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I. Executive Summary 

In this report, we describe the success of the research project examining the dependence of infrastructure 

restoration following an extreme event on the transportation network. Specifcally, existing optimization 

models that determine which damaged infrastructure components are repair by which work crew and when 

are defcient because they assume that any two consecutive tasks can be completed by any work crew. This 

assumption is unrealistic because the transportation network is often obstructed due to debris from the ex-

treme event, fooded, or structurally damaged. 

This work removed the common assumption that the transportation network is never damaged and al-

ways accessible. Instead, we created and tested an optimization models that explicitly models the damage to 

the transportation network, restoration of the transportation network over time, and impact of the accessibil-

ity of the transportation on the restoration efforts for other infrastructure networks. Specifcally, we modeled 

how the damage and restoration to the transportation network impacted the restoration and accessibility to 

restoration tasks by the power network. 

We cultivated and refned infrastructure data sets representing the realistic transportation and power net-

works in Juan Diaz, Panama. We performed computational experiments to validate the performance of the 

new model. With the computational tests, we examined how the number of work crews, magnitude of dam-

age to the transportation and power networks, and pre-positioning of the work crews impacted restoration 

efforts. 

II. Introduction 

This research project develops an approach for deriving post-disaster plans to restore components within 

a set of interdependent infrastructure networks. We develop a mixed-integer programming model that de-

termines which work crews restore selected network components at what times after an extreme event. We 

denote this problem an Interdependent Integrated Network Design and Scheduling problem with movement 

of machines (IINDS-MM). 

The main contribution of The IINDS-MM is that we explicitly restrict restoration decisions based on the 

ability of the work crews to access consecutive restoration tasks by traversing an under repair transportation 

network. Thus, the IINDS-MM is developed in order to realistically model restoration by incorporating: 
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(i) movement of work crews throughout a transportation network; (ii) interdependence of 2 or more in-

frastructures on the status of the transportation network; and (iii) restoration activities over time for the 

interdependent infrastructures based on the ability to reach the tasks via the transportation network. Hence, 

we remove the common assumption that work crews can instantaneously move along any transportation arc. 

Managers of infrastructure systems require tools that dictate the best system-wide restoration on a set of 

interdependent infrastructures. Infrastructure systems are critical to the function of society as they provide 

basic services including transportation, telecommunication, water, and electrical power systems [29]. Infras-

tructures are dependent or interdependent when there exists a directional or bidirectional relationship which 

the state of each is correlated [32]. Interdependencies cause infrastructures to be vulnerable to cascading 

failures following extreme events. Moreover, restoration tasks of one infrastructure could contribute to or 

impact the restoration efforts of other infrastructures [34]. As a results, decision makers need to consider 

interdependencies when coordinating restoration efforts to lead to a more resilient system. 

Countries vulnerable to natural disasters need effective disaster preparedness and response plans. In a 

2010 study examining over 60 countries, Panama was ranked 14th based on land area for high exposure to 

multiple hazards [12, 15]. Similarly, the United Nations Offce for Disaster Risk [16] indicates that Panama 

has high indicator levels for hazard and exposure (2.9% of the population) and lacks coping capacity (4.8 

out of 10). Since 2000, 42 events have occurred in Panama affecting many people. From 1995 to 2006 

in Panama, 82,514 people were impacted by disasters resulting in 15,850,000 USD of damage. In the last 

10 years (2007-2016), the number of affected people increased to 172,097 people resulting in 210,000,000 

USD of damage [10]. 

Given the importance of Panama, we perform a case study using the developed IINDS-MM model for 

Juan Diaz, Panama. For this case study, we consider food scenarios using the the transportation and electri-

cal power networks. We quantitatively determine the best restoration activities to conduct in both networks 

in order to maximize the amount of demand satisfed in the electrical power network over time. We assume 

that restoration efforts are coordinated for both networks and analyze how the placement of work crews, 

capabilities of work crews, and amount of damage impact the restoration insights learned. 

There are several factors that motivate this research. Extreme events can be manmade disasters or natu-

ral disasters [14]. Historically, natural disasters, such as hurricanes, can cause large-scale damages. Floods 
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comprise the third highest percentage (8.8%) of major natural hazards that impact land area in the world 

[12]. In total, foods have affected around 38% of the population from 1985 to 2003 causing $14,670 9 × 10

in damages [12]. The transportation systems is impacted greatly by foods wherein 1,191 × 103 km of road 

and rail from 1985 to 2003. Given these values, current infrastructure restoration models that assume the 

transportation network is always available for traversing from one restoration task to the next are not realistic. 

