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.
What Is the seismic coefficient, k.?

The seismic coefficient Is:

A A lateral force coefficient used in
pseudo static limit equilibrium
analysis

A A means of representing the effect
of seismic loading on slopes and
earth retaining structures using limit
equilibrium analysis
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What Is the seismic coefficient, k.?
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R
What the seismic coefficient IS not.

The seismic coefficient IS not:

I The same as the peak ground
acceleration (PGA) [not usually]

I A vertical force coefficient

I Independent of the factor of safety
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L —
PGA vs. K,

PGA (peak horizontal ground acceleration)
occurs at one point

I Acceleration elsewhere Is less than PGA
I PGA may only occur one time during the EQ

K, IS an average value over entire mass

= K IS usually less than (and never more
than) the PGA (= g)

Note: k. = PGA /g for brittle and/or sensitive
soll (due to progressive failure)
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I
Maximum Horizontal Acceleration

MHA

I Maximum Average Horizontal Acceleration of failure mass
T Governs maximum horizontal inertial force on failure mass

PGAOMH A (so PGKR) O MHA
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L —
Factors Influencing K.

The value of k, may depend upon:
I The associated factor of safety
I The seismic performance criteria
I The design ground motions

I Slope height
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D
K. T FS Coupling

Specifying k, without an associated FS is
meaningless

Speci fying a nseil smioc
an associated k Is meaningless
Different combinations of k., and FS can

describe an equivalent performance
standard

I Increase FS, decrease K,
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I
Seismic Factor of Safety

Specifying k. without an associated FS Is
meaningless
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I
Seismic Performance Criteria

Different performance criteria correspond to
different k,, FS combinations

< PGA/g
< MHA/g (unconditional stability for ductile soil)

Negligible permanent displacement

15 cm permanent displacement

Seismic Coefficient, kq

1 m permanent displacement

>

1.0 Factor of Safety, FS
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I
Seismic Performance Criteria

Unconditional seismic stabllity is elusive
I May not be obtainable in high seismicity areas
I Probably not necessary

Seismic performance usually quantified by
allowable permanent displacement
I Negligible (minor cracking)
I Small (inches)
I Large (feet)
I Instability (tens of feet)
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I
Seismic Performance Criteria

MHA 1 Kk, relationship depends upon seismic
performance criteria
I Unconditional stability: k; = MHA, FS =1

AException: Soils susceptible to progressive
fallure (use k, = PGA)

I Allowable displacement: k.< MHA

A Increase allowable displacement,
decrease k.
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Allowable Displacement

Allowable displacement = f(soil ductility,
Impacts of slope displacement)
Greater allowable displacement, smaller ki

Permanent displacement accumulates when average acceleration > k,

T PAHA
Fy
/\ ][ksfurFS: 1)

Ayerage Acceleration

\/ {
\/ \/ \/ Note: k, =ksforFS=1
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D
Design Ground Motions

Design ground motions influence:

I The relationship of the PGA to the MHA

A Factors include ground motion frequency,
slope height

I The relationship of the MHA to kg

A Factors include performance criteria
(allowable displacement), frequency and
duration of motion
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I
Relationship of PGA to MHA

PGA 1T MHA relationship impacted by spatial
and temporal incoherence (variabllity)

| Maximum acceleration at all other points is
less than PGA

I Maximum acceleration at other points occurs
at different time than PGA

= Maximum average acceleration
(MHA) Is less than PGA
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I
Influence of Slope Height

Increasing H reduces MHA (more averaging)
A H, <H,, then MHA, > MHA,
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I
Influence of Slope Height
Makdisi and Seed (1978)

URED FROM CREST, y / WEIGHT OF EWBAMKMENT, h

O:PTH ME&S
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Influen

ce of Frequency on MHA

Higher frequency (w), shorter wave length (I ),

reduced MHA

0 4 Y
A MHA,
MHA Wi < W, -
H PGA | L > | , PGA
" MHA, > MHA, |
I 1,W1 | 2,W2
: / /
| ‘|
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I
Influence of Duration, Freqguency

Increased duration, larger displacement
potential, smaller reduction in k, from MHA

Higher frequency, more cycles of loading,
but shorter cycles T impact unclear

Both duration and frequency effects on
MHA-k, relationship traditionally
captured as magnitude dependence

School of Sustainable Engineering for the Built Environment



I
Influence of Magnitude

Makdisi and Seed, 1978
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.
Other Factors Influencing kg

Shear strength

| Peak vs. large displacement

I Cyclic softening
Multiple failure surfaces
Amplification of ground motions

I Rock vs. soll site motions
I Influence of topography
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Peak vs. Large Displacement
Shear Strength

In a non-ductile soil, use large displacement
shear strength (by convention / conservative)

A

t < Shear t S Peak shear
strength strength
<«— Large

displacement
shear strength
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D
Cyclic Softening

Reduce soft clay shear strength for cyclic
softening

I Typically reduce S, by 10-20%
Use residual shear strength in liquefiable soill
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D
Multiple Failure Surfaces

