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What is the seismic coefficient, ks? 

The seismic coefficient is: 
 

Å A lateral force coefficient used in 

pseudo static limit equilibrium 

analysis 
 

Å A means of representing the effect 

of seismic loading on slopes and 

earth retaining structures using limit 

equilibrium analysis   
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What is the seismic coefficient, ks? 
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What the seismic coefficient is not. 

The seismic coefficient is not: 
 

ïThe same as the peak ground 

acceleration (PGA) [not usually]  
 

ïA vertical force coefficient 
 

ï Independent of the factor of safety 
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PGA  vs. ks  
PGA (peak horizontal ground acceleration) 

occurs at one point 

ï Acceleration elsewhere is less than PGA 

ï PGA may only occur one time during the EQ 

ks is an average value over entire mass  

 ks is usually less than (and never more 

than) the PGA (÷ g) 
 

 Note:  ks = PGA / g for brittle and/or sensitive 

soil (due to progressive failure) 
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Maximum Horizontal Acceleration  

MHA 
ï Maximum Average Horizontal Acceleration of failure mass 

ï Governs maximum horizontal inertial force on failure mass 
 

PGA Ó MHA  (so PGA Ó MHA Ó ks) 

PGA 

Note:  a1 
through a4 are 
less than the 
PGA 
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Factors Influencing ks 

The value of ks may depend upon: 

ï The associated factor of safety 

ï The seismic performance criteria 
 

ï The design ground motions 
 

ï Slope height 
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ks ï FS Coupling 

Specifying ks without an associated FS is 

meaningless 

Specifying a ñseismic FSò without specifying 

an associated ks is meaningless 

Different combinations of ks and FS can 

describe an equivalent performance 

standard  

ï Increase FS, decrease ks 

 



School of Sustainable Engineering for the Built Environment 

Seismic Factor of Safety 
Specifying ks without an associated FS is 

meaningless   

   [(ks)1,FS1] ¹ [(ks)2,FS2] ¹ [(ks)3,FS3] 
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Factor of Safety, FS 1.0 

PGA/g 

MHA/g 

Equivalent seismic 

performance 
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Seismic Performance Criteria 
Different performance criteria correspond to 

different ks, FS combinations 
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Factor of Safety, FS 1.0 

PGA/g 

MHA/g  (unconditional stability for ductile soil) 

Negligible permanent displacement 

15 cm permanent displacement 

1 m permanent displacement  
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Seismic Performance Criteria 

Unconditional seismic stability is elusive 

ï May not be obtainable in high seismicity areas 

ï Probably not necessary 

Seismic performance usually quantified by 

allowable permanent displacement 

ï Negligible (minor cracking) 

ï Small (inches) 

ï Large (feet) 

ï Instability (tens of feet) 
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Seismic Performance Criteria 

MHA ï ks relationship depends upon seismic 

performance criteria 

ï Unconditional stability: ks = MHA, FS = 1 

ÅException: Soils susceptible to progressive 

failure (use ks = PGA)  
 

ï Allowable displacement: ks< MHA 

Å Increase allowable displacement, 

decrease ks 
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Allowable Displacement 

Permanent displacement accumulates when average acceleration > ky  

Allowable displacement = f(soil ductility, 

impacts of slope displacement)  

Greater allowable displacement, smaller ks 

Note:  ky = ks for FS = 1 
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Design Ground Motions 

Design ground motions influence:  

 

ï The relationship of the PGA to the MHA 

Å Factors include ground motion frequency, 

slope height  
 

ï The relationship of the MHA to ks 

Å Factors include performance criteria 

(allowable displacement), frequency and 

duration of motion 
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Relationship of PGA to MHA 

PGA ï MHA relationship impacted by spatial 

and temporal incoherence (variability) 

ï Maximum acceleration at all other points is 

less than PGA 

ï Maximum acceleration at other points occurs 

at different time than PGA  
 

  Maximum average acceleration 

(MHA) is less than PGA 
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Influence of Slope Height 

H2 

Z 

PGA 

MHA2 

 

H1 

Z 

PGA 

MHA1 

 

Increasing H reduces MHA (more averaging) 
Å  H1 < H2, then MHA1 > MHA2 



School of Sustainable Engineering for the Built Environment 

Influence of Slope Height 
Makdisi and Seed (1978) 
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Influence of Frequency on MHA 

MHA2 

H 

Z 

 

PGA 

H 

Z 

PGA 
MHA1 

 

Higher frequency (w), shorter wave length (l), 

reduced MHA 

l1,w1 
l2 , w2 

w1 < w2 

l1 > l2 

MHA1 > MHA2 
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Influence of Duration, Frequency 