III. Literature Review 

There are many areas of study related to the outlined work on Interdependent Integrated Network Design 

and Scheduling Problems with Movement of Machines. A collection of literature is reviewed in this chap-

ter. The literature review is divided into three subsections: disasters and disaster management, restoration 

interdependence, and mathematical models related to disasters. 

A. Disasters and Disaster Management 

According to Ergun et al. [14] there are two categories of disasters: man-made disasters and natural-

disasters. Some disasters can be slow to start such as political crisis and famine, but others begin in an 

abrupt way, such as terrorist attacks and foods. The process of the management of any disaster is divided 

into three different phases: pre-disaster, disaster and post-disaster. In pre-disaster (phase I), organizations 

conduct mitigation and preparedness activities. In this phase I, the risk factor and vulnerability assessments 

contribute to better planning in infrastructure, policy, capacity and availability of resources. 

Phase II of the disaster management process includes response management which includes relief and 

logistics operations. Larson et al. [21] outline how applying operation research techniques can facilitate 

decision makers when in planning emergency responses. The authors indicate how location theory can be 

used to determine placement for supplies and equipment, and new theories can be addressed in order to plan 

emergency response possibly incorporating the inaccessibility of transportation pathways. Dispatching and 

deployment algorithms can be used when including second- and third-tier responders such as resident vol-

unteers and off-duty personnel. These decisions should include where to allocate these new workers, how 

to coordinate them, and how these changes can improve the response times. 

The last stage presented by Ergun et al. [14] is the post-disaster phase or phase III, actions are con-
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centrated on recovery plans. Resilience is closely related to the post disaster phase. O’Rourke [30] defnes 

resilience in the context of extreme events, which is infrastructure recovering after an extreme event. Hos-

seini, and Ramirez-Marquez [19] defne resilience using four sub-areas: organizational, social, economic 

and engineering. Tierney and Bruneau [35] remark on the importance of measuring resilience in order to 

reduce the effects of disaster. After a disaster, resilience is measured based on the quality of infrastructure, 

and the recovery time of the system. 

Analysis of some disasters has been done. Abramson and Redlener [1] provide a short insight of sys-

tems’ failures after an extreme event occurs. The authors mention some of the issues that occur during 

and after Hurricane Sandy, such as the disruption of the energy supply and fuel distribution network. For 

instance, gas shortages affected medical and public populations. All levels of communication were also 

affected due to the lack of coordination. The authors encourage that decision makers build an integrated 

system with redundancy so that the impact of disasters is mitigated. In similar studies, Larson et al. [21] 

investigate and analyze the management of emergency response. The authors present strengths and weak-

nesses for the Oklahoma City bombing (1995), the United Airlines Flight 232 crash (1989), the Tokyo 

subway sari attack (1995), Hurricane Floyd (1999), and Hurricane Charlie (2004). These analyzed events 

are denominated as high-consequence, low-probability. The recommendations from the fndings on using 

operations research improve the decision making processes, specifcally in preparedness and response. For 

example, in the Oklahoma City bombing, Larson et al. [21] identify eight problems which infuenced the 

response effort. These problems are: intake and storage of donated and requested goods, telephone and 

radio communications, identifcation of workers and volunteers, operation of triage center, accountability of 

backup personnel and volunteers, importance of compatible medical records and problem with the media. 

The wide range of post analysis woks in disasters demonstrates the importance of disaster prepared-

ness and response plans. Devise effective methods will improve post-disaster managment. We proceed by 

reviewing the literature focused on interdependence of infrastructure systems. 

B. Restoration Interdependence 

The concepts of interdependence, infrastructure and any combination of them have been reinforced through 

the years. According to Rinaldi et al. [32] infrastructure is defned as the primary structure connecting 

different levels of systems and processes in order to facilitate the exchange of needed goods and services. 

