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Classical economic models assume that people are fully rational and
sel sh, while experiments often point to different conclusions. A
canonical example is the Ultimatum Game: one player proposes a
division of asum of money between herself and a second player,
who either accepts or rejects. Based on rational self-interest, res-
ponders should accept any nonzero offer and proposers should of-
fer the smallest possible amount. Traditional, deterministic models
of evolutionary game theory agree: in the one-shot anonymous
Ultimatum Game, natural selection favors low offers and demands.
Experiments instead show a preference for fairness: often respond-
ers reject low offers and proposers make higher offers than needed
to avoid rejection. Here we show that using stochastic evolutionary
game theory, where agents make mistakes when judging the pay-
offs and strategies of others, natural selection favors fairness.
Across a range of parameters, the average strategy matches the
observed behavior: proposers offer between 30% and 50%, and
responders demand between 25% and 40%. Rejecting low offers
increases relative payoff in pairwise competition between two
strategies and is favored when selection is suf ciently weak. Offer-
ing more than you demand increases payoff when many strategies
are present simultaneously and is favored when mutation is suf -
ciently high. We also perform a behavioral experiment and nd
empirical support for these theoretical ndings: uncertainty about
the success of others is associated with higher demands and offers;
and inconsistency in the behavior of others is associated with higher
offers but not predictive of demands. In an uncertain world, fairness
nishes rst.
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G ame theorists traditionally assume that people act fully ra-
tionally to maximize their own nancial gains. A wealth of
behavioral data, however, has demonstrated that many people are
in uenced by the payoffs of others, exhibiting so-called “other-
regarding preferences” (1). The Ultimatum Game (UG) has been
a particularly in uential example of this phenomenon (2). In the
UG, two players have to divide a certain sum of money between
them. One player (the proposer) makes an offer. The other player
(the responder) can either accept the offer, in which case each
receives the money as proposed, or reject the offer, in which case
neither player receives anything. In a one-shot anonymous UG,
a rational self-interested proposer will offer the minimum amount
that she believes will be acceptable to the responder. A rational
self-interested responder will accept any nonzero offer. Thus,
under common knowledge of the rationality of both players, the
subgame perfect Nash equilibrium is for the proposer to make the
minimum possible offer, and for the responder to accept it (2).
To evaluate these predictions, many behavioral experiments
have been conducted using the UG (1-8). Although there is
considerable quantitative variation across studies, two clear qual-
itative deviations from rational self-interest are robustly observed:
(i) many responders choose to reject low (but nonzero) offers, and
(ii) many proposers offer more than the minimum amount re-
quired to avoid rejection. One popular explanation of both of
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these ndings is that people are motivated by a sense of fairness
(or “inequity aversion”): Subjects prefer both players to receive
equal payoffs, and are willing to pay a price to create more eq-
uitable outcomes (9). By this argument, responders who reject low
offers incur a cost to avoid getting a smaller payoff than the
proposer (disadvantageous inequity), and proposers who offer
more than needed to avoid rejection incur a cost to avoid receiving
a larger payoff than the responder (advantageous inequity). Ad-
ditional evidence of this psychological principle is demonstrated
by an experiment where subjects will pay to alter randomly
assigned payoffs of others to induce greater equality (10).

Furthermore, it is typically observed that people are more
averse to disadvantageous inequity than they are to advanta-
geous inequity (9), and research with children nds that disad-
vantageous inequity develops earlier than advantageous inequity
(11-14). These results suggest that the two forms of fairness are
most likely cognitively distinct. Some have argued that proposer
behavior can be entirely explained by strategic motivations: given
that many responders reject low offers, it may be payoff maxi-
mizing to offer even splits (15, 16). Others, however, contend
that fairness concerns play at least some part in the high offers of
proposers (17, 18); a comprehensive review (1) concludes that
high proposer offers are likely the result of a combination of
strategic and fairness-based motivations.

Fairness presents a proximate psychological motivation for the
observed behavior. What, however, is the ultimate evolutionary
explanation for why we should have come to possess such fair-
ness preferences? To explore the origins of fairness, we study an
evolutionary process in which strategies with higher payoffs tend
to become more common in the population (19-22). This pro-
cess could describe genetic evolution, or cultural evolution
through social learning, both of which have been linked to play in
the UG (4, 18, 23). In the context of genetic evolution, agents
reproduce and die, and mutations introduce variation into the
gene pool. In the context of cultural evolution, individuals
sometimes change strategy and copy the strategy of another, with
higher payoff strategies being more likely to be imitated. Here
mutation represents either experimentation, in which individuals
try new random strategies, or confusion regarding the strategies
used by other players (leading the imitator to adopt a strategy
different from that of the imitatee) (24). This type of process
based on reproduction is distinct from strategy update rules that
use prospective reasoning, such as best response dynamics (25)
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(for a comparison of evolutionary dynamics with prospective
reasoning, see ref. 26).

Using this evolutionary framework, we can explore the con-
ditions under which natural selection leads to fair behavior. The
classical approach to evolutionary game theory (27-29) is de-
terministic. Such models assume that higher payoff strategies al-
ways become more common, whereas lower payoff strategies
always die out. Under deterministic game dynamics, evolution
favors self-interest, and in the UG selection leads to the rational
self-interested strategy where agents offer and demand nothing
(30). To explain fairness using deterministic dynamics, it is there-
fore necessary to invoke some additional evolutionary mechanism.

One approach involves reputation formation (31-36). It has
been shown that fairness can be favored by natural selection if
agents can recognize their partners’ strategies (37, 38) or have
reputations that carry from game to game (30). Here it pays to
reject a stingy offer today so that others will make you higher
offers in the future. Without a suf ciently high expectation of
future interactions and a suf ciently strong reputation system,
however, fairness collapses. An alternate approach studies one-
shot anonymous games but assumes an asymmetric mutation
structure, such that proposers experiment with new strategies less
often than responders: the greater variation in responder behavior
forces proposers to make higher offers (39). A third deterministic
approach involves one-shot anonymous games played among very
small groups. Here payoff relative to your coplayers is critical, and
so accepting unfair offers can put you at a disadvantage. Thus, it
can be advantageous to reject unfair offers. The optimal demand,
however, is inversely proportional to the number of coplayers, and
thus is negligibly greater than zero in all but the smallest groups
(40). Note that theories related to multilevel selection (41, 42)
do not help explain fairness in the UG, as a group of indi-
viduals offering and accepting minimal offers receives the
same average payoff as a group of “fair” players with nonzero
offers and demands.

