ROS 2 on Embedded Devices: overview and alternatives

www.eProsim.com
Publish-Subscribe DDS middleware for real-time distributed systems
- Adopted by ROS 2 (leader MW 2017-2025)

Wire protocol for eXtremely Resource Constrained Environments (MCUs)
- Adopted by micro-ROS

DDS middleware ISO 26262
- Automotive compliant middleware

Monthly Users > 50k

eProsima Services
- Architecture Study
- Feature acceleration
- Customized solutions
- Technical Support

eProsima license
- SW privative license

eProsima products
Introduction

1. Robots are made of sensors and actuators
2. Sensors and actuators are controlled by low level interfaces
3. Sensors and actuators feed real time control loops
4. Microcontrollers provide low level interfaces and hard real time capabilities

But ...

1. Robotic engineers use ROS 2
2. ROS 2 runs on general purpose CPUs
3. General purpose CPUs does not have low level interfaces nor hard real time capabilities
ROS 2 Embedded

Why

● **Ubiquity**: ROS 2 nodes close to the metal
● **Simplicity**: Direct control over low level sensors / actuators
● **Abstraction**: Reuse of available packages and common interfaces

Problems

● **Heterogeneity**: Vendor-specific, lack of standardization, multiple IDE/toolchains, etc.
● **Low resources**: Has low resources (< 512 kB RAM)
● **Lack of portability**: May have no C++ support, STD, libc, etc.
● **Low bandwidth**: May have low bandwidth communication (UART, CAN, etc)
micro-ROS

- **Port** of the ROS 2 stack to embedded devices
- **Tools for integration** on most embedded platforms, vendors, RTOS and frameworks
- **Optimized and compatible** ROS 2 packages: RCLC, micro_ros_utils, etc.
- **Supported**: pub/sub, services, actions, parameters, etc.
eProsima Micro XRCE-DDS

- **Embedded library**: deeply embedded library in C99 with extreme low resource usage
- **Micro XRCE-DDS Agent**: bridge between DDS and embedded worlds
- **Brokered architecture**: a Micro XRCE-DDS Client communicates with an Agent
- **DDS Compatible**: exposes most of the DDS features with an embedded friendly API
micro-ROS use cases
New generation

Embedded silicon industry has evolved in last 5 years:

- **Unification**: ARM Cortex-M/A & RISC-V are *de facto* standards → GCC based compilers
- **Resources**: Huge amounts of RAM memory. From < 512 kB to ~ 2 MB in MCUs.
- **Peripherals**: 10/100 Ethernet interfaces, advanced networking libraries.

Next generation ROS 2 / DDS middlewares are possible:

- **Brokerless**: MCUs are first class citizens in ROS 2 / DDS dataspaces.
- **Advanced features**: Complex behaviours and QoS for communication channels
- **Complex ROS 2 packages**: More computational power → More complex architectures
Safe DDS

The safety certified (ISO 26262) DDS compliant middleware library

It targets hard real-time safety critical systems based on mid-low range MCUs and CPUs, including automotive electronics control units (ECUs).
It enables developers to create communication systems certifiable for ISO 26262 (ASILD).
eProsima Safe DDS

- **Embedded library**: embedded library in C++14 with low resource usage
- **ROS 2 / DDS compatible**: fully compatible DDS APIs and compatible with Fast DDS
- **Performance**: same latency / throughput as Fast DDS
- **ISO 26262**: Functional Safety certification for automotive
Conclusions

<table>
<thead>
<tr>
<th></th>
<th>Safe DDS</th>
<th>micro-ROS / XRCE-DDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>DDS Compatible</td>
<td>Brokered architecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Client - Agent - DDS</td>
</tr>
<tr>
<td>OS</td>
<td>General OS / RTOS / Bare Metal</td>
<td>RTOS and Bare Metal</td>
</tr>
<tr>
<td></td>
<td>Linux / FreeRTOS / QNX / …</td>
<td>Azure RTOS / FreeRTOS / Zephyr / …</td>
</tr>
<tr>
<td>Interfaces</td>
<td>Network transport agnostic</td>
<td>Transport agnostic</td>
</tr>
<tr>
<td></td>
<td>Eth / WiFi</td>
<td>UART / Eth / WiFi / USB / CAN-FD</td>
</tr>
<tr>
<td>Real time capabilities</td>
<td>Hard real time\nNon blocking API & Zero heap memory</td>
<td>Hard real time\nNon blocking API & Zero heap memory</td>
</tr>
<tr>
<td>Memory Usage</td>
<td>Very low memory usage\n< 64 kB per DDS Participant + pub + sub</td>
<td>Extremely low memory usage\n< 32 kB per DDS Participant + pub + sub</td>
</tr>
<tr>
<td>Target</td>
<td>Mid-low range MCU / CPU / ECU</td>
<td>Low range MCU</td>
</tr>
</tbody>
</table>
Visit online documentation for knowing more about eProsima products:

safe-dds.docs.eprosima.com

micro-xrce-dds.docs.eprosima.com

micro.ros.org