The Department of Homeland Security in the United States [29] has identifed 16 critical infrastructures by 
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sectors as follow: chemical, commercial facilities, communication, critical manufacturing, dams, defense 

industrial base, emergency services, energy, fnancial services food and agriculture, government facilities, 

healthcare and public health, information technology, nuclear reactors, materials and waste, transportation 

system, water and wastewater systems. Rinaldi et al. [32] defne interdependency as the relationship be-

tween each infrastructure ensuring the connection in both directions. From this, there are six dimensions for 

the conceptual model of critical interdependence infrastructure which are: type of interdependence, environ-

ment, coupling and response behavior, type of failure, infrastructure characteristics, and state of operation. 

In addition, Rinaldi et al. [32] categorize of interdependence into physical, cyber, geographical and logical. 

Restoration interdependencies are a new type of interdependence introduced by Sharkey et al. [34]. 

Restoration interdependence occurs when a restoration task, process or activity in an infrastructure is im-

pacted by a restoration task, process, or activity in a different infrastructure. Focusing on restoration efforts 

after extreme events, Sharkey et al. [34] provides an overview taking in consideration the frequency, in-

frastructure involvement and potential impact. They introduce fve classes of restoration interdependence: 

traditional precedence, effectiveness precedence, options precedence, time-sensitive options, and competi-

tion for resources. 

In new approaches related to interdependence, Chang, et al. [9] present the impact of interdependent 

failures of critical infrastructures in disasters while Mendoça and Wallace [25] present the behavior of dis-

rupted interdependent critical infrastructure system. Chang, et al. [9] introduce a systematic framework 

called infrastructure failure interdependencies (IFIs) which can be used as a tool to post disaster impacts. 

Conceptual defnitions of IFIs focus on fnding experimental data patterns after one of the main electrical 

power outage events, 1998 Ice Storm in Canadia. In order to identify infrastructure interdependence on 

infrastructure systems, Mendoça and Wallace [25] consider four classifcations: input, shared, exclusive-or, 

and colocation. 

C. Mathematical models in disasters 

There are different mathematical models in the area of operations research and management science (OR/MS) 

that have been developed in disasters. A comprehensive review of this mathematical models is presented 

as a framework of this project research. We identify analytical methods that contribute to different disaster 

stages. 
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McLay [24] presents an introductory tutorial providing an overview of the discrete optimization models 

that have been applied to different types of disasters and homeland security problems. She provides an 

overview of the techniques and problems that occur during mitigation, preparedness, response and recovery 

stages. Further, she indicates that often disaster management efforts require the ability to handle lack of 

resources and address multiple criteria. Altay and Green [3] examine operations management techniques to 

devise restoration plans after an extreme event. According to Altay and Green [3] the objectives of OR/MS 

in disasters are: reduce the impact when an extreme event happens, improve the response capacity by re-

ducing the time, and facilitate easy recovery. In other words, the effectiveness and management effciency 

in disaster is seeking. Altay and Green [3] emphasize the need of OR/MS in Humanitarian Logistics and 

Humanitarian Security by considering all type of disasters that are of interest of the International Federation 

of Red Cross and Red Crescent Societies. Contributing to recovering plan, Bryson et al. [7] present a pre-

scriptive mathematical programming model used to support disaster recovery plans (DRP) while ensuring 

the effectiveness of infrastructure operability during and after an extreme event. The goal of the DRP is 

to minimize the impact in loss and identify and prioritize the organizational importance for recovery. The 

features mixed-integer mathematical decision model are the sub–plan selection, the DRP implementation, 

and the risk of lock out. 

There are other mathematical model approaches that contribute the restoration of infrastructures, such as 

stochastic models, simulation and economic techniques. A stochastic approach for two interdependent net-

works is developed by Duenas-Osorio ˜ et al. [13]. The authors establish network interdependencies between 

elements of a network according to the geographical proximity. The model use graph to represent infras-

tructure systems and incorporate the conditional probability of failure between two elements of the electric 

power and potable water networks. Matisziw et al. [23] present an alternative method to mathematical pro-

gramming models using simulation for assesing critical network infrastructure risk and vulnerability after a 

disruption. The impact of the disruption in node and arcs is analyzed using risk ranges which contribute to 

system protection, mitigation and recovery plan. In other studies, a discussion about the theory and method-

ology behind in the input-output model (IIM) applied to attacks on electric power and telecommunications 

systems is presented by Haimes et al. [18]. Based on Leontiefs input-output model, the IIM provides a 

characterization of interdependency among sectors in the economy. A breakdown of initial disruptions to a 

set of sectors and the resulting ripple effects is also presented. In the characterization of interdependency, 