An important element which is not included in these previous
analyses is that randomness plays a key role in the course of
evolution, especially in nite populations. Agents might be in-
volved in many different games, such that their payoff in the UG
contributes only a small amount to their total tness (43). Al-
ternatively, individuals may make errors in social learning, due to
issues such as bounded rationality (44) and dif culties in cor-
rectly assessing others’ payoffs. In either situation, lower payoff
strategies may sometimes spread through the population by
chance despite their relative disadvantage, and higher payoff
strategies may die out. Such stochastic effects can have poten-
tially dramatic effects on evolutionary outcomes (26, 43, 45). In
the present paper, we explore the evolution of strategies in the
UG in nite populations, studying the whole spectrum of selec-
tion intensities ranging from the limit of weak selection (where
reproduction is almost completely random) to strong selection
(where higher payoff strategies almost always increase in fre-
quency). We show that when selection is not too strong, evolu-
tion can lead to the nonzero rejections and generous offers
observed experimentally, without the need for any additional
evolutionary mechanisms such as reputation systems, and with
no a priori assumptions about asymmetries or other-regarding
preferences. Self-interested natural selection in nite pop-
ulations favors the evolution of fairness when suf cient ran-
domness is present.

We model the UG by imagining two players who have to split
an amount summing to unity. In any given interaction, players
are randomly assigned to the roles of proposer and responder.
We specify an agent’s strategy with two parameters p and (
[0,1], where p is the amount offered when acting as proposer, and
( is the minimum amount demanded when acting as responder,
or the “rejection threshold.” An offer p is accepted by a re-
sponder with the minimum demand ( if and only if p = (.
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Therefore, the average payoff for a player using strategy (p1,d1)
interacting with a player using strategy (P2,02) is given (up to the
factor 1/2, which we henceforth omit) by (i) 1-py + pa, if p1 = Q2
and pp 2 Gq; (i) 1-pq, if Py = Gz and Pz < G1; (iii) Pz, if p1 < g2 and
P2 = 0¢; and (Iv) O, if py < Q2 and P2 < Q1.

We consider the stochastic evolution of strategies in a pop-
ulation of nite size N. Each player i plays the UG with each of
the N-1 other players, and receives an average payoff m;. Player
i's effective payoff (or fecundity) is then de ned as exp[wrm],
where W is called the “intensity of selection.” An intuition behind
this effective payoff function is that the higher the intensity of
selection, the more likely agents with higher payoffs are to be
imitated (to reproduce). At the extreme of W oo, only those
who obtain the highest payoff are imitated (strong selection).
The other extreme W 0 is called the weak selection limit; in
this case, all strategies have almost the same effective payoff and
the dynamics is dominated by neutral drift. We study the Moran
process (46, 47), where in each generation an individual is ran-
domly picked to change strategy (die), and another individual
is picked proportional to effective payoff to be imitated (re-
produce). With probability U, a mutation occurs and instead
a random strategy is chosen. We begin by considering global
mutation, in which a mutant’s p and ( are independently drawn
from the uniform distribution in [0, 1], and later show that the
results are qualitatively unchanged when instead we use local
mutation.

The dynamics depends signi cantly on the mutation rate U. In
the low mutation limit U 0, a novel mutant will either die out
or completely take over the population before a new mutant
arises (43, 48-51). Thus, the population transitions between
homogeneous states, in which all agents in the population play
the same strategy at any given time. Here, strategies which can
protect themselves from invasion do best. Conversely, in the high
mutation limit U 1, all strategies are present at approximately
equal abundances at the same time (24, 52). Thus, success is
determined not by resisting invasion, but by performing best
when playing against all strategies with equal probability (i.e.,
playing a randomly selected opponent). Intermediate mutation
rates result in intermediate outcomes between these two dy-
namical extremes (for technical details, see Methods and Sup-
porting Information).

Results

We begin with agent-based simulations using population size N =
100, and vary the intensity of selection W as well as the mutation
rate U. For each set of simulation parameters we determine the
steady-state frequency distribution over the [p, (] space. First we
ask which strategy is favored by natural selection (i.e., is most
common in the population). We nd that the most common
strategy displays p > q > 0 as long as selection strength W is not
too large (Fig. 1). Thus, selection favors both aspects of fairness
observed in behavioral experiments: responders make nonzero
demands (disadvantageous inequity aversion, g > 0) and proposers
offer more than is necessary to avoid rejection (advantageous in-
equity aversion, p > (). Evolution in nite populations can select
for fairness, without needing to invoke any additional mechanisms.

We now turn from the most common strategy to consider the
average (mean) strategy. Fig. 2 shows how the time-averaged
values of p and ( vary systematically with changes in selection
strength W and mutation rate U. When selection is very weak, the
dynamics is dominated by neutral drift, and mean p and ( are
both 0.5. As the selection intensity increases, both p and ( de-
crease, approaching the rational self-interested strategy p = q = 0.
Critically, however, ( decreases faster than p. Thus, in Fig. 2 we
observe both aspects of fair behavior, p > q and q > 0, across
a wide range of parameter values. As with the modal strategy
considered in Fig. 1, we see in Fig. 2 that although the selection
strength and mutation rate quantitatively affect the mean p and ¢,
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Fig. 1. With intermediate selection and mutation, the
1 most common strategy is fair, having p > g > 0. Shown are

Offer (p) Offer (p) the frequencies of [p,q] pairs averaged over 10% gen-
erations. To aid convergence, the p and g values of agents
C w=1e-0.5 D w=100 in the simulationsin the gure are discretized in increments
~0000O00000o00nn ~-000000000O0000 EMos of 1/12 (all other simulations use a continuous strategy
DOoooOoooooooo Homs T . space). Red indicates high frequency; yellow indicates lower
- %DDDDDDJDDDDQD g aoon 0.5 frequency. The most common strategy is indicated with
L) S%EEEE%%EEEE%% % T e ——FD e T 2 black x. Simulations use n = 100 and u = 10~"2%, with w
T ‘OOoooooooooooo - 2= N 1 [ [ “ 8  varying across 107"° (A), 107" (B), 107%° (C), and 107 (D).
E S0000000000000 0.015 £ & 0000000000000 | loa 5 Similar results are obtained using other mutation rates (Fig.
¢ 00000OOOOOOOO 5 E L a000000000000 2 S1). Note that strong selection drives the population to the
Q :EEEE=E%EEEEEE 0w & g :%EE%E%EEEEE%E 02 < smallest possible nonzero value of p = q = /12 in D (rather
cOOOmEOCO000D0 e 0000000000000 s than p = q = 0), for the following reason: althoughp =q =
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0000000000000 L = 000000000000a invaded by p = q = 0, which in turn is risk-dominated by p =
L A e Ui T AT 25T g6 112, q = 1/12; due to the discretized strategy space, no

Offer (p) Offer (p) intermediate strategies exist.

the qualitative result is general (outside of the weak and strong
selection extremes): The mean proposal p is greater than the
demand (, and the average demand ( is substantially greater than
0. These ndings are very different from the results of classical
evolutionary game theory using either the replicator equation
studying the mini UG (30) or adaptive dynamics studying the full
UG (53), where the population converges to the rational self-in-
terested strategy p = @ = 0 unless other mechanisms are present.

