ORIGINAL PAPER

Opposite repertory-rubrics in Bayesian perspective

ALB Rutten1,* and H Frei2

1Commissie Methode en Validering VHAN (Dutch Association of Homeopathic Physicians), Aard 10, 4813 NN Breda, The Netherlands
2Institute for Complementary and Alternative Medicine, KIKOM, University of Berne, Kreutsplatz 6, CH-3177 Laupen, Switzerland

Introduction: Hitherto entries have been added to a rubric in the repertory when patients responding well to a specific medicine showed the corresponding symptom. Continuing like this, theoretically every medicine will eventually appear in every rubric.

Method: This becomes clear if we compare opposite symptom-rubrics. Polarity Analysis (PA) subtracts opposite rubrics and has been shown to improve clinical results.

Conclusion: The source of this problem and the reason for the success of PA are clear from Bayesian perspective. A reliable repertory should be based on Bayesian principles.
patient is chilly. The chilliness may be of various degrees: a small number of Arsenicum patients are extremely chilly, a small number not at all chilly and the majority somewhat chilly. The intensity of the symptom for the ‘Arsenicum population’ (population that responds well to Arsenicum) is distributed as in Figure 1, the well known Bell or Gaussian curve. There is a saying ‘If you hear hoof-beats, think of horses, not zebras’ because most hoof-beats are produced by horses. If you hear that the patient is chilly, you are more likely to think of Arsenicum rather than Phosphorus.

Many homeopathic symptoms have a chance continuum, and the opposite symptom is also present in the homeopathic repertory. Figure 1 could represent the symptom ‘chilliness’ as the positive symptom and ‘warmth’ as the negative variant at the extreme left of the curve. More than 80% of the area under the curve is in the positive or chilly section. The position of the peak of the curve is the mode of degree of chilliness; most Arsenicum patients are on average chilly. Only a small portion of the Arsenicum patients are warm-blooded.

Aggravation and amelioration from motion

The rubric ‘motion aggravates’ in RADAR 10.0 (full Synthesis) contains 290 medicines and ‘motion ameliorates’ 183 medicines. The rubrics have 144 medicines in common. Figure 2 shows a part of the repertorisation of both rubrics. Figure 3 shows the repertorisation of the same symptoms, but with elimination of 20 polychrests. Now both rubrics have 125 medicines in common; Calcarea carbonica is discarded because it is in both rubrics in the first grade, but Belladonna is also discarded since it has ‘aggravation from motion’ in the third grade and ‘amelioration from motion’ in the first grade. The average Belladonna patient has ‘aggravation from motion’, so eliminating polychrests could obscure important information.

We see that Abrotanum (Abrot) is present in both rubrics in plain type, so both symptoms have been seen in provings and/or in clinical cases. This probably means that the mean of the chance continuum lies between both opposites and the symptom has no predictive value for an effect of Abrot. Sulphur appears bold in both rubrics; understandably, as Sulphur is one of the most frequently prescribed medicines. In total, 51 medicines appear in both rubrics in the same grade.

Now we can understand why many homeopathic practitioners are not keen on using the large rubrics in repertories. If, say, we want to differentiate between Sulphur and Rhus-t and the patient appears to have ‘amelioration from motion’ we see bold entries for both medicines. But the Sulphur-entry in the rubric ‘aggravation from motion’ is also bold.

Polarity Analysis

During the Swiss ADHD double blind trial Frei developed PA to increase the reliability and accuracy of the prescriptions. The Boenninghausen Arbeitsgemeinschaft in Germany later adopted this procedure for their computer program based on the revised edition of Boenninghausen’s Therapeutic Pocket Book. This repertory adds polar symptoms (the opposite symptom) automatically to the repertorisation and calculates the difference of the sum of grades of polar patient symptoms and the sum of grades of opposite symptoms: the ‘polarity difference’. A positive polarity difference means that the mode of the chance continuum lies in the positive region of the chance continuum (Figure 4). The rubrics in the Boenninghausen repertory are smaller (motion aggravates 126, motion ameliorates 102 medicines), but the most important entries are similar. Three other computer-repertories based on the unrevised editions of Boenninghausen’s Therapeutic Pocket Book have since adopted PA (Boenninghausen module of RADAR, jRep and Amokoor). By subtracting the entries in the rubric ‘motion aggravates’ from the rubric ‘motion ameliorates’ we get negative values for 37 medicines. For these medicines ‘motion ameliorates’ may even be a contra-indication (i.e. a negative polarity difference lowers the probability of improvement by this medicine). Some of these entries are shown in Figure 5. In the Full Synthesis repertory 47 medicines
are contra-indicated if we subtract the rubric ‘motion aggravates’ from ‘motion ameliorates’. Therefore, about half of the entries of the symptom ‘motion ameliorates’ (183 entries) is misleading, because the entries are in the same degree (51 entries) or in a stronger degree (47 entries) present in the opposite rubric.