IIM shows the level of interconnections among different economic sectors. IIM can be useful for modeling 
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workforce recovery and for model different temporal aspects of recovery. Considering a number of critical 

interconnected sectors, output is the inoperability and input refers to one or multiple failures, accidents or 

act of terrorism. In this model inoperability which is also a measure of quality of the system is describes as 

a numerical factor between 0 and 1, where 0 is no faw in the operable system state and 1 when the system 

is inoperable. 

Network models have been developed in post disaster efforts. Guha et al. [17] address the effects and 

the effcient recovery after a disaster impacts a power system. They present two mathematical options for 

analyzing the effects and the effcient recovery: the budgeted problem and the minimum weighted latency 

problem. They examine both options for a general network, tree network, and bipartite network. In evacu-

ation plan, Kalafatas and Peetas [20] present experiments and sensitivity analysis focused on computational 

effciency of a proposed mathematical programming model. The experiments include the description of the 

test network, and the selected scenario sets. There are three scenarios applied: the frst one examines the 

impact of the available budget resources amount. The second scenario set is focused on the breakdown of the 

population size evacuation, while the third scenario analyzes quantity and spatial distribution of evacuation 

considering the origin–destination of the demand. Nagurney and Qiang [26] introduce a network model, 

which considers demand, fows, costs, and behavior on network in order to measure the performance or net-

work effciency. Transportation and internet networks are analyzed by applying Nagurney-Qiang measure 

(N-Q measure) which gives an insight of the major impact of removing particular nodes and links, directly 

affecting vulnerability and security. Averbakh and Pereira [5] consider a complex network problem which 

is strongly NP-hard, develop a mixed-integer linear programming formulations, propose fast and simple 

heuristics, and present a branch-and-bound algorithm. They consider two types of problems: the frst one is 

the Flowtime Network Construction Problem (FNCP) with an objective to minimize the sum of the recovery 

times by choosing a schedule of construction activities for server (e.g., a construction crew). The second 

type of problem is a modifed FNCP called FNCP-W where the objective is to minimize the weighted re-

covery times of all nodes. 

In interdependent network approach, Lee et al. [22] examine a network fow model for restoring interde-

pendent infrastructures after an extreme event. The authors identify fve types of interrelationships between 

infrastructure systems in the framework of their study. They build a network model as an interdependent 

layer network, ILN, by considering multiple commodities in which they seek to minimize the cost and 

weighted fow. In order to model a realistic scenario of this INL, the authors use data from interdependent 
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infrastructure systems of power, telecommunications and subways after the September 11 attacks on the 

World Trade Center. In an extension of this frst approach by Lee et al. [22], Cavdaroglu et al. [8] present 

a mathematical model for restoration and scheduling model in disrupted interdependent infrastructure sys-

tems. Capturing different type of interdependence, Cavdaroglu et al. [8] concentrate on modeling the power 

and telecommunications infrastructure of lower Manhattan, New York. The objective function consists of 

three type of weighted costs: the infrastructure operating cost, the unmet demand cost and the restoration 

costs. The authors propose a three–phase heuristic solution method when restoring a portion of the network 

that is completely damaged. The three phases are three different phases which calculate the network oper-

ation over time, network design which select which arc to repair or install, and scheduling which take the 

selected set of new arcs and assigns them to a work group. 

Signifcant effort has been given to integrating network design and scheduling decisions. Boland et al. 

[6] examine the problem of selecting and scheduling maintenance on a network over time. They prove the 

problem is NP-hard and propose four different heuristics which integrate maximum fow solutions, explore 

the maximum fow objective function structure, the availability of primal and dual solvers, and dual infor-

mation. They seek to maximize the fow through the network over time while maintenance is conducted 

using an integer programming formulation. In restoration efforts on the network, Averbakh [4] schedules 

the restoration of work crew in a disrupted transportation network after extreme events. The proposed poly-

nomial time algorithms look to restore different network paths when workers are at both, fxed and fexible 

initial locations. They also consider a variation with speeds. When there are different restoration speeds of 

workers, the problems are strongly NP-hard. The proposed algorithm considers workers such as the con-

struction crew, nodes of the networks called depots, recovery time when a node is reached at the frst time, 

and additive property is applied for servers working at the same time. In other restoration effort approach, 

Nurre et al. [27] consider selecting and scheduling the restoration of damaged arcs in a network over time. 

They use an integrated network design and scheduling problem for a network that has operational and non-

operational arcs. Using a parallel machine scheduling environment, they select the set of arcs to install into 

the network, assign this selected set specifc work groups for restoration/installation, and schedule this set 

of arcs on the work groups over time. They seek to maximize the cumulative weighted maximum fow over 

time. The authors present a heuristic dispatching rule which selects the next set of tasks. They test a mixed 

integer programming formulation and the heuristic on data representing different infrastructure systems in 

lower Manhattan New York, United States. Sharkey et al. [33] incorporate mathematical formulations 

related to interdependence infrastructure restoration on the interdependent integrated network design and 
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scheduling problem developed by Nurre et al. [27]. The authors proposed a centralized environment for 

decision-making process in order to reduce the loss when the systems among interdependent infrastructures 

are decentralized. Furthermore, Nurre and Sharkey [28] examine a variation of the interdependent integrated 

network design and scheduling problem by using parallel identical machines. With this new approach, the 

performance of the network is evaluated. 

From this review, this research aims to contribute in the recovery planning phase helping the decision-

making process of the infrastructure system managers. The INDS model presented by Nurre et al. [27] 

is the base model of this research project extending the restoration activities of the model on a set of two 

interdependent infrastructure networks. The model is unique from others interdependent infrastructure work 

because integrate interdependence by using the transportation network to support restoration efforts on other 

infrastructures and by modeling the movement of work crews on the transportation network. 

IV. Problem Statement 

In this section, we formally defne the interdependent integrated network design and scheduling problem 

with movement of machines (IINDS-MM). In the formal defnition, we explicitly defne the layered net-

works, scheduling and machine environment, and interdependence between the status of the transportation 

network and ability for scheduling machines to move from job to job. 

Given a set of networks layers ` ∈ L and time t ∈ T , let G  
`t = (N`,A`t ,A0` ) t represent the network of 

layer ` at time t, where N` represents the set of nodes, A`t ∪ A0 `t represents the set of directed arcs comprised 

of operational arcs A`t and non-operational arcs A0 `t at time t. Without loss of generality, we assume nodes 

are always operational. This is not a simplifying assumption as non-operational nodes can be equivalently 

represented as non-operational arcs in a network through the use of a standard network transformation tech-S S S
nique [2]. For the set of all network layers L, we denote G 0 

t = ( `∈L N`, `∈L A`t , `∈L A` ) t as the entire 

multilayered network at time t, where G0 is the initial multilayered network. 

Machines must complete processing on a non-operational arc (i, j  ) ∈ A0`t for it to transition to the op-

erational set A`t̄ for some time period t̄ > t. In order for any machine m to start processing arc (i, j)  ∈ A0`t , 

machine m must be able to feasibly reach the location associated with node i. Machines use layer 0, which 

we denote as the transportation network layer, to move from node to node throughout the network. Thus, 
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we assume that each node i ∈ N` for ` = 0 such that i  ( , j) ∈ A0`0 is present in the transportation network 

layer. Further, we assume that when the transportation network is not damaged (i.e., A0 0t = 0) / that G0t is a 

connected network, i.e., there exists a directed path from any node k to node k0 for k,k0 ∈ N0 using arcs in A0t . 

For each network layer `, node i∈ N` is either a supply, transshipment, or demand node, where S` and D` 

denote the supply and demand nodes of network layer `, respectively. We denote the supply of node i ∈ S` 

as si` and demand of node i ∈ D` as di`. At the start of the time horizon T , nodes i ∈ Im are the set of source 

nodes for machines m. In other words, i ∈ Im are the set of nodes of starting locations for machines m. At 

the end of the time horizon T , nodes i ∈ Fm for m is the set of sink nodes for machines m. This is where 

machines need to be positioned after planning horizon is completed. Consistent with network fow notation, 

we assume that si` < 0 and di` > 0. The set of arcs for each network layer ` remains constant over time, 

however non-operational arc (i, j)   ∈ A0 becomes operational after p ̀`t i j units of processing. An operational 

arc (i, j  ) ∈ A can carry up to u ̀ units of fow at a cost of c ̀ 
`t i j i j per unit. The fow for all network layers 

` ∈ L \ {0} is assumed to be instantaneous, however one unit of fow across arc (i, j) in the transportation 

network layer takes ti j time periods to go from node i to node j. 

Flow may only traverse (or start to traverse) arc (i, j) in network ` at time t if the arc is operational at 

time t. We a denote decision variable β `
i jt to indicate whether (equal to 1) or not (equal to 0) arc (i, j) in 

network ` is operational at time t. For all network layers ` ∈ L\{0}, excluding the transportation network, 

let decision variable x ̀  
i jt denote the fow on arc (i, j) in network ` at time t. Let binary decision variable 

γ0 
mi jt equalize if commodity m (e.g., machine m) leaves node i along arc (i, j) in the transportation network 

(network layer 0) at time t. Hence, if γ0 = i 1 then commodity m ves at node j at time t +k jt arri ti j.

Machines must be assigned to and process a non-operational arc to make the arc operational. As the dif-

ferent network’s layers represent different physical entities, the set of machines who can perform processing 

on arcs in network layer ` may not be able to perform processing on arcs in network layer `̄ for ` = `̄. As 

follows, let M` denote the set of machines who can perform processing on non-operational arcs within layer S 
`, where M = `

`∈ ∈ `
L M . We assume that if machine m  M , this machine is able to perform processing on 

all non-operational arcs within layer `. 

We assume a non-preemptive scheduling environment, where if machine m is assigned to arc (i, j) within 

layer ` once it starts processing it must continue processing for p ̀ 
i j time periods until processing is complete. 

6

6
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Let α`
mi jt denote the binary decision variable which equals 1 if machine m completes processing of arc (i, j) 

in network ` at time t. For machine m to be assigned consecutive jobs (i, j) and (k, `), the machine must 

move (fow) using the transportation network between nodes j and k during some time period after process-

ing is complete on (i, j). If needed, the machine may sit idle or wait at a node in the transportation network 

between processing of jobs. Let wmit denote the binary decision variable which equals 1 if machine m is idle 

(i.e., waiting) at node i ∈ N` from time t to time t + 1. 

The combination of machines moving (γ0 
mi jt – variable) and idling (wmit – variable) between consecutive 

jobs can be viewed as the general idea of sequence dependent set-up times [31]. However, in contrast to 

traditional scheduling problems, the value of the sequence dependent set-up time depends on the shortest 

traversal time path in the operational transportation network between the consecutive sets of jobs. The com-

plicating factor is that the shortest path value changes over time as the operational status of the transportation 

network changes over time. 

A. Mixed Integer Programming Formulation 

In this section, we present the mixed integer programming (MIP) formulations of the IINDS-MM problem. 

Decision Variables: Let x ̀  represent the fow on arc (i, j) in network ` at time t; β ̀i jt i jt represents whether 

(equal to 1) or not (equal to 0) arc (i, j) in network ` is operational at time t; α`
mi jt equals 1 when machine 

m completes processing of arc (i, j) in network ` at time t; w 0 
mit equals 1 if machine m is idle at node i ∈ N

from time t to time t + 1; ν`
it represent the fow consumed by demand node i ∈ D` in network ` at time t; 

and γ0 
mi jt represent that commodity m (e.g., machine m) leaves node i along arc (i, j) in the transportation 

network (network layer 0) at time t. 

Parameters: gt is the weight associated with the performance of the network at time t; si` is the supply 

generated at node i on network `; di` is the demand generated at node i on network l`; and ui j is the capacity 

associated to the network ` on arc (i, j). The full MIP formulation is as follows. 

T 
max ∑ ∑ ∑ g ` 

tνit 
t=1 `∈L i∈D` 
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subject to: (IINDS-MM) 

∑ γ
`

mi jt + wmit + ∑ ∑ α − wmitmi jt p ̀  −+ 1 
i j 

j:(i, j  )∈A00∪A0 `∈L00 j:(i, j)∈A0 , `0
t p ̀  + ≤i j  T−1 

` − ∑ γm jit−ti j − ∑ ∑ αm jit = 0 for m ∈ M, i ∈ N0, 
j:    ( j,i)∈A 0

00∪A , t−ti j ≥1 `∈L j:( , )00 j i ∈A0`0

t = 1, . . . ,T − 2, (1) 

∑ γ + w + ∑ α
`

mi jt mit ∑ ` = 1 for m ∈ M, i = mi jt+ Im, t = p 0, (2) 
i j 

j: i   ( , j)∈A 0 ∈ 0
00∪A ` L j:(i, )∈A , 00 j `0

t+p ̀  ≤ −i j  T 1 

−wmit−1− ∑ γm jit−ti j − ∑ ∑ α
` 
m jit = −1 for m ∈ M, i = Fm, t = T, (3) 

j:( j  ,i   )∈A00∪A0 , t+ti j ≥ 1 `∈L j:( j,i)∈ 0
00 A`0

∑ x` − ∑ x` ≤i for  ∈ }jt jit  si` `  L\{0 , i ∈ S`, 
j: A  (i, j)∈ ` 0

`0∪A0  ∈ ∪`0 j:( j,i) A A`0 

t = 0, . . . ,T − 1, (4) 

∑ x` −i jt  ∑ x`jit = 0 for ` ∈ L\{0}, i ∈ N`\{S` ∪ D`}, 
j:(i  j  , )∈A ∪A0`0 j:( j,i)∈`0 A 0

`0∪A`0 

t = 0, . . . ,T − 1, (5) 

∑ x` − ` ≥ − ∈ \{ } ∈i jt  ∑ x jit di` for `  L 0 , i  D`, 
j: i  ( , j)∈A ∪A0` :( j,i)∈A`0∪A00 `0 j `0 

t = 0, . . . ,T − 1, (6) 

0≤ ∑ γmi  u0
jt ≤ i, j) ∈i j for (  A00, 

m∈M 

t = 0, . . . ,T − 1, (7) 

0 γ
0 0 ≤ ∑  

mi jt ≤ u β 0
i for (i, j) ∈i j jt  A00, 

m∈M 

t = 0, . . . ,T − 1, (8) 

0≤ ν` ≤ ∈it  di` for `  L\{0}, i ∈ D`, 

t = 0, . . . ,T − 1, (9) 

0≤ x` ≤ `
i jt  ui j for ` ∈ L\{0}, (i, j) ∈ A`0, 
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t = 0, . . . ,T − 1, (10) 

0 ` ≤ x ≤ ` ` ∈ \{ }i jt  ui jβi jt for `  L 0 , (i, j) ∈ A0 `0, 

t = 0, . . . ,T − 1, (11) 
t M 

β ` − ∑ ∑ α
` ≤i jt mi js  0 for   ` ∈ L,(i, j) ∈ A0`0, 

s=0 m=1 

t = 0, . . . ,T − 1, (12) 
t 

∑ wmit + ∑ ∑ γmi js + 
i∈N0 j:  (i, j)∈A00∪A0 s=max{0, t−ti j+1}00 

min{T, t+pi j−1} 

∑ ∑ α
`  1 for ` ∈mi js =  L, , m ∈ M`, 

(i  j)∈A0 , s=t 
`0 

t = 0, . . . ,T − 1, (13) 

p ̀  −i j 1

∑ β
`
i jt = 0 for ` ∈ L,(i, j) ∈ A0 `0 , (14) 

t=0 

p ̀  −i j 1 

∑ ∑ α
`
mi jt = 0 for ` ∈ L, (i, j) ∈ A0 `0, (15) 

m∈M` t=0 

α
` − `
mi jt αmi jt− ≤1  

M max{0, t+p

∑
i j} 

∑  α
0  
mi js for ` ∈ L,(i, j) ∈ A0`0

m=1 s=1 

t = 0, . . . ,T − 1, (16) 

α
` 0 1  for   L m  M`  i  j   A0 ∈ {jt , } ∈ ∈mi ` , , ( , ) ∈ `0, 

t = 0, . . . ,T − 1, (17) 

β
` ∈ {i jt 0,1} for ` ∈ L, (i, j) ∈ A0 `0, 

t = 0, . . . ,T − 1, (18) 

γmi jt ∈ {0,1} for m ∈ M, 

 (i, j) ∈ A ∪ A000 00, 

t = 0, . . . ,T − 1, (19) 

wmit ∈ {0,1} for m ∈ M, i ∈ N0, 

t = 0, . . . ,T − 1, (20) 