Our results are robust to the manner in which mutants are se-
lected. Replacing the uniform mutation described above with a local
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Fig. 2. Across a wide range of selection strengths and mutation rates,

evolution results in fairness on average: the mean minimum amount
demanded has q > 0, and the mean offer has p > g. Shown are time-aver-
aged values of p and q over 10% generations, using the population size n =
100 and mutation rate (A) u = 1073, (B) u = 1072, and (C) u = 10~". Shown in
yellow are the parameter regions which agree with experimental data, 0.3 <
p <0.5and 0.2 < q < 0.35 based on additional simulations examining se-
lection strengths in increments of 0.1.
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mutation scheme in which mutants are some random perturbation
from the parent strategy gives qualitatively similar results. See Sl
Local Mutation Kernel and Figs. S2 and S3 for details.

A pessimistic interpretation of the results in Fig. 2 is as follows.
Perhaps selection always favors the rational self-interested strat-
egy p = g = 0, and the fact that the mean p and Q transition from
0t0 0.5 as W decreases is the trivial result of increasing neutral drift
driving the mean away from the optimal (sel sh) strategy. On the
contrary, however, we clearly see that this is not the case. Instead,
the frequency distributions in Fig. 1 are centered around fair
strategies with large offers and demands, as long as selection is not
too strong. Put differently, the strategy most favored by natural
selection is the strategy that is most common under mutation-se-
lection balance; thus, the fact that p = ¢ = 0 is not the most
common strategy when selection is not so strong shows that we
truly are observing natural selection favoring fairness.

Thus far we have shown that evolution in nite populations
can qualitatively reproduce both the negative and positive as-
pects of fair behavior demonstrated in experiments. Now we ask
whether there can also be quantitative agreement between our
model and the range of behaviors observed in the experimental
data. On the negative side of fairness (disadvantageous inequity
aversion), whereas Homo economicus would accept any nonzero
offer, the mean demand ( is substantially greater than zero
across experiments, tending to lie in the range 0.2 < q < 0.35.
On the positive side of fairness (advantageous inequity aversion),
subjects also offer more than is demanded: across experiments,
the average offer p is substantially higher than the average de-
mand, typically in the range 0.3 < p < 0.5 (see Fig. S4 for mean p
and ( values from numerous experiments).

We now compare these experimental data with the average
values of p and  from our agent-based simulations, across
a range of selection strengths and mutation rates. We see that
the evolutionary outcomes for a number of parameter combi-
nations are quantitatively consistent with the experimental data,
having mean offers 0.3 < p < 0.5 and mean demands 0.2 < ¢ <
0.35. The parameter regions which lead to this agreement are
highlighted in yellow in Fig. 2. We see that increasing the mu-
tation rate leads to a corresponding increase in the selection
strength needed to reproduce the experimental behavior. This
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balancing is required to conserve the level of randomness in the
system, which is increased by higher mutation and decreased by
stronger selection (the opposite is true for the relationship be-
tween selection strength and population size, as shown in Fig.
S5). We see that with the correct level of randomness, our
evolutionary simulations can quantitatively reproduce the range
of average behavior observed in experiments. This agreement
stands in contrast with classical economic approaches as well as
deterministic evolutionary dynamics, and demonstrates the po-
tential power of nite population evolutionary analysis for un-
derstanding human behavior.

In addition to average behavior, it is also of interest to con-
sider how the distribution of individual-level behaviors shown in
Fig. 1 compares with experimental data (see Fig. S6 for histo-
grams of p and ( separately, rather than the joint [p,q] distri-
bution shown in Fig. 1). We begin with proposer behavior. Our
model produces a unimodal distribution of p values that drops
off sharply when p rises above 0.5. This result is generally con-
sistent with the ndings of behavioral experiments, with the ex-
ception of the model having substantially more variation in offers
than is typically seen in experiments (i.e., a wider distribution),
and including a low but nonzero density of probability weight for
offers above 0.5 (whereas virtually no subjects offer more than
0.5 in most experiments) (1). Turning to responder behavior, our
model again produces a fairly broad unimodal distribution with
relatively little probability weight above 0.5. It is harder to
compare these results with experimental data as few studies
provide distributions of minimum acceptable offers, and the few
that do are not consistent with each other: both unimodal dis-
tributions (2) and bimodal distributions with modes at 0 and 0.5
(3) have been observed. Further exploration of individual-level
behavior, both theoretically and experimentally, is an important
direction for future study.

Discussion

To gain an intuition for the evolutionary success of fairness in
our agent based simulations, we turn to mathematical calcu-
lations. In the weak selection limit, where the average abundance
of all strategies is approximately equal (steady-state p and ( are
uniformly distributed on the unit square), it is possible to ana-
lytically determine which strategy is most common. We nd that
the most frequent strategy depends strongly on the rate at which
mutations arise in the population (see SI Intuition on the Role of
Mutation and Table S1).

In the high mutation limit, all strategies are present in the
population simultaneously with approximately equal frequency.
Hence, the optimum strategy is the one that maximizes its
expected absolute payoff against a randomly chosen opposing
strategy. As has been shown previously (30), it is intuitive that
this strategy is (1/2, 0). The offer of p = 1/2 maximizes the
proposer’s expected payoff of p(1-p) when playing against
a randomly chosen opponent; and the demand ( = 0 maximizes
expected payoff as responder because any nonzero demand
results in lost pro t. Thus, in the high mutation limit natural
selection favors the rst aspect of fair behavior (advantageous
inequity aversion), with proposal p greater than demand (.

In the low mutation limit, on the other hand, the population
dynamics is very different. A new mutant will either die out or
take over the resident population before another mutant arises.
Thus, although all strategies are still present at equal frequency
in the steady-state distribution when in the limit of weak selec-
tion, at most two strategies are ever present in the population at
the same time. Therefore, what matters in the low mutation limit
is resisting invasion by a single (randomly chosen) other strategy:
it is not expected absolute payoff that determines success, but
rather expected relative payoff in pairwise competition with
a random opponent (52).
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What strategy then maximizes expected relative payoff? One
can see that p = ( is a logical rst requirement for success in the
low mutation limit: any strategy that offers more than it demands
(p > Q) loses in pairwise competition with mutant strategies
which offer py such that p > pn > (q (the py, mutant is less
generous than the resident, but still has its offers accepted); and
any strategy that demands more than it offers (p < Q) always
rejects its own offers and is outcompeted by all mutant strategies
with Py, > (. Thus, we focus our attention on the self-consistent
set of strategies with p = (. Consider the interaction between
a relatively fair strategy Sg with p = q = X, and a relatively unfair
strategy Sy with p = q = X-«. Both strategies receive the full
payoff of 1 when playing against themselves; but, when Sg meets
Su, surprisingly the more fair strategy receives the higher payoff
(provided it offers less than half). When Sg is the proposer, her
offer is accepted, and she earns 1-X whereas Sy earns X; when Sy
is the proposer, her lower offer is rejected, and neither player
earns anything. Thus, fairer strategies always earn more than less
fair strategies when they interact pairwise as long as X < 0.5.
However, when considering expected relative payoff against
a random opponent, there is a tradeoff: the more you offer (up
to 0.5), the more strategies you outearn, but the smaller your
margin of success is in each pairing. This creates two opposing
forces resulting from increasing your offer: the decreasing mar-
ginal payoff versus the increasing number of strategies you out-
perform. These two forces balance out at some intermediate,
optimal value of X. We nd that this balance is achieved atp = q =
1/3, and that this result continues to hold when lifting the
restriction p = (. Thus, when mutations are rare, it pays to
reject nonzero offers; in this case, the most common strategy
has the second experimentally observed aspect of fairness
(disadvantageous inequity aversion), with ¢ > 0.

