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Abstract

In this note, we show that the least fixed point of the Bellman
operator in a certain set can be computed by value iteration whether
or not the fixed point is the value function. As an application, we
show one of the main results of Kamihigashi (2014, “Elementary re-
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273) with a simpler proof.
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1 Introduction

Dynamic programming is one of the most important tools in studying dy-
namic economic models. Recently, under a minimal set of conditions, Kami-
higashi (2014a) showed that the value function of a stationary dynamic pro-
gramming problem can be computed by value iteration.

In this note, we show that the least fixed point of the value iteration algo-
rithm, or the Bellman operator, in a certain set can be computed whether or
not the fixed point is the value function. Although it is insufficient for com-
puting the value function itself, this result is significant in that it separates
the issue of convergence, or computability, from the existence and uniqueness
of a fixed point of the Bellman operator.

We prove the above result by applying what is known as “Kleene’s fixed
point theorem,” which has rarely been used directly in economics.1 We
present this fixed point theorem in the next section. In Section 3, we in-
troduce some definitions and notations. In Section 4, we prove our main
result. In Section 5, we illustrate the usefulness of our main result by show-
ing one of the main results of Kamihigashi (2014a) with a simpler proof.

2 Kleene’s Fixed Point Theorem

In this section, we present “Kleene’s fixed point theorem” (e.g., Baranga,
1991). We begin with some mathematical terminology. Let (P,�) be a
partially ordered set; i.e., � is a reflexive, antisymmetric, and transitive
binary relation on P . An upper bound of a set Q ⊂ P is an element p ∈ P
satisfying q � p for all q ∈ Q. The least element of Q ⊂ P is an element
p ∈ Q satisfying p � q for all q ∈ Q; note that the least element, if it exists,
is uniquely defined since � is antisymmetric.2 The supremum of Q ⊂ P ,
denoted as supQ, is the least upper bound of Q.

A sequence {pn}n∈N is called increasing if pn � pn+1 for all n ∈ N.
We say that (P,�) is ω-complete if every increasing sequence in P has a
supremum in P . A function f : P → P is called ω-continuous if for every
increasing sequence {pn} in P having a supremum, we have f(supn∈N pn) =
supn∈N f(pn). An ω-continuous function f is necessarily increasing in the
sense that f(p) � f(q) whenever p � q.

1One of the exceptions is Vassilakis (1992).
2That is, if p � q and q � p, then p = q.
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Theorem 1. Let (P,�) be an ω-complete partially ordered set. Let f : P →
P be ω-continuous. Suppose that there exists p ∈ P such that p � f(p). Then
p∗ ≡ supn∈N f

n(p) is the least fixed point of f in {p ∈ P : p � p}.

Proof. See Stoltenberg-Hansen et al. (1994, p. 24).

Baranga (1991) calls the above result “Kleene’s Fixed Point Theorem,”
while Sangiorgi (2009, p.35) states that “it is indeed unclear who should be
credited for the theorem.”3 According to Jachymski (2000, p. 249), Theorem
1 is equivalent to the Tarski-Kantorovitch fixed point theorem (e.g., Granas
and Dugundji, 2003, Theorem 1.2, p. 26).4

3 Dynamic Programming

Our setup is identical to that of Kamihigashi (2014a). Here we briefly intro-
duce definitions and notations necessary for presenting our results.

Let X be a set, and Γ be a nonempty-valued correspondence from X to
X. Let D be the graph of Γ:

D = {(x, y) ∈ X ×X : y ∈ Γ(x)}. (1)

Let u : D → [−∞,∞). Let Π and Π(x0) denote the set of feasible paths and
that of feasible paths from x0, respectively:

Π = {{xt}∞t=0 ∈ X∞ : ∀t ∈ Z+, xt+1 ∈ Γ(xt)}, (2)

Π(x0) = {{xt}∞t=1 ∈ X∞ : {xt}∞t=0 ∈ Π}, x0 ∈ X. (3)

Let β ≥ 0. The value function v∗ : X → R is defined by

v∗(x0) = sup
{xt}∞t=1∈Π(x0)

