INTENDED USE

The EDI™ COVID-19 Nucleocapsid IgG Quantitative ELISA Kit is an Enzyme-Linked Immunosorbent Assay (ELISA) intended for quantitative detection of the IgG antibodies to SARS-CoV-2 in human serum. The EDI™ COVID-19 Nucleocapsid IgG Quantitative ELISA Kit is intended for use as an aid in identifying individuals with an adaptive immune response to SARS-CoV-2, indicating recent or prior infection. At this time, it is unknown for how long antibodies persist following infection and if the presence of antibodies confers protective immunity. Testing is limited to laboratories certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA), 42 U.S.C 263a, to perform moderate or high complexity tests. Is only provided for use by clinical laboratories or to healthcare workers for point-of-care testing covered by a laboratory’s CLIA certification for high-complexity testing, and not for at home testing including at-home specimen collection.

Laboratories within the United States and its territories are required to report all positive results to the appropriate public health authorities.

The indication of use of this test relates to the detection of human anti-SARS CoV-2 antibodies in serum. Immunoglobulin IgG subtype antibodies to SARS-CoV-2 are generally detectable in blood samples several days after initial infection, as well as in the convalescent stage, although the duration time of antibodies present post-infection is not well characterized. Individuals may have detectable virus present for several weeks following seroconversion.

The sensitivity of EDI™ COVID-19 Nucleocapsid IgG Quantitative ELISA Kit early after infection is unknown. Negative results do not preclude acute SARS-CoV-2 infection. If acute infection is suspected, direct RT-PCR testing for SARS-CoV-2 RNA is necessary.

False positive results for EDI™ COVID-19 Nucleocapsid IgG Quantitative ELISA Kit may occur due to cross-reactivity from pre-existing antibodies or other possible causes.

This test has not been reviewed by the FDA. It is being distributed under Section IV.D of the FDA's Policy for Coronavirus Disease-2019. Negative results do not preclude acute SARS-CoV-2 infection. If acute infection is suspected, direct testing for SARS-CoV-2 is necessary.

Results from antibody testing should not be used to diagnose or exclude acute SARS-CoV-2 infection.

Positive results may be due to past or present infection with non-SARS-CoV-2 coronavirus strains, such as coronavirus HKU1, NL63, OC43, or 229E.

Not for the screening of donated blood

SUMMARY OF PHYSIOLOGY

2019 novel coronavirus (2019-nCoV or SARS-CoV-2 or COVID-19) is a single-stranded RNA coronavirus. Comparisons of the genetic sequences of this virus have shown similarities to SARS-CoV and bat coronaviruses. In humans, coronaviruses cause respiratory infections. Coronaviruses are composed of several proteins including the spike (S), envelope (E), membrane (M), and nucleocapsid (N). Results suggest that the spike protein retains sufficient affinity to the Angiotensin converting enzyme 2 (ACE2) receptor to use it as a mechanism of cell entry. Human to human transmission of coronaviruses is primarily thought to occur among close contacts via respiratory droplets generated by sneezing and coughing. IgG is the most abundantly found immunoglobulin to be produced in response to an antigen and will be maintained in the body after initial exposure for long term response.

ASSAY PRINCIPLE

This ELISA kit is designed, developed, and produced for the qualitative measurement of the human anti-COVID-19 IgG antibody in serum. This assay utilizes the microplate based enzyme immunoassay technique.

Assay calibrators, controls, and 1:100 diluted human serum samples are added to the microtiter wells of a microplate that was coated with COVID-19 recombinant full length nucleocapsid protein. After the first incubation period, the unbound protein matrix is removed with a subsequent washing step. A horseradish peroxidase (HRP) labeled polyclonal goat anti-human IgG tracer antibody is added to each well. After an incubation period, an immunocomplex of "COVID-19 recombinant antigen – human anti-COVID-19 IgG antibody - HRP labeled anti-human IgG tracer antibody" is formed if there is specific coronavirus IgG antibody present in the tested specimen. The unbound tracer antibody is removed by the subsequent washing step. HRP-labeled anti-hlgG tracer antibody bound to the well is then incubated with a substrate solution in a timed reaction and then measured in a spectrophotometric microplate reader. The enzymatic activity of the tracer antibody bound to the anti-COVID-19 IgG on the wall of the microtiter well is proportional to the amount of the anti-COVID-19 IgG antibody level in the tested specimen.