At intermediate mutation rates, the evolutionary dynamic has
characteristics of both the fully heterogeneous and fully homo-
geneous extremes. Because of the somewhat heterogeneous
nature of the population, p > ( is favored by selection; and due to
the somewhat homogeneous nature of the population, q > 0 is
also favored. We therefore nd that for Nu > 1, the most fre-
quent strategy hasp = (1 + Nu)/(4 + 2N u)andq = 1/2 + N u).
As shown in Fig. 3, we see evolution favoring both qualitative
attributes of experimentally observed human behavior that were
so challenging for classical game theory’s “economic man”:
nonzero rejection thresholds, q > 0, and proposer’s generosity
beyond what is necessary to avoid rejection, p > (. The same
results hold if instead of one population in which any individual
can be either a proposer or a responder in any given game, we
consider two separate interacting populations, one of proposers
and one of responders. See S| Single—Population Formulation for

Weak selection limit

0.5 4
0.4
—Modal Offer (p)
0.3 4 —Modal Demand (q)
0.2
0.1 4
0 )
01 1 10 100 1000

Mutation rate (Nu)

Fig. 3. In the weak selection limit, the modal strategy is fair for in-
termediate mutation. Shown are the most common strategies p (blue) and q
(red) as functions of the mutation rate, calculated analytically in the weak
selection limit (see SI Single-Population Formation for details). For low mu-
tation 0 = Nu =1, p = q = 1/3 is the most common strategy. As mutation
increases, the optimum proposal increases to 1/2 and the optimum threshold
decreases to 0. For intermediate mutation rates, we observe both key fea-
tures of real-world ultimate game behavior: p > q > 0.
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the weak selection limit analysis and S| Two—-Population For-
mulation for the treatment of separate populations.

To summarize, we nd that (i) weakening selection increases
the favored demand ( (and therefore also the favored offer p),
and (ii) increasing the mutation rate increases the favored offer p
but not demand (. We now use these theoretical ndings to
generate two testable predictions, and evaluate these predictions
by running a behavioral experiment.

The rst prediction stems from the result regarding weakening
selection. In our model, weaker selection means that agents have
a harder time assessing which others have the highest payoffs
when choosing whom to imitate. Therefore, we would predict
that people who developed their strategies in settings where it
was more dif cult to assess the successfulness of others would
make both larger offers and larger demands.

The second prediction comes from the result regarding increasing
mutation. In our model, higher mutation means that agents are
more likely to change their strategy at random. Therefore, we would
predict that people who developed their strategies in settings where
the behavior of others is less consistent would make higher offers,
but not higher demands.

To evaluate these two predictions, we conduct an experiment
using the online labor market Amazon Mechanical Turk (54-61).
We recruit N = 140 subjects from around the world to play a one-
shot anonymous UG. In addition, these subjects are asked
“Among those you interact with in daily life, how clear is it which
people are more or less successful?” as a measure of the intensity
of selection under which they developed their strategy, and
“How accurate do you think rst impressions are when judging
other people?” as a measure of the consistency of others (i.e., the
inverse of the mutation/experimentation rate) under which they
developed their strategy.

The results validate both of our theoretical predictions. Fig.
4A shows that subjects who report less clarity about the suc-
cessfulness of others offer more and demand more. Fig. 4B
shows that subjects who report less consistency of others offer
more but do not demand more. These results are con rmed by
statistical analysis using linear regression with robust SEs, in-
cluding appropriate controls. See Methods for further details.

We have shown that in nite populations, where dynamics are
stochastic and evolutionary trajectories are in uenced by chance,
natural selection favors fairness in the one-shot anonymous UG.

A 0.55 Weaker selection increases
both demand and offer
0.5 I Others'
Successfulness
g 045 Less clear
25 I = More clear
0.4
0.35 + T
Offer Demand
B 0.55 Higher mutation increases

offer but not demand

0.5 First Impressions
= I Less reliable
8045 u More reliable
=

0.4

0.35

Offer Demand

Fig. 4. A behavioral experiment in which subjects play a one-shot anony-
mous UG con rms two predictions of our model. (A) Subjects that report
a less-clear understanding of who in their community is more versus less
successful (i.e., that developed their strategies under weaker selection) make
larger offers and larger demands. (B) Subjects that report rstimpressions to
be less reliable (i.e., that developed their strategies under higher mutation
rates) make larger offers but not larger demands. Error bars indicate SEM.
For visualization, subjects are divided into two groups in each panel using
a median split on question responses.
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Furthermore, we have validated the predictions of our analysis
using behavioral experiments. Previous analyses of the UG have
focused on situations where selection is strong and higher payoff
strategies always produce more offspring (30, 39, 40). In these
settings where evolution is deterministic, fairness needs addi-
tional mechanisms to evolve. When the role of random chance is
included, however, the results are very different. Without any
reputation systems (30, 37), asymmetries between proposers and
responders (39), or a priori assumptions about other-regarding
preferences (9), the self-interested process of evolution can lead
to behaviors which defy classic rational self-interest models
(26, 45). These stochastic evolutionary simulations for nite
populations can quantitatively reproduce the range of human
behaviors observed in the laboratory. [This is as true for cross-
cultural results on UG play from small-scale societies as it is for
play by Western undergraduates, with the exception of the few
societies in which offers above 50% are consistently rejected
(23).] Thus, we do not necessarily need to invoke additional
mechanisms to provide an evolutionary account of the origins of
fairness, as long as the system is not too deterministic.

The emotions, intuitions, and preferences which guide us to-
ward generosity and righteous anger in the one-shot anonymous
UG (62-65) may be the proximate biological (4) and/or cultural
(23) implementations of behaviors which are advantageous in the
presence of weak selection and imperfect learning (for further
discussion of the role of intuition in economic games, see ref. 66).
Thus, stochastic evolutionary dynamics may offer an explanation
for why we have come to have such a preference for fairness. When
populations are nite and selection is not too strong, evolution can
be ckle: Fitter strategies sometimes die out, and less- t strategies
sometimes triumph. However, in this unfair world, myopic self-
interest is vanquished whereas fairness triumphs.

Methods

Agent-Based Simulations. Our main results are produced using agent-based
simulations. In our simulations, agents interact in a well-mixed population of
constant size 100. Each agent i has a strategy vector [p;,a;] specifying that agent’s
behavior when acting as proposer (offers p;) and responder (demands qj).

Each generation, every agent plays the UG with every other agent, once in
the proposerrole and once in the responder role, and the resulting payoff m;
is the average of the payoffs over all 99 pairings.

Then one agent is picked proportional to exp[wn] to reproduce, where w
is the intensity of selection; and one agent is picked at random to die. With
probability 1-u, the dead agent’s strategy is replaced with the reproducing
agent’sstrategy; with probability u, a mutation occurs and instead the dead
agent’sstrategy is replaced with a randomly selected strategy. Thus, u is the
mutation rate.

