Population-level variation in word and morpheme order is driven by individual-level cognitive biases

Jennifer Culbertson
Centre for Language Evolution
University of Edinburgh

Y
@drculbertson

Languages vary, languages are the same

 Basic word order

Languages vary, languages are the same

Position of question words

Languages vary, languages are the same

Suffixation vs. prefixation

Languages vary, languages are the same

What drives variation and commonalities?

- Culture
- History
- The physical world
- Processes of language change
- Features of cognition (or perception)

How can we tell what role cognition plays?

- Typological data...
- Experiments!

An example: the suffixing preference

Type	$\#$ langs
mostly suffixes	406
more prefixes	94
mostly prefixes	58
equal	147
neither	141

Hypothesis: driven by universal processing and perceptual mechanisms
(1) Beginnings of words are special/salient, reserved for lexical content
(2) Related words are grouped together based on similarities at the start
(Greenberg 1963, Hawkins \& Gilligan 1988, Hawkins
\& Cutler 1988, Hupp et al. 2009, Dryer 2013)

Experimental evidence

Hupp et al. (2009): English-speakers perceive sequences that differ at the end to be more similar

ta-te

base sequence

bo-ta-te
'prefixed' sequence

ta-te-bo
'suffixed' sequence

Experimental evidence

Hupp et al. (2009): English-speakers perceive sequences that differ at the end to be more similar

Another example: word order harmony

Type	\# langs
N-Num, N-Adj	510
Num-N, Adj-N	251
Num-N, N-Adj	168
N-Num, Adj-N	37

Hypothesis: driven by learned categories + universal learning bias for simplicity
(1) Heads vs. dependents
(2) Single ordering rule $>$ multiple ordering rules
(Greenberg 1963, Vennemann 1973, Culbertson \& Kirby 2016 Frontiers, Chater \& Vitányi 2003)

Experimental evidence

Culbertson et al. (2012): English-speakers regularize variable harmonic orders, not non-harmonic ones

Training: N-MOD or MOD-N

Experimental evidence

Culbertson et al. (2012): English-speakers regularize variable harmonic orders, not non-harmonic ones

Another example: Complex NP order

Hypothesis: driven by universal hierarchy
(1) Adj organised closest to Noun, then Num, then Dem
(2) Orders that are homomorphic to the hierarchy are preferred

(Cinque 2005, Abels \& Neeleman 2012, Culbertson \& Adger 2014 PNAS)

Experimental evidence

Martin et al. (2020): English-speakers infer Adj closest to N , Dem farthest away given ambiguous input

Testing: ADJ + DEM

(Martin et al. 2020 Glossa)

Experimental evidence

Martin et al. (2020): English-speakers infer Adj closest to N , Dem farthest away given ambiguous input

(Martin et al. 2020 Glossa)

Languages vary, languages are the same

What drives variation and commonalities?

- Many factors shape typology
- Experiment evidence allows us to connect populationlevel trends to individual-level biases

1. Perceptions of similarity $\longrightarrow>$ morpheme order
2. Preference for simplicity $\longrightarrow>$ harmony
3. Preference for transparency $->$ complex NP order

But, where do these biases come from?

- Are they universal?
- Are they influenced by prior language experience?

A crucial missing source of evidence

Variation in language...but not in our participants!

- A general issue in cognitive science

BEHAVIORAL AND BRAIN SCIENCES (2010), Page 1 of 75 doi:10.1017/S0140525X0999152X

The weirdest people in the world?

Joseph Henrich
Department of Psychology and Department Columbia, Vancouver VGT 1Z4, Canada joseph.henrich@gmail.com
http://www.psych.ubc.ca/~henrich/home
Steven J. Heine
Department of Psychology, University of Brit
V6T 1Z4, Canada
heine@psych.ubc.ca
Ara Norenzayan
Department of Psycholog
V6T 1Z4, Canada
ara@psych.ubc.ca

- Particularly problematic when participants have direct experience with the linguistic pattern tested...

Revisiting the suffixing preference

Type	$\#$ langs
mostly suffixes	406
more prefixes	94
mostly prefixes	58
equal	147
neither	141

Hypothesis: driven by universal processing and perceptual mechanisms
Evidence: Similarity-judgments of English speakers

ta-te-bo
 ‘suffixed' sequence

bo-ta-te

'prefixed' sequence
(Hupp et al. 2009, but also see St. Claire et al. 2009, Bruening et al. 2012)

Revisiting the suffixing preference

Type	\# langs
mostly suffixes	406
more prefixes	94
mostly prefixes	58
equal	147
neither	141

Hypothesis 2: driven by processes of grammaticalisation
(1) Not all affixes tend to be suffixal
(2) Affix position can be traced back to position of independent word before it fused
(3) Prosodic breaks favor fusion of following words

Cross-linguistic experimental evidence

tûbaka tûtû tû̂ir̂î tûûthongî

PL.DIM-cat these two beautiful these two beautiful kittens

(Martin \& Culbertson 2020, Psych Science)

Cross-linguistic experimental evidence

(Martin \& Culbertson 2020, Psych Science)