REAGENTS: PREPARATION AND STORAGE

This test kit must be stored at 2 – 8°C upon receipt. For the expiration date of the kit refer to the label on the kit box. All components are stable until this expiration date.

1. COVID-19 antigen coated Microplate (31217)
 Microplate coated with COVID-19 recombinant protein.
 Qty: 1 x 96 well microplate
 Storage: 2 – 8°C
 Preparation: Ready to use.

2. COVID-19 IgG Sample Diluent (31218)
 A ready-to-use sample dilution buffer.
 Qty: 1 x 120 mL
 Storage: 2 – 8°C
 Preparation: Ready to use.

3. HRP labeled Anti-hlgG Tracer Antibody (31220)
 HRP labeled polyclonal goat anti-human IgG antibody in a stabilized protein matrix.
 Qty: 1 x 11 mL
 Storage: 2 – 8°C
 Preparation: Ready to use.

4. ELISA Wash Concentrate (10010)
 Surfactant in a phosphate buffered saline with non-azole preservative.
 Qty: 1 x 30 mL
 Storage: 2 – 25°C
 Preparation: 30X Concentrate. The contents must be diluted with 870 mL distilled water and mixed well before use.
5. ELISA HRP Substrate (10020)
Tetramethylbenzidine (TMB) with stabilized hydrogen peroxide.
Qty: 1 x 15 mL
Storage: 2 – 8°C
Preparation: Ready to use.

6. ELISA Stop Solution (10030)
0.5 M sulfuric acid.
Qty: 1 x 15 mL
Storage: 2 – 8°C
Preparation: Ready to use.

7. COVID-19 IgG Calibrators Levels 1 - 5 (31250 - 31254)
Calibrators with a bovine serum albumin based matrix with non-azide preservative. Refer to vials for exact concentration.
Qty: 5 x 0.5 mL
Storage: 2 – 8°C
Preparation: Ready to use.

8. COVID-19 IgG Controls (31255 – 31256)
One positive control and one negative control with bovine serum albumin based matrix with non-azide preservative.
Qty: 2 x 0.5 mL
Storage: 2 – 8°C
Preparation: Ready to use.

SAFETY PRECAUTIONS
The reagents are for in-vitro diagnostic use only. Source material which contains reagents of bovine serum albumin was derived in the contiguous 48 United States. It was obtained only from healthy donor animals maintained under veterinary supervision and found free of contagious diseases. Wear gloves while performing this assay and handle these reagents as if they were potentially infectious. Avoid contact with reagents containing hydrogen peroxide, or sulfuric acid. Do not get in eyes, on skin, or on clothing. Do not ingest or inhale fumes. On contact, flush with copious amounts of water for at least 15 minutes. Use Good Laboratory Practices.

MATERIALS REQUIRED BUT NOT PROVIDED
1. Precision single channel pipettes capable of delivering 10 µL, 20 µL, 100 µL, and 1000 µL, etc.
2. Repeating dispenser suitable for delivering 100 µL.
3. Disposable pipette tips suitable for above volume dispensing.
4. Disposable 12 x 75 mm plastic or glass tubes.
5. Disposable plastic 1000 mL bottle with caps.
6. Aluminum foil.
7. Deionized or distilled water.
8. Plastic microtiter well cover or polyethylene film.
9. ELISA multichannel wash bottle or automatic (semi-automatic) washing system.
10. Spectrophotometric microplate reader capable of reading absorbance at 450 nm.
11. Calibrated Timer.

SAMPLE COLLECTION & STORAGE
Only 10 µL of human serum is required for measurement in duplicate. Samples should only be used on the same day. Severe hemolytic samples should not be used.

ASSAY PROCEDURE
1. Reagent Preparation
 1. Prior to use, allow all reagents to come to room temperature. Reagents from different kit lot numbers should not be combined or interchanged.
 2. ELISA Wash Concentrate (10010) must be diluted to working solution prior to use. Please see REAGENTS section for details.

2. Sample Preparation
 1. Dilute serum sample by a 1:100 dilution ratio with the COVID-19 IgG Sample Diluent (31218). For each 10 µL of sample, 1000 µL of COVID-19 IgG Sample Diluent (31218) is needed.
 2. Mix well prior to performing the assay.