Each agent’s strategy is initialized randomly at the beginning of the sim-
ulation, and the strategies of all agents are recorded over 10% generations.

For details of the weak selection analytical calculations, see Sl Single-
Population Formulation.

Behavioral Experiments. To assess our theoretical predictions, we conduct
a behavioral experiment. We recruit n = 140 subjects using the online labor
market Amazon Mechanical Turk (AMT; for an overview of running experi-
ments on AMT, as well as a discussion of the value of combining behavioral
experiments and theoretical models, see ref. 55). Commensurate with stan-
dard wages on AMT, subjects receive a $0.20 baseline payment for partici-
pating, and then play a UG in which $0.40 is at stake. For evidence that these
low stakes do not compromise the validity of behavioral data, see ref. 57.
Subjects read a set of instructions explaining the game, and are told they will
be randomly assigned to be either the proposer or the responder. They are
then asked to calculate the payoff received by the proposer and responder in
two different scenarios to ensure that they understand the payoff structure.
Only subjects who answer correctly are allowed to participate.

After clearing the comprehension questions, subjects indicate the mini-
mum offer they would accept if they are assigned to be the responder. Then
they indicate the amount they would offer if they are assigned to be the
proposer. Finally, they complete a demographic questionnaire that includes
the questions “Among those you interact with in daily life, how clear is it
which people are more or less successful?” and “How accurate do you think
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rst impressions are when judging other people?,” each reported using a 5-
point Likert scale (1 = Very unclear to 5 = Very clear for the rst question;
1 = Very inaccurate to 5 = Very accurate for the second).

Once all subjects have been recruited, they are randomly paired and
assigned roles, the resulting payoffs are calculated, and each subject is paid
accordingly using the AMT payment system. No deception is used. The
practice of having subjectsspecify a strategy which dictates a decision in each
possible outcome and then having actual payoffs determined by ex post
matching, referred to as the “strategy method,” is a common technique in
experimental economics (and is used by all of the experimental papers
whose data we visualize in Fig. S4). This is particularly true for eliciting re-
sponder behavior in the UG, as low proposer offers are rare and thus it is
dif cult to determine how subjects would respond to receiving a low offer.
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S| Text

We study the evolutionary dynamics of the Ultimatum Game
(UQG) analytically in two ways. The rst approach, described in
SI Single-Population Formation, is a “single-population” for-
mulation: we consider a population of size N in which each
individual can be both a proposer and a responder with equal
probability. The second approach, described in SI Two-Pop-
ulation Formation, is a “two-population” formulation: we con-
sider two populations of size N, one of which is a population of
proposers and the other, a population of responders, and we
study their coevolution. Both approaches will yield the same
result; an intuitive explanation of this result is then provided in
SI Intuition on the Role of Mutation.

We then turn to additional agent based simulation results.
Fig. S1 shows that the results in Fig. 1 in the main text are robust
to different mutation rates. SI Local Mutation Kernel and Figs.
S2 and S3 describe our simulations using a local mutation
kernel (rather than the global mutation kernel used in the
main text), and show that the results in Fig. 2 in the main text
are robust to this alternate mutation structure. Fig. S4 shows
the average values of p and q from numerous behavioral ex-
periments as well as from agent-based simulations using par-
ticular parameter sets highlighted in Fig. 2 in the main text.
Fig. S5 shows that the results in Fig. 2 in the main text are
robust to different population sizes. Fig. S6 shows the distri-
bution of individual-level offers and demands for a represen-
tative set of parameters.

S| Single-Population Formulation

Here, we consider a population of N players who play the role of
proposers and responders with equal probability. We specify an
agent’s strategy as the pair S=0p;qP, 0sp=1, and 0sq=1,
where p is the amount offered when acting as proposer, and q
is the minimum amount demanded when acting as responder,
or the rejection threshold. Hence, the strategy space for the
UG is the unit square. Let AdS;; S,P be the expected payoff that
strategy S; =0p;;qiP gets from strategy S, = dp,; 2. Because
we assume that in the interaction between a player using
strategy S; and a player using strategy S, each player can be in
the role of the proposer with equal probability, A0S;;S;b is
given (up to a 1=2 factor which we henceforth omit) by the
function

8
El—p1+p2 if pj=2q; and p,2q
ADS:” Sob = 1-p if pp=2q; and p2<q [S1]
b2 2 P2 if pi<q and pr=q

0 if pi<q and p<q

Every individual in the population plays the UG with every
other individual and they all get payoffs according to the
function above. The (relative) fecundity (or effective payoff)
of a player with an average payoff mis given by exphwn , where
the parameter w > 0 represents the intensity of selection. In-
dividuals reproduce proportional to their fecundity. In each
time step a random player dies and another player (including
the dying player himself) is picked proportional to fecundity
to replace the dead. Reproduction is subject to mutation: the
offspring inherits the strategy of the parent with probability
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1 - u and with probability u it adopts a strategy uniformly at
random. We say that strategy S is favored on average in the
mutation-selection equilibrium, if its abundance exceeds the
mean.

Let us rst assume that our strategies do not cover the entire
unit square, but in fact are only of the form § = di=m;j=mP
with 1=i;j=m being integers. This discretizes the problem,
making it possible to invoke previous results. To then go back to
the continuous strategy space we simply take the limit m  oo.

Having turned our continuous problem into a discrete one, we
are now interested in the stationary abundance of these discrete
strategies. For this problem, we can use the result in ref. 1 to
conclude that, for large population size N, strategy § is favored by
selection if Lg + NuHg > 0, where

1 X X
Ls=E fADs; sP + Ads; s b — Ads ;sP - Ads ;s bg
i=1j=1
2
1 X X X X [52]
Hs=—; fADs;s b- Ads ;s bg
m . .

Here, s =0i =m;j=mP and s =0i =m;j =mP. Moreover, ref. 1
showed that the higher the quantity Ls+ NuHs >0, the more
the strategy s is favored by selection. Consequently, to determine
which strategy is most favored by selection, one simply has to
maximize Lg + NuHg > 0.

Taking the limit m oo as in Tarnita et al. (2), the sums in S2
converge to the integrals

21 71
Ls = AdS;SP+A S;S -AS;S -AS;S dpdq
0 0
VAWAWAWA
Hs = AS;S -AS;S dpdqdp dq;
0000
[S3]

where S =0p ;qPandS =0p ;q P. Moreover, it follows that the
condition for strategy S to be favored by selection is Lg +
NuHjs >0 and that the most favored strategy is determined by
maximizing Lg + NuHg >0. Depending on whether p=q or
p<gq, the payoff function AdS;SP takes two different values
and hence we nd the condition for strategy S to be favored
by selection to be

N
Is + NuH; = I0p 2 b + p*0-Nu - 2b + ¢ —7‘1— 1

+pﬁl+NuP+q—%>0; [S4]

where IdconditionP is 1 if condition is true and is 0 if condition
is false.

Maximizing S4, we conclude that the optimum strategy (most
abundant in the stationary distribution and hence, by our
measure, most favored by selection) is achieved when p = q and
is given by
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il if 0=sNusl
Popt; Qopt = 3 .
14Nu._ 1 ;
T+2Nw 2+ Nu if Nu>l

Note that for low mutation, the optimum strategy is 1=3; 1=3b.
Hence, the most successful strategy is one that offers 33% and
also rejects any offer lower than 33%. As mutation increases, the
proposal increases and the rejection threshold decreases. For
high mutation, the most frequent strategy is 81=2;0P; thus the
proposal is 50% and the rejection threshold is 0.

SI Two-Population Formulation

Next we will derive the same results as above but using a dif-
ferent approach. Instead of considering a population where
each individual can be both proposer and responder, we con-
sider two distinct populations—the population of proposers
and that of responders—and explore their evolutionary game
dynamics. This means that, unlike in SI Single-Population
Mutation, where the strategy of an individual was given by
a vector S=10p;qP 40;1 x%0; 1, here the strategy of an in-
dividual is given by one number. Thus, an individual from the
population of proposers will have strategy Spop=p 40;1,
which represents the offer he makes and an individual from the
population of responders will have strategy S.op=q 40;1,
which represents his rejection threshold. When two such
players meet, their payoffs are given by

. ,_ l-p if pzqp
APrOP6p7 qp = 0 61f p< qp ] [85]
Awolpigp= P bif pzgp
TesPrE 0 dif p<gb

where Apop and A, respectively, represent payoffs of the pro-
poser and the responder.

Suppose that there are N players in each population (i.e., N
proposers and N responders). Each proposer plays the UG
described above with every responder in the responders’ pop-
ulation and obtains an average game payoff. Similarly, each
responder plays the game with every proposer and obtains an
average game payoff. We assume that selection occurs in each
population according to payoffs in the UG. More speci cally,
a random player in either population dies (in cultural evolution
terms, he attempts to change his strategy) and another player in
the same population (it can be the dying player himself) replaces
the dead with its offspring with probability proportional to one’s
fecundity. We assume that one’s (relative) fecundity is given by
exphwr , where T represents one’s average payoff in the game
and w> 0 represents the intensity of selection. Reproduction
(imitation) occurs with mistakes—with probability u, the off-
spring is susceptible to mutation and randomly adopts a strat-
egy uniformly at random, independently of its parent’s
strategy.

For simplicity of our analysis, we will rst discretize the
problem, as before. Thus, we rst consider that the possible
proposals have the form $;,,p = i=m and the possible rejection
thresholds have the form $.s, = j=m, where m21 is an integer
and 1=i;j<m. In this case, assuming weak selection, w 0,
Ohtsuki et al. (3) have obtained the result that the combina-
tion of proposer’s and responder’s strategies that is most
abundant in the stationary distribution (and hence, by our
de nition, is most favored by selection) is the one that max-

imizes L &1 4+ 20N - [pu-H L L

m’ m’m

where
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1] i ]
L m :Erj=l Aprop m Aprop m
ij ]
+ Aprop 67 B - Aprop B; a
X i i
+El o Aresp 515 Aresp E'B
' [S6]
Lo Lo
+ Aresp — J_ - Aresp - J_
m m m m
i] _1 i] 1]
Mo Tme M mm T w
i j i
+ Aresp — J_ - Aresp — J_
m m m m
A direct calculation shows
.. .2 .2 . . .
1] .y i i i g 1 1
L —= =Nizjpp-2 — - = +—4—-—t-—-—
m’ m =) m m m m 2 m? 2m
i ] R O R
H—= =- — -= = +—+— S7
m m m 2 m m 2m? [57]

where IdconditionP is 1 if condition is true and is 0 if condition is
false. Now let p = i=m and q = j=m. Substituting i = pm and j = qm
and taking the limit m oo gives

1
Lﬁp;qp = Iopqu—2p2—q2+p+q_,
2
| [58]
Hip;qP = -p2—5q2+p

A direct calculation now shows that, for large N, the most
abundant pair of strategies dpopt; qopeP [Obtained by maximizing
Ldp; gP + 20N - 1PuH0p; gb] is given by

8

3 . if 0 <2Nusl
Popt; opt = [89]

3 142Nu._ 1 :
C F+4NwI+2Nu if 1 <2Nu

W=

This result is exactly the same as the one for the single-population
model in SI Single-Population Mutation except that Nu is re-
placed with 2Nu. This makes sense, because the total population
size in the two-population formulation is N + N = 2N, whereas it
is N in the one-population formulation.

Sl Intuition on the Role of Mutation
As we have seen, the magnitude of the rescaled mutation rate Nu
is a crucial determinant of the strategy that is favored the most
by natural selection (= the one that is most frequently observed
in the mutation-selection equilibrium of our stochastic evolu-
tionary dynamics). Here, we try to explain the reason for that.
In our formulation, a mutant strategy, S = 0p; gP, is randomly
chosen from our strategy space, which is the unit square #0; 1 x
0; 1. This assumption means that a mutant almost surely
adopts a strategy that is not observed in a current population.
Therefore, mutation increases variation in strategies. At the
same time, niteness of the population size reduces the variation
via random sampling of a nite number of offspring. What is
then important is how many different strategies coexist in a pop-
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ulation of size N. Because our model corresponds to Moran in-

nitely many alleles model in population genetics, many results are
already known. The expected number of different strategies coex-
isting in the population is given by the following exact formula (4):

NX1 Nu
=0Nu+kf§1 —-ubp’ [510]

k

Table S1 shows some values of this expression for various N and u.
From S10 (but also from Table S1) we see that, in the low mu-
tation limit Nu 0, the number of different strategies in the
population is close to 1, suggesting that the population is almost
always monomorphic. When a new and rare mutant appears in the
population, the number of different strategies becomes 2 (resident
and mutant), and we expect that mutants will either die out or
take over the resident population before another new mutant
arises. Thus, at most two strategies are involved in a takeover at
any moment in time. Therefore, in the low mutation, a strategy is
selected if it can resist invasion by a single randomly chosen
strategy. Hence, what needs to be maximized is expected relative
payoff in pairwise competition with a random opponent.

As Nu increases, the number of different strategies present in
the population also increases. In the high mutation limit, all
strategies are present in the population simultaneously with
approximately equal frequency. Hence, the optimum strategy is
the one that maximizes its expected absolute payoff against
a randomly chosen opposing strategy. At intermediate mutation
rates, the evolutionary dynamic has characteristics of both the
fully heterogeneous and fully homogeneous extremes. How these
conclusions play a role in determining the winning strategies is
explained at length in the main text.

1. Antal T, Traulsen A, Ohtsuki H, Tarnita CE, Nowak MA (2009) Mutation-selection
equilibrium in games with multiple strategies. J Theor Biol 258(4):614-622.