L
T↑∞

∞∑
t=0

βtu(xt, xt+1), x0 ∈ X, (4)

where L ∈ {lim, lim} with lim = lim inf and lim = lim sup. We define

Π0 =

{
{xt}∞t=0 ∈ Π : L

T↑∞

∞∑
t=0

βtu(xt, xt+1) > −∞

}
, (5)

3To be precise, Sangiorgi (2009) refers to a special case of Theorem 1.
4The Tarski-Kantorovitch fixed point theorem has recently been used rather extensively

in economics; see Mirman, Morand, and Reffett (2008), Van Zandt (2010), Balbus, Reffett,
and Wozny (2013, 2014), and McGovern et al. (2013) among others.
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Π0(x0) = {{xt}∞t=1 ∈ Π(x0) : {xt}∞t=0 ∈ Π0}, x0 ∈ X. (6)

Following the convention that sup ∅ = −∞, we see that

∀x0 ∈ X, v∗(x0) = sup
{xt}∞t=1∈Π0(x0)

L
T↑∞

∞∑
t=0

βtu(xt, xt+1). (7)

Let V be the set of functions from X to [−∞,∞). The Bellman operator
B on V is defined by

(Bv)(x) = sup
y∈Γ(x)

{u(x, y) + βv(y)}, x ∈ X, v ∈ V. (8)

A fixed point of B is a function v ∈ V such that Bv = v.
The partial order ≤ on V is defined in the usual way:

v ≤ w ⇐⇒ ∀x ∈ X, v(x) ≤ w(x). (9)

Given v, w ∈ V with v ≤ w, we define the order interval [v, w] by

[v, w] = {f ∈ V : v ≤ f ≤ w}. (10)

4 The Main Result

We are ready to prove the main result of this note as a consequence of Kleene’s
fixed point theorem.

Theorem 2. Suppose that there exist v, v ∈ V such that

v ≤ v, (11)

Bv ≥ v, (12)

Bv ≤ v. (13)

Then the following conclusions hold:

(a) v∗ ≡ supn∈N(Bnv) is the least fixed point of B in [v, v].

(b) The increasing sequence {Bnv}n∈N converges to v∗ pointwise.
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Proof. By (11)–(13), B maps [v, v] into itself. We apply Kleene’s fixed point
theorem to B : [v, v]→ [v, v]. For this purpose, it suffices to verify that [v, v]
is ω-complete and that B is ω-continuous on [v, v].

To see that [v, v] is ω-complete, let {vn}n∈N be an increasing sequence
in [v, v]. Then the pointwise supremum of {vn} is equal to supn∈N vn, the
least upper bound of {vn}. Since v ≤ vn ≤ v for all n ∈ N, we have
supn∈N vn ∈ [v, v]. It follows that [v, v] is ω-complete.

To see that B is ω-continuous on [v, v], let {vn}n∈N be an increasing
sequence in [v, v] again. Let x ∈ X. We have

[B(sup
n∈N

vn)](x) = sup
y∈Γ(x)

{u(x, y) + β(sup
n∈N

vn)(y)} (14)

= sup
y∈Γ(x)

sup
n∈N
{u(x, y) + βvn(y)} (15)

= sup
n∈N

sup
y∈Γ(x)

{u(x, y) + βvn(y)} (16)

= [sup
n∈N

(Bvn)](x), (17)

where (15) holds since u(x, y) is independent of n, and (16) follows by in-
terchanging the two suprema using Kamihigashi (2008, Lemma 1). Since
x is arbitrary, it follows that B supn∈N vn = supn∈NBvn. That is, B is ω-
continuous on [v, v].

Now by Kleene’s fixed point theorem, conclusion (a) follows. To see
conclusion (b), note from (12) that v ≤ Bv ≤ B2v ≤ · · · . Thus {Bnv}n∈N is
increasing, and for each x ∈ X, we have (Bnv)(x) ↑ v∗(x) as n ↑ ∞ by the
definition of v∗; i.e., {Bnv} converges to v∗ pointwise.

Theorem 2 allows one to compute the least fixed point of B in [v, v] by
iterating B from v. Of course, this fixed point may not be the value function
v∗ without additional conditions, but it is exactly this point that makes
Theorem 2 significant: convergence to the least fixed point is valid whether
or not it is the value function.

5 Applications

In this section, we illustrate the usefulness of Theorem 2 by showing how to
use it to prove one of the main results of Kamihigashi (2014a), which replaces
v∗ with the value function v∗ in the conclusions of Theorem 2.
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The next lemma slightly generalizes an argument used in the proof of
Theorem 4.3 in Stokey and Lucas (1989), providing a sufficient condition for
any fixed point v of B with v ≤ v to satisfy v∗ ≤ v.5

Lemma 1. Let v ∈ V be such that

∀{xt}∞t=0 ∈ Π0, lim
t↑∞

βtv(xt) ≥ 0. (18)

Let v ∈ V be a fixed point of B with v ≤ v. Then v∗ ≤ v.

Proof. See the Appendix.

The following result is immediate from Theorem 2 and Lemma 1.

Lemma 2 (Kamihigashi, 2014a, Lemma 6.3). Let v, v ∈ V satisfy (11)–(13)
and (18). Then v∗ ≤ v∗, where v∗ is defined in Theorem 2.

This result is proved in Kamihigashi (2014a) using the additional result
that finite iterations of B correspond to finite-horizon approximations of the
infinite-horizon problem (4) (Kamihigashi, 2014a, Lemma 6.2). Our proof of
Lemma 2 shows that this approximation result is unnecessary once Theorem
2 and Lemma 1 are available. Let us now use Theorem 2 and Lemma 2 to
prove one of the main results of Kamihigashi (2014a).6

Theorem 3 (Kamihigashi, 2014a, Theorem 2.2). Suppose that v∗ ∈ V . Sup-
pose further that there exists v ∈ V satisfying (12), (18), and

v ≤ v∗. (19)

Then the following conclusions hold:

(a) v∗ is the least fixed point of B in [v, v].

(b) The increasing sequence {Bnv}∞n=1 converges to v∗ pointwise.

Proof. Since v∗ is a fixed point of B (see Kamihigashi, 2014a, Lemma 2.1),
(11)–(13) hold with v = v∗. Define v∗ as in Theorem 2. Then v∗ ≤ v =
v∗. The reserve inequality holds by Lemma 2; thus v∗ = v∗. Now both
conclusions follow from Theorem 2.

As another application of Theorem 2, it can be used along with Lemma
6.1 in Kamihigashi (2014a) to show Theorem 2.1 in Kamihigashi (2014a).

5Although the lemma is not explicitly shown in Kamihigashi (2014a), it is recognized
and mentioned in Kamihigashi (2014a, 2014b).

6In Kamihigashi (2014a, Theorem 2.2), v∗ is shown to be the least fixed point of B in
a larger set. The same set can be used here with an additional argument.
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A Proof of Lemma 1

We show that v∗(x0) ≤ v(x0) for any x0 ∈ X. Let x0 ∈ X. If Π0(x0) = ∅,
then v∗(x0) = −∞ ≤ v(x0). Suppose that Π0(x0) 6= ∅. Let {xt}∞t=1 ∈ Π0(x0).
We have

v(x0) ≥ u(x0, x1) + βv(x1) (20)

≥ u(x0, x1) + βu(x1, x2) + β2v(x2) (21)

... (22)

≥
T−1∑
t=0

βtu(xt, xt+1) + βTv(xT ) (23)

≥
T−1∑
t=0

βtu(xt, xt+1) + βTv(xT ). (24)

Applying LT↑∞ to the rightmost side, we have

v(x0) ≥ L
T↑∞

{
T−1∑
t=0

βtu(xt, xt+1) + βTv(xT )

}
(25)

≥ L
T↑∞

T−1∑
t=0

βtu(xt, xt+1) + lim
T→∞

βTv(xT ) (26)

≥ L
T↑∞

T−1∑
t=0

βtu(xt, xt+1), (27)

where (26) follows from the properties of lim and lim,7 and (27) holds by (18).
Since (25)–(27) hold for any {xt}∞t=1 ∈ Π0(x0), applying sup{xt}∞t=1∈Π0(x0) to
(27) and recalling (7), we obtain v(x0) ≥ v∗(x0).
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