>Reports/Documentation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Testing on Metal for Boundary Detect

- Paint, Chalk and Marker
- Various Colors
- Evaluate Land and Lift Off
 - Only do work inside boundary
Video
SWORD Update

• Michael Ripperger/Matt Robinson
Vendor-specific products

+ rich configuration introspection
+ high-fidelity simulation
+ direct control
 - limited programming capability
 - vendor only

Existing offline planning products

ROS/Open-source

+ hardware agnostic
+ automated motion planning
+ tool paths from meshes
+ optimization
+ collision avoidance
+ steep learning curve

???
SWORD

- Advanced robotics tools in a CAD environment

- Goal
 - Enable manufacturing engineers to deploy robotics for complex applications

- Differentiators
 - Embedded in CAD environment (maintain digital thread)
 - Advanced robotics capabilities
 - Vendor agnostic
 - Loose integration with ROS
 - Scriptable
Current State

motion configuration
- motion group definition
- IK solver configuration
- cartesian TCP dragger

environment creation
- scene modeling
- convex hull creation
- convex decomposition
- allowed collision matrix generation
- collision detection/visualization

motion planning
- waypoint generation
- motion planner configuration
- motion planner pipeline configuration
- trajectory visualization/introspection

export artifacts
- export to:
 - URDF
 - SRDF
 - tesserae
 - robot native program
SWORD + OSS

• Built on open-source libraries
 • Bug fixes contributed to OSS libraries
 • New features developed

• Learning tool
 • Visual, interactive
 • Avoids cumbersome setup
 • Easy to see results of changing configuration/parameters

• Entry-point to advanced robotics capability
 • Produce artifacts for use in ROS, OSS libraries
Questions?

- Michael Ripperger
- Southwest Research Institute
- michael.ripperger@swri.org
Member Share

- Pablo Garrido Sanchez, eProsima - ROS 2 Integration on Embedded Devices: overview and alternatives
Open Forum

• Topics?
Resources for the Community

• ROS-Industrial
 • Home: rosindustrial.org
 • Documentation: wiki.ros.org/industrial
 • Code: https://github.com/ros-industrial; https://github.com/ros-industrial-consortium
 • Training: http://ros-industrial.github.io/industrial_training/
 • ROSin: http://rosin-project.eu/
• Upcoming Events (https://rosindustrial.org/events-summary/)
Thank You!

• Provide feedback
• Seek out ways to collaborate
• Engage your supplier/partners on ROS use
• Reach out if you need help

Matt Robinson
matt.robinson@swri.org
robotics.swri.org
rosindustrial.org
Reference