The IIMDS-MM is characterized by integrating the movement of machines along the transportation net-
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work and the coupled with all the network layers related to the entire independent system. The IIMDS-MM 

objective function depends on the fow that arrives at demand nodes, maximizing the cumulative weighted 

fow at each node over all time periods. Constraint (1) - (3) ensures fow balance for the movement of ma-

chines (work crews) along the transportation network. There are three activities performed by the machines 

along the transportation network: (i) Machines can be working (α) on any non-operational arc (i, j) ∈ A0 `0 

, or (ii) machines can be moving along any transportation arc (γ) or (iii) machines can be waiting (w) at a 

specifc node i ∈ N0 . Constraint (2) forces each machine conduct one of these activities at the source node 

of the machine (Im) during the frst time period t. Constraint (3) ensures that each machine must fnish an 

activity that allows it to arrive at the sink node (Fm) at time T . 

Each work group must do one task at time which is guaranteed in constraint (13), in other words, any 

machine must be executing a job, moving along arcs without executing a job, or waiting until the next activ-

ity is assigned. 

Flow conservation constraints of commodities in non-transportation networks are represented in Con-

straints (4) - (6). Constraint (4) ensures that the fow leaving a supply node is less or equal to the supply 

capacity. Constraint (6) ensures that the demand is not exceeded at each demand node. For those nodes 

which are neither supply nor demand nodes, Constraints (5) guarantee the fow in equals the fow out. 

Constraints (7) to (11) are capacity constraints. For the transportation layer, Constraints (7) and (8) 

limit the fow of work machines on each starting operational and starting non operational arc respectivly. 

Likewise, Constraints (10) and (11) are capacity constraints for networks ` ∈ L \{0} that limit the fow on 

operational arcs at each time and non-operational arcs over time based on restoration status. 

Constraints (12) relates the operability of an arc (i, j), and the completion this job for all time periods t. 

For instance, the operability of any arc cannot become online if restoration tasks are not completed at frst. 

Constraints (14) ensure that arc (i, j) will not become operational before the processing time. Similarly, 

Constraints (15) forces that a machine will not complete a job before the completion or processing time. 

For those non-operational arcs (i, j) ∈ A0 ` that are in the transportation network and in other networks ` ∈ 0 L, 

constraint 16 ensures that the restoration on the non-operational arc in the transportation network happens 

frst. Constraints (17) to (19) force variables to be 0 or 1. 
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V. Experimental Plan 

To test the developed IINDS-MM model, we perform a series of computational experiments. We use the 

transportation and electrical power data sets for Juan Diaz, Panama. For this case study, we assume that 

the electrical power network has the same topology as the transportation network. We insert 1962 nodes 

into the transportation and electrical power networks that represent population demand points. We gathered 

population data from Juan Diaz, Panama [11] that represents 128 neighborhoods in the network. To con-

nect these nodes, we add arcs which connect the population nodes to the nearest existing transportation and 

power nodes. Overall, the transportation network has 1962 nodes and 4760 directed arcs and the electrical 

power network 1962 nodes and 2380 directed arcs resulting in an interdependent network with 1962 nodes 

and 7140 arcs total. We note, for this case study that the transportation network has double the amount of 

arcs at the electrical power network to allow for fow in both directions in this directed network. 

On these networks, we simulate the damage incurred from different levels of storm surge. We assume 

that damage occurs in both the transportation and electrical power networks equally (i.e., if arc (i, j) in the 

transportation network is damaged then (i, j) in the power network is also damaged). When work crews 

repair the damaged networks, we assume it takes one time unit to traverse an arc in the transportation 

network. In the following subsections, we describe in detail all of the data used to create scenarios for our 

computational results. For each scenario, we discuss the storm surge, machine capability and location, and 

restoration processing time. In total, we generate and examine 84 scenarios. For each scenario, we consider 

a time horizon of T = 50. 

A. Storm Surge Simulation 

We generate using GIS three levels of storm surge for Juan Diaz, Panama. In Figures 1, 2, and 3 we present 

the visualization for storm surges equal to 10, 15, and 20 feet. In the fgures, we identify the population 

areas via circles where the size of the circle corresponds to the population amount. