Environmental Emergencies
Environmental Emergencies

- Chapter 25 Cold-Related Emergencies
- Chapter 26 Heat-Related Emergencies
- Chapter 27 Plant and Animal Emergencies
- Chapter 28 Altitude-Related Emergencies
- Chapter 29 Water Emergencies
<table>
<thead>
<tr>
<th>Conduction</th>
<th>Evaporation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convection</td>
<td>Radiation</td>
</tr>
</tbody>
</table>
4 mechanisms of heat loss

Convection
Body heat is lost to surrounding air, which becomes warmer, rises, and is replaced with cooler air.

Evaporation
Perspiration or wet skin results in body heat lost when the fluid evaporates.

Radiation
Body heat is lost to the atmosphere or nearby objects without physically touching them.

Conduction
Body heat is lost to nearby objects through direct physical touch.
4 mechanisms of heat loss

Conduction:
- Direct transfer (object → object)
- Ex: sitting on snow or rock

Convection:
- Transfer through circulating fluid (air / liquid)
- Ex: wind chill

Evaporation:
- Process where liquid becomes a vapor
- Ex: sweating

Radiation:
- Emission of infrared heat
- May account for 60% + heat loss

Wind chill
The apparent temperature felt on exposed skin; a function of air temperature and wind speed
Thermoregulation:

- The process of maintaining normal body temperature
- 1st response to cold: constrict peripheral blood vessels + shunt blood from ext.

Chief factors that can predispose a person to cold injury?

- Alcohol (veins dilate, more warm blood reaches skin surface)
- Age (body fat + blood flow decrease)
- Others: previous frostbite, overexertion, poor-fitting clothes, dehydration, impaired circulation
Frostbite: damage to tissues from freezing due to formation of ice crystals between and within cells, rupturing cells and leading to cell death.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficial (frostnip, chillblains)</td>
<td>affects top layer of skin, no permanent damage</td>
</tr>
<tr>
<td>Partial thickness frostbite</td>
<td>affects upper layers of skin, minor damage to tissues</td>
</tr>
<tr>
<td>Full thickness frostbite</td>
<td>affects all layers of skin, plus muscle + even bone; severe damage/death of tissues</td>
</tr>
</tbody>
</table>
Definitions

Hypothermia: abnormally low body temperature; below 95 F

- Primary: results from environmental exposure; immersion vs. non-immersion
- Secondary: occurs with systemic disorders, traumatized patients.

Afterdrop: a continued drop in core temperature after removal from cold exposure (cold blood → through body)

Windburn: irritation of skin; resembles sunburn; drying effect of low humidity
Frostbite - Assessment

<table>
<thead>
<tr>
<th>Condition</th>
<th>Signs / Symptoms</th>
</tr>
</thead>
</table>
| Superficial (frostnip / chillblains) | • Cool, pale skin
• Pain
• Tissues remain intact |
| Partial thickness frostbite | • White / gray colored patches
• Not painful
• Indents when pressed
• Minimal tissue loss |
| Full thickness frostbite | • White / gray tissue
• Numb
• Cold / woody skin -- will not indent if pressed
• No pulse can be detected |
Frostbite - Management

- Key: rapid warming
 - Can cause pain
- Only warm if no possibility of refreezing
 - Refreezing frostbitten tissue will become gangrenous → tissue death
- Frostbitten body part: in sheltered area where entire body can be kept warm
 - Immerse in warm water bath for 20-30 mins; do not rub
Hypothermia - Assessment

<table>
<thead>
<tr>
<th>Condition</th>
<th>Signs / Symptoms</th>
</tr>
</thead>
</table>
| **Mild Hypothermia** | ● Shivering (increases muscle activity, starts at 96.8 F)
 | ● Alert but may be confused
 | ● Body temp below 95 F |
| **Moderate Hypothermia** | ● Shivering stops (90 F),
 | ● Diminished metabolism, pulse, respirations, LOR
 | ● Surface temp of skin drops |
| **Severe Hypothermia** | ● Core temps near 77 F → patient appears dead
 | ● Rigid without palpable pulse / respirations
 | ● Suppression of energy dependent processes → explain possible resuscitation of hypothermic patients. |
Hypothermia - Management

General / Mild

- Key: Prevent heat loss
 - Relocation to heated building
 - If not possible, insulate from ground, wool hat, vapor barrier
- Remove any wet clothing
- Warming methods
 - Hot packs to major arterial sites → not directly to skin)
 - Warm drinks + high energy foods

Moderate / Severe

- Handle gently
- Supine position
- Rapid transport
- No drinks w / A.M.S.
- No rubbing extremities
- No full-body immersion
- “Not dead until warm and dead”
Heat-Related Emergencies
Body discharges excess heat through...
 ○ Sweating (evaporative heat loss)
 ○ Dilation of blood vessels in skin (radiant heat loss)

Humidity: amount of water vapor in the air. Slows evaporation

Heat index: a measure of risk for heat illness; combines the effects of increasing ambient temperature / increasing humidity

Hyponatremia: dilution of sodium level in the blood
 ○ Overhydration

Hyperthermia: elevated core body temperature
Four forms of heat illness

- Heat-related Syncope
- Heat Cramps
- Heat Exhaustion
- Heat Stroke
<table>
<thead>
<tr>
<th>Heat-Related Syncope</th>
<th>Heat Cramps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signs / Symptoms</td>
<td>Signs / Symptoms</td>
</tr>
<tr>
<td>● Warm to touch</td>
<td>● Intense painful muscle spasms</td>
</tr>
<tr>
<td>● Lightheaded</td>
<td>● Unrelenting pain / cramps</td>
</tr>
<tr>
<td>● Tachycardia</td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td>Management</td>
</tr>
<tr>
<td>● Be aware of injuries from falling</td>
<td>● Electrolyte solutions</td>
</tr>
<tr>
<td>● Supine position (blood → brain)</td>
<td>● Gentle stretching / massaging</td>
</tr>
<tr>
<td>● Remove from heat</td>
<td>● Rest</td>
</tr>
<tr>
<td>● Cool liquids*</td>
<td></td>
</tr>
</tbody>
</table>
Heat Exhaustion

<table>
<thead>
<tr>
<th>Signs / Symptoms</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Weakness</td>
<td>● Move to cooler / shadier area</td>
</tr>
<tr>
<td>● Headache</td>
<td>● Supine position</td>
</tr>
<tr>
<td>● Confusion</td>
<td>● Loosen clothing</td>
</tr>
<tr>
<td>● Nausea</td>
<td>● Fan patient</td>
</tr>
<tr>
<td>● Faintness / Lightheadedness</td>
<td>● Rehydrate with cool electrolyte solution</td>
</tr>
<tr>
<td>● Tachycardia</td>
<td>● Transport to hospital (symptoms that don’t clear,</td>
</tr>
<tr>
<td>● Warm skin</td>
<td>decreasing LOR)</td>
</tr>
<tr>
<td>● Moderate to heavy sweating</td>
<td></td>
</tr>
</tbody>
</table>
Heat Stroke

Signs / Symptoms
- Altered level of consciousness
- Hot, dry, flushed skin
- Sweating mechanisms have been exhausted

Management
- Notify EMS → rapid transport
- Move to cooler / shadier area
- Remove clothing
- Supplemental oxygen
- Convection and evaporation cooling (keep skin wet with continuous flow of air)
- Ice packs to armpits and groin
Lightning Strikes

Signs / Symptoms

- Feathering / ferning of skin
- Muscular contractions
- Respiratory arrest (injury to brainstem)
- Cardiac arrest (electrical current through heart)
- Neurologic effects (pain, paralysis, blindness, numbness)
- External burns at enter / exit strikes

Management

- Remember: patient not electrically charged
- Open airway
- CPR, AED
- High flow oxygen with BVM

Sophie “Lightning” Leiter