Translating PA into the chance continuum means that the peak (mode) of the curve (Figure 1) lies in the middle between the two opposites if the medicine is in the same degree in both opposite rubrics. The stronger the polarity difference the greater the distance between the mode and the zero point between two opposites. A strong polarity difference means that one pole of the two opposites is a ‘keynote’ for the medicine. A strong negative polarity difference means a strong contra-indication.

PA proved effective in a Randomised Controlled Trial on ADHD (Figure 6). PA alone increased the effectiveness of the first prescription from 28% to 48%. The effectiveness of the first prescriptions increased by about 70%, and of the second prescriptions by more than 40%.

For many rubrics of the non Boenninghausen Modules of the RADAR repertory PA, reduces the size of the rubric considerably, see Table 1. The results are also quite different from those achieved by discarding the 20 polychrests from the repertorisation.

PA corrects for a structural problem of the repertory. If entries are based on absolute occurrence in provings and successful cases, eventually every medicine will appear in every rubric. PA introduces relative occurrence by subtracting the rubric from the opposite symptom-rubric. PA also introduces a new procedure in homeopathic repertorisation: contra-indication due to the presence of a symptom. There is evidence that PA can be effective, but of course, it only works for symptoms with opposite symptoms in the repertory. To understand how it works and to extend this idea to symptoms without opposites we must refer to Bayesian theory.

Bayes’ philosophy

Bayes’ theorem, published in 1763, deals with predictions from experience in the past. It tells us that chances of success with a medicine increase if a symptom is frequently present in patients cured by that medicine, more frequently than in other patients. This is expressed by the Likelihood Ratio (LR). If the symptom ‘loquacity’ occurs four times more frequently in Lachesis patients than in other patients LR = 4.

Bayes’ theorem is expressed in a formula that is derived from the mathematical rule of conditional probability.

\[
\text{Posterior odds} = \frac{LR}{1 + \frac{LR}{1}}
\]

LR is the frequency (prevalence) of a symptom in the population ‘cured’ by a certain medicine divided by the frequency of the same symptom in the remainder of the whole treated population.

For the calculations of LR we used the formula \(LR = \frac{a}{a + c} / \frac{b}{b + d} \) as in the 2 × 2 contingency (Table 2).

Suppose that the symptom ‘amelioration from motion’ is present in 40% of the patients responding well to Rhus-t and in 5% of the remainder of the population, then LR = 40/5 = 8. If the symptom is present the odds that Rhus-t will work rises from, say, one to nine towards eight to nine, the chance from 10% to 47%.

The Bayesian formula shows how the contra-indication works. Suppose that the symptom ‘amelioration from motion’ is present in 2.5% of the Bryonia population and in 5% of the remainder of the population, then LR = 0.5.
If we apply the Bayesian formula the chance that Bryonia will work if the symptom is present diminishes from, say, 50% to 33%. LR values between zero and one indicate a contra-indication for a medicine, a value closer to zero is comparable with a stronger negative polarity difference. A low polarity difference or a LR closer to one indicates little difference. If LR = 0.75 chance in the example above diminishes from 50% to 43%.

Many homeopathic practitioners think that it is possible that a medicine can be indicated by both opposite symptoms; the medicine has e.g. ‘some reaction to motion’. This situation is represented by a bimodal distribution (Figure 7). The presence of such a situation could be detected by prospective LR assessment. If, say, for ‘amelioration from motion’ and Bryonia LR = 2 and for ‘aggravation from motion’ and Bryonia LR = 8, we will see a bimodal curve with one peak lower than the other.