3. Assay Procedure
 1. Place a sufficient number of microwell strips (31217) in a holder to run the calibrators (31250 - 31254), controls (31255, 31256), and samples in duplicate.

<table>
<thead>
<tr>
<th>Row</th>
<th>Strip 1</th>
<th>Strip 2</th>
<th>Strip 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Calibrator Level 1</td>
<td>Calibrator Level 5</td>
<td>SAMPLE 2</td>
</tr>
<tr>
<td>B</td>
<td>Calibrator Level 1</td>
<td>Calibrator Level 5</td>
<td>SAMPLE 2</td>
</tr>
<tr>
<td>C</td>
<td>Calibrator Level 2</td>
<td>Control 1</td>
<td>SAMPLE 3</td>
</tr>
<tr>
<td>D</td>
<td>Calibrator Level 2</td>
<td>Control 1</td>
<td>SAMPLE 3</td>
</tr>
<tr>
<td>E</td>
<td>Calibrator Level 3</td>
<td>Control 2</td>
<td>SAMPLE 4</td>
</tr>
<tr>
<td>F</td>
<td>Calibrator Level 3</td>
<td>Control 2</td>
<td>SAMPLE 4</td>
</tr>
<tr>
<td>G</td>
<td>Calibrator Level 4</td>
<td>SAMPLE 1</td>
<td>SAMPLE 5</td>
</tr>
<tr>
<td>H</td>
<td>Calibrator Level 4</td>
<td>SAMPLE 1</td>
<td>SAMPLE 5</td>
</tr>
</tbody>
</table>

3. Add 20 µL of calibrators (31250 - 31254), controls (31255, 31256), and 1:100 diluted samples into the designated microwells.
4. Add 100 µL of sample diluent into each microwell.
5. Mix gently and cover the plate with one plate sealer and aluminum foil. Incubate at room temperature (20-25 ºC) for 30 minutes.
6. Remove the plate sealer. Aspirate the contents of each well. Wash each well 5 times by dispensing 350 µL of diluted wash solution (10010) into each well, and then completely aspirate the contents. Alternatively, an automated microplate washer can be used.
7. Add 100 µL of the HRP labeled Anti-hIgG Tracer Antibody (31220) into the microwells.
8. Mix gently and cover the plate with one plate sealer and aluminum foil. Incubate at room temperature (20-25 ºC) for 30 minutes.
9. Remove the plate sealer. Aspirate the contents of each well. Wash each well 5 times by dispensing 350 µL of diluted wash solution (10010) into each well, and then completely aspirate the contents. Alternatively, an automated microplate washer can be used.
10. Add 100 µL of the substrate (10020) into the microwells.
11. Mix gently and cover the plate with aluminum foil. Incubate at room temperature (20-25 ºC) for 20 minutes.
12. Remove the aluminum foil and add 100 µL of stop solution (10030) into each of the microwells. Mix by gently by tapping the plate.
13. Read the absorbance at 450 nm within 10 minutes with a microplate reader.

PROCEDURAL NOTES
1. Both calibrators and controls are pre-diluted and ready-to-use. They must be used directly in the test procedure without any dilution.
2. It is recommended that all samples be assayed in duplicate. The average absorbance reading of each duplicate should be used for data reduction and the calculation of results.
3. Keep light-sensitive reagents in the original bottles and avoid unnecessary exposure to the light.
4. Store any unused antibody-coated strips in the foil Ziploc bag with desiccant to protect from moisture.
5. Careful technique and use of properly calibrated pipetting devices are necessary to ensure reproducibility of the test.
6. Incubation times or temperatures other than those stated in this insert may affect the results.
7. Avoid air bubbles in the microwell as this could result in lower binding efficiency and higher CV% of duplicate reading.
8. All reagents should be mixed gently and thoroughly prior to use. Avoid foaming.

QUALITY CONTROL
To assure the validity of the results each assay should include adequate controls with known COVID-19 IgG levels. We also recommend that all assays include the laboratory’s own controls in addition to those provided with this kit.

INTERPRETATION OF RESULTS
1. Calculate the average absorbance for each pair of duplicate test results.
2. The calibration curve is generated by the corrected absorbance of all calibrator levels on the ordinate against the calibrator concentration on the abscissa using point-to-point or log-log paper. Appropriate computer assisted data reduction programs may also be used for the calculation of results.
3. It is recommended to use following curve fits: (1) Point-to-Point, or (2) 4-Parameter
4. The COVID-19 IgG concentrations for the controls and patient samples are read directly from the calibration curve using their respective corrected absorbance.

LIMITATIONS OF THE PROCEDURE
1. Since there is no Gold Standard concentration available for COVID-19 IgG measurement, the values of the assay calibrators were established by diluting an inactivated human COVID-19 IgG stock in a phosphate buffer protein matrix.
2. In the first week of the onset of the infection with the novel coronavirus (COVID-19), patient results may be negative for IgG. In addition, patients with low immunity or other diseases that affect immune function, failure of critical systemic organs, and use of drugs that suppress immune function can also lead to negative results. Previous infection of SARS or other coronavirus strains may present a light IgG positive result due to similarity of different strains.
3. Water deionized with polyester resins may inactivate the horseradish peroxidase enzyme.
4. Results are for the detection of SARS CoV-2 antibodies. IgG Antibodies to SARS-CoV-2 are generally detectable in blood several days after initial infection, although the duration of time antibodies are present post-infection is not well characterized. Individuals may have detectable virus present for several weeks following seroconversion.
5. Laboratories within the United States and its territories are required to report all positive results to the appropriate public health authorities.
6. The sensitivity of EDI™ COVID-19 Nucleocapsid IgG Quantitative ELISA Kit early after infection is unknown. Negative results do not rule out acute SARS-CoV-2 infection. If acute infection is suspected, direct testing for SARS-CoV-2 is necessary.
7. False positive results for EDI™ COVID-19 Nucleocapsid IgG Quantitative ELISA Kit may occur due to cross-reactivity from pre-existing antibodies or other possible causes.
8. This test has not been reviewed by the FDA.
9. Negative results do not preclude acute SARS-CoV-2 infection. If acute infection is suspected, direct testing for SARS-CoV-2 is necessary.
10. Results from antibody testing should not be used to diagnose or exclude acute SARS-CoV-2 infection.
11. Positive results may be due to past or present infection with non-SARS-CoV-2 coronavirus strains, such as coronavirus HKU1, NL63, OC43, or 229E.
12. For samples that do not align with PCR testing, perform a confirmation test by retesting the sample 2-3 times.

EXPECTED VALUES
One hundred thirty one donor serum samples from December 2019 were collected and tested. The range of COVID-19 IgG was from 0.2 U/mL to 25.3 U/mL. The average concentration is 3.9 U/mL with a median at 3.1 U/mL and a standard deviation at 3.1 U/mL. The manufacturer recommended P90, the positive cut-off level is 10 U/mL. If maximum clinical specificity is desired, the P99 positive cut-off level at 20 U/mL can be used. It is highly recommended that each laboratory should establish its own normal range for COVID-19 IgG based on local populations.

EXAMPLE DATA
This ELISA calculates the concentration values of the samples and the controls by a calibration curve (fitting method: four parameters or point-to-point) and the measured absorbance. The following is a typical calibration curve:

<table>
<thead>
<tr>
<th>Microwell ID</th>
<th>Reading Absorbance (450 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OD Readings</td>
</tr>
<tr>
<td>Calibrator Level 1: 0 U/mL</td>
<td>0.074</td>
</tr>
<tr>
<td>Calibrator Level 2: 6.9 U/mL</td>
<td>0.474</td>
</tr>
<tr>
<td>Calibrator Level 3: 26.3 U/mL</td>
<td>1.030</td>
</tr>
<tr>
<td>Calibrator Level 4: 100 U/mL</td>
<td>1.485</td>
</tr>
<tr>
<td>Calibrator Level 5: 200 U/mL</td>
<td>1.976</td>
</tr>
<tr>
<td>Control 1</td>
<td>0.720</td>
</tr>
<tr>
<td>Control 2</td>
<td>1.323</td>
</tr>
</tbody>
</table>

Note: This curve should not be used in lieu of calibrator curve run with each assay.

PERFORMANCE CHARACTERISTICS
Reactivity/Inclusivity
Although mutations in the SARS-CoV-2 genome have been identified as the virus has spread, no serologically unique strains have been described relative to the originally isolated virus. It is critical to note that this research is exceptionally limited at present.

Limit of Detection
The limit of detection (LoD) was determined by 14 replicates of both zero standard and level 2 calibrator, which is to be 0.17 U/mL.

Linearity
Linearity was determined by the duplicate determination of a clinical positive serum sample with a serial dilution assay buffer. The results are summarized below with satisfactory linearity.

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Average Concentration (U/mL)</th>
<th>Theoretical Concentration (U/mL)</th>
<th>Linear Recovery (%)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>66.96</td>
<td>66.96</td>
<td>96.5%</td>
<td>0.999</td>
</tr>
<tr>
<td>1:2</td>
<td>32.30</td>
<td>33.48</td>
<td>98.5%</td>
<td></td>
</tr>
<tr>
<td>1:4</td>
<td>16.03</td>
<td>16.74</td>
<td>95.6%</td>
<td></td>
</tr>
<tr>
<td>1:8</td>
<td>7.19</td>
<td>8.37</td>
<td>86.0%</td>
<td></td>
</tr>
<tr>
<td>1:16</td>
<td>3.34</td>
<td>4.18</td>
<td>79.9%</td>
<td></td>
</tr>
</tbody>
</table>

Intra-assay Precision
The intra-assay precision was determined by the measurement of three serum samples in eight replicates. The results are summarized with satisfactory precision.

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Average</th>
<th>SD</th>
<th>CV (%)</th>
</tr>
</thead>
</table>

KT-1034/IVD, US/V1/2020-07
The cohort used to estimate the positive percent agreement (PPA) were specimen with a confirmed positive disease state by a polymerase chain reaction (PCR) (N = 108) or serological test (N = 36). To estimate the positive percent agreement (PPA), the selected cohort specimen were confirmed positive disease state by a polymerase chain reaction (PCR) (N = 108) or serological test (N = 36).

The cohort used to estimate the negative percent agreement (NPA) were pre-COVID-19 specimen collected prior to November 2019 (N = 300) or specimen with a confirmed negative disease state by PCR (N = 16) or serological test (N = 20). To estimate the negative percent agreement (NPA), pre-COVID-19 specimen were selected prior to November 2019 (N = 300) or specimen with a confirmed negative disease state by PCR (N = 16) or confirmed negative disease state by serological test (N = 20).

Each specimen was tested in duplicate. The PPA, NPA, and the 95% confidence interval (CI) were calculated. This EDI™ COVID-19 Nucleocapsid IgG Quantitative ELISA Kit successfully differentiates positive patients from normal population. The results are as follows:

- **Inter-assay Precision**
 The inter-assay precision was determined by the measurement of the assay controls in three replicates over twelve runs of the assay. The results are summarized below with satisfactory precision.

- **Interference**
 A large number of known negative samples (300 unique samples collected in the US prior to December 2019) were tested from a population with a high prevalence of infection with, and/or vaccinated against, the following viruses:

- **Class Specificity**
 This experiment was intended to differentiate between the IgG and IgM immunoglobulins. Five PCR confirmed COVID-19 patient serum samples were tested in duplicate in qualitative COVID-19 ELISA kits manufactured by Epitope Diagnostics, Inc. (KT-1032 EDI™ Novel Coronavirus COVID-19 IgG, KT-1033 EDI™ Novel Coronavirus COVID-19 (IgM). Samples were found to be originally positive for both IgG and IgM. Further testing conducted on these natural samples presented positive results in the EDI™ COVID-19 Nucleocapsid IgG Quantitative ELISA Kit. Protein A/ProSep A gel was then used to remove the total IgG and the treated samples were tested. The results confirm the treated samples to be positive for IgM, but negative in the EDI™ COVID-19 Nucleocapsid IgG Quantitative ELISA Kit. The results demonstrate that this EDI™ COVID-19 Nucleocapsid IgG Quantitative ELISA Kit exclusively detects the IgG subtype and establishes antibody class specificity for IgG. The results are as follows:

- **Clinical Testing**
 A study was performed to determine the clinical performance of the EDI™ COVID-19 Nucleocapsid IgG Quantitative ELISA Kit using serum samples (N = 480) from donors in the United States.