Revisiting the suffixing preference

No evidence for a universal suffixing preference

- When we test participants whose language goes against a cross-linguistic trend...the bias is reversed
- Best case scenario: perceptual biases are altered by language experience
- Worst case scenario: suffixing is not driven by universal perceptual biases

Revisiting word order harmony

Type	\# langs
N-Num, N-Adj	510
Num-N, Adj-N	251
Num-N, N-Adj	168
N-Num, Adj-N	37

Hypothesis: driven by universal learning bias for simplicity Evidence: Regularization by English-speaking learners

N Adj Adj N Adj N N Adj
N Num Num N
trained order trained order
N Num Num N
trained order trained order

(Culbertson et al. 2012, Culbertson \& Newport 2015, 2017 Cognition)

Revisiting word order harmony

Type	\# langs
N-Num, N-Adj	510
Num-N, Adj-N	251
Num-N, N-Adj	168
N-Num, Adj-N	37

Hypothesis 2: words that share a common historical source share the same order

(Givón 1975, Aristar 1991, Kaufman 2009)

Cross-linguistic experimental evidence

French two chairs purple

 Hebrew two chairs purple

Revisiting word order harmony

The harmony bias is universal

- When we test participants whose language goes against a cross-linguistic trend...the bias still holds

Hypothesis: driven by learned categories + universal learning bias for simplicity
(1) Heads vs. dependents
(2) Single ordering rule $>$ multiple ordering rules

A further prediction: preference for consistent alignment of similar non-linguistic categories
(Greenberg 1963, Vennemann 1973, Culbertson \& Kirby 2016 Frontiers, Chater \& Vitányi 2003)

Cross-domain evidence

- Categories: shapes
- Similarities among elements based on:
size (heads vs. deps) roundness/fill (distinguishes head/dep categories)

Cross-domain evidence

Conditions

1. Harmonic

- heads first
- heads last

2. Non-harmonic

- H1 first, H2 last across heads
- H1 last, H2 first

3. Non-harmonic • H1 mixed, H2 mixed within heads

Cross-domain evidence

	non-word sequences	shape sequences
1.00		
0.75		
	auditory sequences	tactile sequences
$\begin{aligned} & \text { 든 } 1.00- \\ & \text { 든 } 0.75- \\ & \text { 을 } 0.50- \\ & \end{aligned}$		
0.25		
0.00 -		
	harmonic non-harmonic non-harmonic across heads within heads	harmonic non-harmonic non-harmonic across heads within heads

(Culbertson \& Kirby 2022 Proc. Cogsci
Culbertson et al. under review)

Revisiting word order harmony

The harmony bias is universal and domain-general

- When we test participants whose language goes against a cross-linguistic trend...the bias still holds
- When we test harmony in the sequential ordering of nonlinguistic categories...the bias still holds

Revisiting complex NP order

N Adj	Num

Hypothesis: driven by universal hierarchy
Evidence: inferences of English-speaking learners

N Adj
N Dem

trained order

N Adj Dem

homomorphic
N Dem Adj
non-homomorphic
(Martin et al. 2020 Glossa, Culbertson \& Adger 2014 PNAS)

Revisiting noun phrase word order

Hypothesis 2: (harmony +) noise
(1) Two most common orders are harmonic
(2) Zipfian distributions arise naturally via drift
(Gel-Mann \& Ruhlen 2011, Martin et al. in prep)

Cross-linguistic experimental evidence

tûbaka tûtû tûirî̀ tûûthongî

PL.DIM-cat these two beautiful these two beautiful kittens

Cross-linguistic experimental evidence

tûbaka tûtû tûirî̀ tûûthongî

PL.DIM-cat these two beautiful
these two beautiful kittens

(Martin et al. in prep)

Revisiting complex NP order

The homomorphism preference is a universal bias

- When we test participants whose language goes against a cross-linguistic trend...the bias still holds

Hypothesis: driven by universal hierarchy
(1) Adj organised closest to Noun, then Num, then Dem
(2) Orders that are homomorphic to the hierarchy are preferred

(Cinque 2005, Abels \& Neeleman 2012, Culbertson \& Adger 2014 PNAS)

Hierarchy + harmony

(Corpus data: Dryer 2018)

Revisiting complex NP order

Homomorphism is a universal bias

- When we test participants whose language goes against a cross-linguistic trend...the bias still held

Hypothesis: driven by universal hierarchy
(1) Adj organised closest to Noun, then Num, then Dem
(2) Orders that are homomorphic to the hierarchy are preferred

A further question: where does the hierarchy come from?
(Cinque 2005, Abels \& Neeleman 2012, Culbertson \& Adger 2014 PNAS)

An intuition...

Quantifying the intuition

Underlying structure reflects differences in conceptual closeness

- A quantitative measure of strength of association: pointwise mutual information

$$
\operatorname{pmi}(x, y) \equiv \frac{p(x, y)}{p(x) p(y)} \longleftarrow \text { Frequency of pair together } \begin{aligned}
& \text { Frequency of } \\
& \text { individual elements }
\end{aligned}
$$

- Is co-occurence frequency higher than expected given individual frequencies of elements alone?
(Cullbertson et al. 2020, Language)

Quantifying the intuition

Prediction:

pmi \{objects,properties\} > pmi \{objects,numerosities\} > pmi \{objects,discourse status\}

- Test using corpus of...the world??
- Test using treebank corpora for 25 different languages
- How it works:

1. Get all (N, Mod) bigrams and their frequencies
2. Discard very low frequency pairs
3. Calculate pmi for each pair
4. Average pmi for each modifier type
(Culbertson et al. 2020, Language)

Evidence from English

Prediction: pmi $\{\mathrm{N}, \mathrm{Adj}\}>\operatorname{pmi}\{\mathrm{N}, \mathrm{Num}\}>\operatorname{pmi}\{\mathrm{N}, \mathrm{Dem}\}$

English UD treebank

High pmi:
alcoholic beverage dense vegetation seven founders
Low pmi:
that child
new fact
one program

Evidence from English

Prediction: pmi $\{\mathrm{N}, \mathrm{Adj}\}>\operatorname{pmi}\{\mathrm{N}, \mathrm{Num}\}>\operatorname{pmi}\{\mathrm{N}, \mathrm{Dem}\}$

English UD treebank

Cross-linguistic evidence

Prediction: pmi $\{\mathrm{N}, \mathrm{Adj}\}>\operatorname{pmi}\{\mathrm{N}, \mathrm{Num}\}>\operatorname{pmi}\{\mathrm{N}, \mathrm{Dem}\}$

(Culbertson et al. Language)

Revisiting complex NP order

Complex NP order:

- Universal hierarchy derived from conceptual structure
- Universal bias favouring transparent linearisation

A further prediction: preference for homomorphism without syntax

Cross-domain evidence

Silent Gesture: participants use an unfamiliar modalitytheir hands-to communicate concepts

Cross-domain evidence

Silent Gesture: participants use an unfamiliar modality their hands-to communicate concepts

(Cullbertson et al. 2020, Language)

Cross-domain evidence

Preferred order

By-item order

Revisiting complex NP order

Homomorphism is universal bias

- When we test participants whose language goes against a cross-linguistic trend...the bias still holds

The hierarchy is conceptual

- When people communicate concept non-syntactically... homomorphism to the hierarchy still holds
- Evidence from cross-linguistic corpora suggests conceptual relationships between elements is learnable

Conclusion

What drives variation and commonalities?

- Culture, history, the physical world, processes of language change
- Features of cognition (perception)

How can we identify the role cognition plays?

- Experiments!
- Cross-linguistic evidence: participants whose language goes against the trend
- Cross-domain evidence: uncover the origins of biases

Thank you!

Many collaborators on this work:

Explaining NP word order

A hypothesis: meaning + transparency + simplicity

Learn by observing objects in the world

Population-level typology

Filter through
Map to linear order transparently

Results: size and entropy matching

Typically fewer Dems >> lower entropy >> lower PMI

set size matched

Modifier type
entropy matched

Modifier type

Letter string stimuli

- Categories: meaningless strings
- Similarities among elements based on:
length (heads vs. deps)
letters (distinguishes head/dep categories)

Heads

\{nageng, negang, genang, ganeng\} \{shukoth,shokuth, koshuth, kushoth\}

Dependents
Dep1a \{bav, baz, dav, daz\}
Dep1b \{veb, ved, zeb, zed\}
Dep2a \{puf, pus, tuf, tus\}
Dep2b \{fop, fot, sop, sot\}

Non-linguistic auditory stimuli

- Categories: meaningless sounds
- Similarities among elements based on:
length (heads vs. deps)
tempo (distinguishes head/dep categories)

Heads
Dependents

Head1 $\{\cdot----\cdot, \cdot \cdot---\cdot, \cdots--\cdot, \cdots-\cdot\}$
Dep1a \{---•, --•-, -••--•\}
Dep1b $\{\cdot-\cdot, \cdots, \cdot \cdot-\cdot, \cdot \cdot \cdot\}$
Dep2a $\{-\cdots,--\cdots,-\cdots,---\}$
Dep2b $\{\cdots--\cdots,, \cdots, \cdot-\}$
dots: tones; dashes: noise

Non-linguistic tactile stimuli

- Categories: meaningless vibration pulses
- Similarities among elements based on:
r vs. I thumb (heads vs. deps)
tempo (distinguishes head/dep categories)

Heads
Dependents
Head1 $\{\cdot----\cdot, \cdot \cdot---\cdot, \cdots--\cdot, \cdots-\cdot\}$
Dep1a \{---•, --•-, -••--•\}
Dep1b $\{\cdot-\cdot, \cdots, \cdot \cdot-\cdot, \cdot \cdot \cdot\}$
Dep2a $\{-\cdots-,-\cdots,-\cdots,---\}$
Dep2b $\{\cdots-\cdot, \cdots-, \cdot-, \cdot-\}$
dots: tones; dashes: tones

Different typological samples for U20

Testing learners' preferences

Categorizing responses...

Improvisation of harmony in children

...even when learning a perfectly non-harmonic pattern?