Discussion

The effectiveness of repertories—and of homeopathy—will decrease if we keep adding entries based on absolute occurrence of symptoms; eventually every medicine will be included in every rubric. Homeopathic practitioners were already aware that frequent use of a medicine is the cause of this problem, although without a clear understanding of why. Bayes’ theorem offers the explanation and makes clear what instruments can be applied to overcome this problem. The extent of the problem is considerable. In the rubric ‘amelioration from motion’ about half of the entries could be misleading. The same amount was found in six repertory-rubrics that were prospectively assessed. PA improves the effectiveness of the first prescriptions by about 70%, despite the fact that PA is only available if opposite rubrics are present.

PA introduces the possibility of using the presence of a symptom as a contra-indication for a medicine. Bayesian philosophy explains that a medicine is contra-indicated if the prevalence of the symptom in the population responding well to that medicine is less than in the remainder of the population.

In accepting Bayesian philosophy we have to shake off some long-existing habits. A patient with ‘amelioration from motion’ responding well to Bryonia will make a greater impression than patients with ‘aggravation from motion’ because the unexpected makes a greater impact on our memory. We must get used to the idea that Bryonia patients can have ‘amelioration from motion’, but that this symptom does not increase the chance that Bryonia will work, on the contrary, it will decrease this chance.

The problem of unreliable entries is greater for frequently used medicines, but also for frequently used symptoms, or rather, the size of the symptom-rubric. The prevalence of the symptom ‘diarrhoea from anticipation’ was 4.4% in the Dutch LR assessment, but Kent’s repertory-rubric contains only three medicines. Kent’s rubric ‘fear of death’ contains 103 entries, while the prevalence of the symptom is 3.9%. Prospective assessment of 4072 prescriptions learned that the repertory-rubric ‘diarrhoea from anticipation’ is incomplete; at least six medicines should be added, also polychrests like Arsenicum album and Lachesis. The rubric ‘fear of death’ on the other hand is over-complete; at least 10 entries should be discarded, but, again, not all polychrests.

PA is only available for symptoms with opposites. For symptoms like ‘diarrhoea from anticipation’ and ‘fear of death’ the symptoms ‘desire death’ comes close to being opposite to the latter, but cannot be regarded as a semantically correct opposite. Many symptom-rubrics have no opposites, including the most concerning complaints without modality. The repertory-rubric ‘headache’ is a classic example of a rubric that has become utterly useless for finding the right medicine. Symptoms that have no opposites should be assessed by LR research, preferably prospective. But retrospective Bayesian analysis of data can also help to get indications of LR. Databases where the complaint ‘headache’ and the response to homeopathic medicines are recorded are required. If we know the prevalence of

Figure 5 PA as in Figure 4, last results; medicines are contra-indicated if ‘motion ameliorates’ is present.

Figure 6 Results of prescriptions, influenced by PA in the Swiss ADHD trial.
headache in a population responding well to a specific medicine and the remainder of the population we can calculate LR and estimate what medicines are most useful for this complaint.

With prospective assessment of symptoms we can only assess the medicines that are regularly prescribed and fairly common symptoms, but this category causes the biggest problems. For rare symptoms casuistry is still valuable; the rare symptom will probably occur in a few medicine populations. If a symptom is less rare we can only rely on pooled data. If a doctor has five *Natrium muriaticum* cases and one of them (20%) has ‘fear of death’ he will consider ‘fear of death’ as an indication for Nat-m. But 100 *Natrium muriaticum* cases from 20 doctors might reveal only two cases with ‘fear of death’. Prospective assessment of this symptom showed only three out of 156 *Natrium muriaticum* with fear of death, for this symptom and Nat-m LR = 0.49 (95% CI 0.16–1.51).

The possibility of bimodal symptoms (where both opposite symptoms occur) needs to be further investigated by LR assessment. If LR for both opposite symptoms is >1.0 the symptom could be bimodal. It could be interesting to assess food desires and aversions in this respect; the change of a desire into its opposite in different stages of life seems to occur rather frequently.

It is unclear to what extent proving symptoms suffer from the same problem. A proving symptom is also a chance continuum, but if a proving is performed by a larger number of people the relative occurrence becomes more clear. Rabe has analysed the unreliable symptoms identified by Frei in ADHD treatment⁸ using the Symptomlexikon, and found that they have a much higher percentage of clinical entries than the reliable ones (54% vs. 9%).¹⁷ From a Bayesian point of view it is obvious that one or two persons with headache in a group of 10 participants is no indication for a repertory-entry.

The changes we propose will not deliver a repertory that can be used for prescriptions without Materia Medica knowledge. Repertorisation should be regarded as a weather forecast: the forecast can be perfect, but what you are going to do the next day will depend on a lot of other variables. In the same way you like the repertory to be reliable, but your prescription will still depend on a careful comparison of the Materia Medica of various medicines. Experienced practitioners know the shortcomings of the repertory and compensate for them intuitively, although the ADHD trial showed that even prescriptions by experienced practitioners improve considerably from PA. For new practitioners a reliable repertory will be a great advance. The closest approach to reliable repertory available today is the revised edition of Boenninghausen’s Therapeutic Pocket Book,¹ which has been stripped of all later entries. It is practically the original version used by Boenninghausen. Its use with the addition of PA yields good results.⁷¹⁸

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Reduction of rubric size after subtracting opposite rubrics and retaining only positive entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom</td>
<td>Rubric size</td>
</tr>
<tr>
<td>GENERALS – AIR, IN OPEN – agg.</td>
<td>177</td>
</tr>
<tr>
<td>GENERALS – AIR, IN OPEN – amel.</td>
<td>225</td>
</tr>
<tr>
<td>GENERALS – AIR, OPEN – aversion to open air</td>
<td>108</td>
</tr>
<tr>
<td>GENERALS – AIR, OPEN – desire for open air</td>
<td>132</td>
</tr>
<tr>
<td>GENERALS – ASCENDING – agg.</td>
<td>122</td>
</tr>
<tr>
<td>GENERALS – ASCENDING – amel.</td>
<td>24</td>
</tr>
<tr>
<td>GENERALS – BATHING – agg.</td>
<td>89</td>
</tr>
<tr>
<td>GENERALS – BATHING – amel.</td>
<td>51</td>
</tr>
<tr>
<td>GENERALS – BENDING, turning – affected part – agg.</td>
<td>85</td>
</tr>
<tr>
<td>GENERALS – BENDING, turning – affected part – amel.</td>
<td>42</td>
</tr>
<tr>
<td>GENERALS – BENDING, turning – backward – agg.</td>
<td>52</td>
</tr>
<tr>
<td>GENERALS – BENDING, turning – backward – amel.</td>
<td>35</td>
</tr>
<tr>
<td>GENERALS – BREAKFAST – after – agg.</td>
<td>56</td>
</tr>
<tr>
<td>GENERALS – BREAKFAST – after – amel.</td>
<td>63</td>
</tr>
<tr>
<td>GENERALS – COLD – agg.</td>
<td>244</td>
</tr>
<tr>
<td>GENERALS – COLD – amel.</td>
<td>107</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>2 × 2 contingency table for assessing relation between symptom and effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good response to the medicine</td>
<td>Remainder of population</td>
</tr>
<tr>
<td>Symptom positive</td>
<td>a = True</td>
</tr>
<tr>
<td>Symptom negative</td>
<td>c = False</td>
</tr>
<tr>
<td>a + c</td>
<td>b + d</td>
</tr>
</tbody>
</table>

Figure 7 Bimodal curve; both opposite symptoms indicate the medicine.
Conclusion

Repertory entries based on absolute occurrence of symptoms in ‘cured’ cases are a major threat to the effectiveness of homeopathy. By regarding the homeopathic symptom as a chance continuum and the homeopathic repertorisation process as Bayesian we can understand why and generate solutions: clinical symptoms should only be entered on the basis of LR-analysis. PA can improve the effectiveness of our method relatively rapidly. The scientific development of homeopathic repertorisation should focus on assessment of the relation between symptoms and successful prescriptions.

References

5 Rutten ALB, Stolper CF, Lugten RF, Barthels RJ. Repertory and likelihood ratio: time for structural changes. Homeopathy 2004; 93: 120–124.