Note that a Is a function of H
A MHA decreases with depth

Stablility also may decreases with depth

A May need to check multiple surfaces
ARatio of k,, (k for FS = 1) to MHA critical

Phreatic

Surface

H1 Potential // LaSyc;i:1 Ay = App
3 (MHA),; > (MHA),,,
P e (k)1 > (k)
p (K,/MHA), vs. (k /MHA), 227
<< ,/' Soil
__________________ Layer 2
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D
Ground Motion Amplification

Seismic hazard maps typically developed for
a reference site condition

I US:SiteCl ass B (nB/ C boun
I Canada: Site Class C

Ground motions (PGA and S_) must be
adjusted for other site conditions
I Code values adjusted using site factors

Can also have topographic amplification
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I
PGA Amplification

Seed and Idriss, 1982: Rock vs. Soll Sites
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D
PGA Amplification
ldriss, 1992: Rock vs. Soft Clay Sites

__ 06

Range Based on N

I<T: 9 05 Analytical Studies — g

0 e N 7
2 T
~ = 0.4 /
-5 =
y = 0.3 N _/_%,--* ‘{Recqmmendgd
w O 09 A Median Relation
- > /ﬂ/” e,

] T

EJ) — 0.1 A | 1989 Loma Prieta

LL . S
O @) / 11985 Mexico City | Earthquake Magnitude =7
< N 0 | | |

0 0.1 0.2 0.3 0.4 0.5 0.6

ACCELERATION AT ROCK SITES (g)

School of Sustainable Engineering for the Built Environment

ARIZONA STATE UNIVERSITY



Spectral Amplification

1957 Da

y City Earthquake (Seed, 1975)
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et .
Site Class

Based on average shear wave velocity in top 100 ft
(30 m), (Vs)4, (Or other geotech characteristics)

Site Class (V) SPT S,
A > 5000 ft/s N.A. N.A.
B 2500 - 5000 ft/s N.A. N.A.
C 1200 - 2500 ft/s > 50 > 2 ksf
D 600 - 1200 ft/s 15 - 50 1 -2 ksf
E < 600 ft/s <15 < 1 ksf
F (Special Study Sites)

School of Sustainable Engineering for the Built Environment

ARIZONA STATE UNIVERSITY



I
PGA Site Factor, FPG, (NBCC Values)

PGA = I:)G'ASite Class C X |:PGA

i \ Peak Ground Acceleration for Site Class C :
Class PGAO PGA = PGA = PGA = PGA O
0.10 g 0.20g 0.30 g 0.40 g 0.50g

A 0.7 0.7 0.8 0.8 0.8

B 0.8 0.8 0.9 1.0 1.0

C 1.0 1.0 1.0 1.0 1.0

D 1.3 1.2 1.1 1.1 1.0

E 2l 1.4 1.1 0.9 0.9

F a a a a a
Table  Use straight line interpolation for intermediate values of PGA where PGA
notes: is the peak ground acceleration obtained from the ground motion maps.

aQ Site-specific geotechnical investigation and dynamic site response

analyses shall be performed

FSil fucron
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I
Long Period Site Factor, F,, (NBCC)

Sl = (Sl)Site Class C X |:V

i Spectral Acceleration at 1 Sec Period, S 1. for Site Class B
Class S;0 S; = S; = S; = S; 0
0.10 g 0.20 g 0.30 g 0.40 g 0.50¢g

A 0.5 0.5 0.5 0.6 0.6

B 0.6 0.7 0.7 0.8 0.8

C 1.0 1.0 1.0 1.0 1.0

D 1.4 1.3 1.2 1.1 1.1

E 2.1 2.0 1.9 1.7 1.7

F a a a a a
Table Use straight line interpolation for intermediateT values of S;, where S; ig
notes: the spectral acceleration at 1.0 seconds obtained from the ground motion

maps.
Site-specific geotechnical investigation and dynamic site response

analyses shall be performed o
FSIU fumoy..
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I
Special Study Sites

Yerba Buena Island (Rock) / Treasure Island (Soil)
sites in the 1989 Loma Prieta Earthquake

allog, . I 0.8

San Francisco—Oakland Bay Brldge @

Max. Surfoce Accel.= 0.16 g

2 Miles _ Proposed Eastern Toll Plaza @
Span Replacement

Domping = 5 %

o
»

Self-Anchored
Suspension Span
Treasure Island

Existing Eastern Span

Yerba Buena &

880
Yerba Buena Tunnel SIS NG ST

SPECTRAL ACCELERATION, g
(@]
S~

Richmond 0.2
Richmond-
/ :WesremSQan San Rafael Bridge
San » , Berkeley
Francisco ., Oakland
S e @ 0.0
Qo San Francisco Bay Sori Fiariolecos
San Oakland Bay Bridge PERIOD, s

,fj,// Francisco

5.6(a): 90 Degree (E-W) Component

* Ira A.

FULTON

school of engineering

School of Sustainable Engineering for the Built Environment

ARIZONA STATE UNIVERSITY



I
Special Study Sites

Mexico City, 1985
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Special Study Sites

Shallow Stiff Layer Sites
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