Increased duration, larger displacement 

potential, smaller reduction in ks from MHA 

Higher frequency, more cycles of loading, 

but shorter cycles ï impact unclear 
 

Both duration and frequency effects on 

MHA-ks relationship traditionally 

captured as magnitude dependence  
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Influence of Magnitude 
Makdisi and Seed, 1978 
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Other Factors Influencing ks 

Shear strength 

ï Peak vs. large displacement 

ï Cyclic softening 

Multiple failure surfaces 

Amplification of ground motions 

ï Rock vs. soil site motions 

ï Influence of topography 
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Peak vs. Large Displacement 

Shear Strength 

In a non-ductile soil, use large displacement 

shear strength (by convention / conservative) 

t 

g 

Shear  

strength t 

g 

Peak shear 

strength 
Large 

displacement 

shear strength 
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Cyclic Softening 

Reduce soft clay shear strength for cyclic 

softening 

ï Typically reduce Su by 10-20% 

Use residual shear strength in liquefiable soil 
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Multiple Failure Surfaces 
Note that a is a function of H 

Å MHA decreases with depth 

Stability also may decreases with depth 

Å May need to check multiple surfaces 

ÅRatio of ky (ks for FS = 1) to MHA critical 

 aH1  >  aH2 

(MHA)H1 > (MHA)H2 

(ky)1  > (ky)2 

(ky/MHA)1 vs. (ky/MHA)2 ???   
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Ground Motion Amplification 

Seismic hazard maps typically developed for 

a reference site condition 

ï US: Site Class B (ñB/C boundary per USGS) 

ï Canada: Site Class C 

Ground motions (PGA and Sa) must be 

adjusted for other site conditions 

ï Code values adjusted using site factors 

Can also have topographic amplification 
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PGA Amplification 
Seed and Idriss, 1982: Rock vs. Soil Sites 
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PGA Amplification 
Idriss, 1992: Rock vs. Soft Clay Sites 
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Spectral Amplification 
1957 Daly City Earthquake (Seed, 1975) 
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Site Class 

Site Class  (V
S
)

30
 SPT S

u
 

A > 5000 ft/s  N.A. N.A. 

B 2500 - 5000 ft/s  N.A. N.A. 

C 1200 - 2500 ft/s  > 50  > 2 ksf  

D 600 - 1200 ft/s  15 - 50 1 -2 ksf 

E < 600 ft/s  <15  < 1 ksf  

F (Special Study Sites) 

Based on average shear wave velocity in top 100 ft 

(30 m), (VS)30 (or other geotech characteristics) 
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PGA Site Factor, FPGA  (NBCC Values) 
 PGA = PGASite Class C x FPGA 

 

Site 
Class 

Peak Ground Acceleration for Site Class C  

PGA Ò 
0.10 g  

PGA = 
0.20 g  

PGA = 
0.30 g  

PGA = 
0.40 g  

PGA Ó 
0.50 g  

A 0.7 0.7 0.8 0.8 0.8 

B 0.8 0.8 0.9 1.0 1.0 

C 1.0 1.0 1.0 1.0 1.0 

D 1.3 1.2 1.1 1.1 1.0 

E 2.1 1.4 1.1 0.9 0.9 

F a a a a a 

Table 
notes: 

Use straight line interpolation for intermediate values of PGA, where PGA 
is the peak ground acceleration obtained from the ground motion maps.  

a 
Site-specific geotechnical investigation and dynamic site response 
analyses shall be performed 
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Long Period Site Factor, FV (NBCC) 
   S1 = (S1)Site Class C x FV 

 

Site 
Class 

Spectral Acceleration at 1 Sec Period, S 1. for Site Class B  

S1 Ò 
0.10 g  

S1 = 
0.20 g  

S1 = 
0.30 g  

S1 = 
0.40 g  

S1 Ó 
0.50 g  

A 0.5 0.5 0.5 0.6 0.6 

B 0.6 0.7 0.7 0.8 0.8 

C 1.0 1.0 1.0 1.0 1.0 

D 1.4 1.3 1.2 1.1 1.1 

E 2.1 2.0 1.9 1.7 1.7 

F a a a a a 

Table 
notes: 

Use straight line interpolation for intermediate values of S1, where S1 is 
the spectral acceleration at 1.0 seconds obtained from the ground motion 
maps. 

a 
Site-specific geotechnical investigation and dynamic site response 
analyses shall be performed 
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Special Study Sites 
Yerba Buena Island (Rock) / Treasure Island (Soil) 

sites in the 1989 Loma Prieta Earthquake 
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Special Study Sites 
    Mexico City, 1985 
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Special Study Sites 
       Shallow Stiff Layer Sites 

 