2. Tarnita CE, Antal T, Nowak MA (2009) Mutation-selection equilibrium in games with
mixed strategies. J Theor Biol 261(1):50-57.
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S| Local Mutation Kernel

In the main text analysis and simulations, a mutant’s p and g
values are randomly picked from the uniform distribution 0; 1 .
Thus, mutations are “global,” in the sense that a mutant’s new
strategy has no relation to the previous strategy. An alternative
scheme, however, uses local mutation, where the mutant strategy
is some perturbation off of the parent strategy. To investigate the
effects of local mutation, we use the following mutation kernel.
For a parent with p=p°, the mutant p is picked from a -dis-
tribution de ned by the probability density function

-191 - pb !
fopp = 22— [S11]
u "'l -up 'du
0
where =0p° -2p +1P=01 -pPand = ifx<0:50r = and

=001 -p'P -201 -p'P+ 1b=p” if x=0:5, and is a parameter
determining how similar the mutant tends to be to the parent.
A -distribution is used as this distribution is bounded on the
interval %0; 1 and is unimodal if ; > 1. The particular values
of and are chosen such that the modal value of the distri-
bution is p".

Fig. S2 shows sample probability density functions for different
values of p”, using =50. The same distribution is used to in-
dependently generate q values. Fig. S3 shows the results of re-
peating the simulations shown in Fig. 2 in the main text, but now
using this local mutation kernel =50. We see qualitative agree-
ment: Across a wide range of w and u values, we observe average
q >0 and p > q. Thus, our results are robust to the use of a local
mutation kernel.

3. Ohtsuki H (2010) Stochastic evolutionary dynamics of bimatrix games. J Theor Biol
264(1):136-142.

4. Ewens WJ (2004) Mathematical Population Genetics: I. Theoretical Introduction (Springer,
New York).
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Table S1. Expected number of different strategies coexisting in
the population

Nu N =100 N =1;000 N =10;000
10 26.0417 47.0201 69.6545

1 5.22322 7.49132 9.78842

0.1 1.50298 1.73318 1.96342

0.01 1.05162 1.07468 1.09771
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. COMMENTARY

A random world 1s a fair world

James H. Fowler®®" and Nicholas A. Christakis®¢
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CA 92093; "Political Science Department, University of California at San Diego, La Jolla,
CA 92093; °Department of Sociology, Harvard University, Cambridge, MA 02138; and
dDepalrtmen'[ of Medicine, Harvard Medical School, Boston, MA 02115

A preference for fairness or equity in the
distribution of resources in uences many
human decisions (1). The origin of this pref-
erence is a topic that has consumed philos-
ophers (2), social scientists (3), and biologists
(4) for centuries. However, although we feel
a sense of fairness deeply and intuitively, it
has so far been dif cult to explain from rst
principles how such a feeling might have
evolved. How could natural selection allow
for the survival of “fair” individuals who
sometimes give things away to equalize re-
sources when they must compete with self-
interested individuals who keep everything
for themselves? In PNAS, Rand et al. (5)
provide a unique and compelling solution
to this puzzle: it's all because of dumb luck.

To study fairness, authors use the so-called
“ultimatum game” (6). In this game, one
person (the proposer) offers a speci ¢ divi-
sion of a sum of money, and the other (the
responder) decides whether to accept this
offer. If the responder accepts, they each re-
ceive the amount of money as proposed. If
the responder rejects the offer, they each re-
ceive nothing. If both players are rational
and self-interested and they play the game
only once, then the responder should ac-
cept any nonzero offer (something is better
than nothing!). Knowing that, the proposer
should offer slightly more than zero to the
responder and keep the rest for himself.

However, this result is not what we ob-
serve, anywhere. Dozens of studies in both
large (7) and small-scale (8) societies show
that proposers tend to make “fair” offers, in
the range of 30-50% for the responder.
Furthermore, responders tend to demand
such behavior, rejecting offers when they
fall below 20-35%.

Past efforts to explain the origin of these
preferences have used deterministic game
theory, which assumes that individuals with
higher expected payoffs will always come to
dominate the population (9). These models
cannot explain fair offers or rejection of
nonzero offers without making additional
assumptions. For example, if we assume indi-
viduals have information about others’ past

behavior, then they can make strategies
contingent on the reputation of their oppo-
nents, and this will bene t individuals with
a reputation for rejecting low offers. How-
ever, how did the individuals get this in-
formation? And how do they avoid being
exploited by individuals who can fake such
a reputation? The additional assumptions are
complex and hard to justify.

Instead, Rand et al. (5) return to rst prin-
ciples and use a different approach. Rather
than assuming that evolution is determin-
istic, they assume it is stochastic. In reality,
evolution sometimes favors the lucky, espe-
cially when the relationship between payoffs
and survival is weak. This theory means a
variety of strategies can endure and the
winning strategy must do well in such an
environment. Intuitively, if some of the res-
ponders are rejecting nonzero offers—not
because it is the best strategy but because
it happens to survive sometimes—then pro-
posers need to make fairer offers.

Proximate sel sh
behavior can be bad
for you, and under
evolutionary pressure
may not even survive.

Remarkably, when Rand et al. (5) apply
stochastic evolutionary game theory in this
way, they nd that offers exceed demands
and demands are greater than zero, just as
they are in the empirical data. This result
is true under a very wide range of possible
scenarios when they vary selection (the re-
lationship between payoffs and survival) and
mutation (the likelihood that an individual
chooses a random strategy). In fact, in some
of these scenarios, they can exactly reproduce
the average offer and the average demand
from experiments in behavioral economics.

If the article ended there it would already
be impressive for the way this work explains
the observed data with the most parsimonious

2440-2441 | PNAS | February 12,2013 | vol. 110 | no.7

model to date. However, Rand et al. (5) also
use the model to make two unique predic-
tions, both of which are con rmed by care-
ful measurement in a sample of 140 subjects.
First, as selection becomes weaker, it in-
creases the likelihood of survival for both
proposers and responders who try alterna-
tive strategies. Therefore, people living in
circumstances where it is harder to assess
the success of others’ strategies should make
both higher offers and higher demands. Sec-
ond, as the rate of mutation increases, it di-
rectly increases the average offer because the
average without mutation is less than one-
half. However, the effect of mutation on
demands is more ambiguous. Random de-
mands will tend to increase the average be-
cause they are also below one-half, but there
is more to lose from rejection because the
offers tend to be higher, and this favors lower
demands. Therefore, people living in circum-
stances where others are inconsistent in their
behavior should make higher offers but not
necessarily have higher demands.

Why Randomness Matters
It may seem remarkable that randomness is
what drives “fair” behavior in this model, but
it is consistent with what we know about
other human behaviors that apparently defy
rational explanation: uncertainty is key.
For example, it is well known that hu-
mans tend to exhibit overcon dence. When
making interpersonal comparisons on a wide
variety of traits, most people think they are
above average. Such a bias might cause
individuals to engage in contests they are
sure to lose. However, uncertainty about
capabilities means that the overcon dent are
also more likely to win other contests be-
cause less-con dent individuals may decide
not to enter the contest in the rst place.
As a consequence, evolutionary models show
that, counterintuitively, overcon dence max-
imizes individual tness and populations
tend to become overcon dent under a wide
variety of conditions (10). Similar behav-
ior in the face of uncertainty is observed in
physician prognostication (11).
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Stochastic evolutionary game theory has
not yet been widely used, but it is already
yielding a variety of promising results, tting
empirical data on human behavior better
than deterministic models (12, 13). An im-
portant conceptual innovation in the sto-
chastic theory is that selection is not the
only important factor in evolution. Muta-
tion is also important, and it is the balance
between mutation and selection that ulti-
mately matters for determining evolutionary
outcomes. Although this may seem to com-
plicate deterministic models, many basic
models yield elegant closed-form solutions
(14) and the analogs to agent-based evo-
lutionary models are direct and easy to
interpret.

For example, Nowak, Tarnita, and Wilson
(15) recently applied stochastic evolutionary
game theory to the problem of eusociality
and showed that it could help to explain
group-level evolutionary outcomes without
any extra assumptions about “inclusive t-
ness.” Although dozens of other scholars
wrote rebuttals (16) to this work (primarily
to defend their use of more approximate
models), these responses did not counter an
important point: inclusive tness theory is a
special case of a more general model that is
simply based on individual selection under
mutation and a precise elaboration of the
set of interactions among individuals in the
population. Thus, a random world is also
one in which we can better understand how
individual selection can drive group behavior.

Next Steps
An important challenge for stochastic game
theory is whether or not it can be used to
predict individual-level behavior. The model
elaborated by Rand et al. (5) does an excel-
lent job in matching population averages
but, as they show in their supplementary
information, there is wider variance in in-
dividual strategies than is normally present
in empirical data. For example, their model
yields too many individuals who make and
demand offers above 50%.

Stochastic learning theory has faced similar
challenges. Simple rules based on reinforce-
ment learning (17) were used successfully to

Fowler and Christakis

explain aggregate behavior in pigeons, gold-

sh, and, in some situations, in humans, but
they were abandoned by psychologists in the
1970s in part for their inability to predict
individual-level behavior (7). However, this
disconnect between group and individual
results may be easy to x simply by adjust-
ing a functional form in the model. For
example, a simple model of voter behavior
generates more realistic individual-level re-
sults when reinforcement yields xed per-
centage changes in behavior rather than
changes that become smaller near-extreme
values (18). Similarly, in the Rand et al. (5)
model, it may be the case that local muta-
tion yields less variance in individual be-
havior than global mutation, and in fact this
may be a way to test what kinds of explora-
tion strategies are most likely.

Given that the Rand et al. (5) model can
be interpreted as either a learning or natural-
selection model, it suggests a wide variety of
possible mechanisms. Some of these mecha-
nisms could be cultural, such as those ad-
vanced by Henrich et al. in their study of
ultimatum game play in several small-scale
societies (8). It would be interesting to con-
duct the same experiment used by Rand
et al. in each of these societies to see if vari-
ation in expectations about successful oppo-
nents and the mutability of their game play

could explain variation in mean offers and
demands. Other work suggests that variation
in ultimatum game play is heritable; in other
words, genetic variation is, in part, driving
the different strategies that people use when
they play the ultimatum game (19). In addi-
tion, functional MRI studies of other behav-
ioral games suggests that the ventromedial
prefrontal cortex and the insula may play
a mediating role between genes and a sense
of fairness (20). Although the insula result
has been interpreted in the context of its
association with social decision-making, it
would be interesting to see if the ventro-
medial prefrontal cortex activation is driven
by processing expectations about others
strategies.

Finally, although Rand et al. (5) generate
their results with a model that is based on
individual natural selection, it is fascinating
that it yields behavior that may otherwise
appear to be based on something else. Rand
et al. call the process “self-interested natural
selection” but later note that “myopic self-
interest is vanquished whereas fairness tri-
umphs.” This is a nice turn of concept.
Proximate sel sh behavior can be bad for
you, and under evolutionary pressure may
not even survive because fairness maximizes
individual tness. It may not be fair to be
sel sh, but it is certainly sel sh to be fair.

1 Dawes CT, Fowler JH, Johnson T, McElreath R, Smirnov O (2007)
Egalitarian motives in humans. Nature 446(7137):794-796.

2 Rawls J (1971) A Theory of Justice (Harvard Univ Press,
Cambridge, MA).

3 Smith A (1759) The Theory of Moral Sentiments (Millar, Kincaid,
and Bell, London).

4 Darwin C (1871) The Descent of Man, and Selection in Relation to
Sex (John Murray, London).

5 Rand DG, Tarnita CE, Ohtsuki H, Nowak MA (2013) Evolution of
fairness in the one-shot anonymous Ultimatum Game. Proc Natl
Acad Sci USA 110:2581-2586.

6 Giith W, Schmittberger R, Schwarze B (1982) An experimental
analysis of ultimatum bargaining. J Econ Behav Organ 3(4):367-388.
7 Gamerer GF (2003) Behavioral Game Theory: Experiments in
Strategic Interaction (Princeton Univ Press, Princeton, NJ).

8 Henrich J, et al. (2006) Costly punishment across human societies.
Science 312(5781):1767-1770.

9 Nowak MA, Page KM, Sigmund K (2000) Fairness versus reason
in the ultimatum game. Science 289(5485):1773-1775.

10 Johnson DD, Fowler JH (2011) The evolution of overcon dence.
Nature 477(7364):317-320.

11 Alexander M, Christakis NA (2008) Bias and asymmetric

loss in expert forecasts: A study of physician prognostic

PNAS |

behavior with respect to patient survival. J Health Econ 27(4):
1095-1108.

12 Manapat ML, Rand DG, Pawlowitsch C, Nowak MA (2012)
Stochastic evolutionary dynamics resolve the Traveler's Dilemma.

J Theor Biol 303:119-127.

13 Rand DG, Nowak MA (2012) Evolutionary dynamics in nite
populations can explain the full range of cooperative behaviors
observed in the centipede game. J Theor Biol 300:212-221.

14 Antal T, Traulsen A, Ohtsuki H, Tarnita CE, Nowak MA (2009)
Mutation-selection equilibrium in games with multiple strategies.
J Theor Biol 258(4):614-622.

15 Nowak MA, Tarnita CE, Wilson EO (2010) The evolution of
eusociality. Nature 466(7310):1057-1062.

16 Abbot P, et al. (2011) Inclusive tness theory and eusociality.
Nature 471(7339):E1-E4, author reply E9-E10.

17 Bush RR, Mosteller F (1955) Stochastic Models for Learning,
Wiley Publications in Statistics (John Wiley & Sons, New York).
18 Fowler JH (2006) Habitual voting and behavioral turnout. J Polit
68(2):335-344.

19 Wallace BR, Cesarini D, Lichtenstein P, Johannesson M (2007)
Heritability of ultimatum game responder behavior. Proc Natl Acad
Sci USA 104(40):15631-15634.

20 Dawes CT, et al. (2012) Neural basis of egalitarian behavior.
Proc Natl Acad Sci USA 109(17):6479-6483.

February 12,2013 | vol. 110 | no.7 | 2441

>
o
<<
=
=
w
=
=
=}
(=}




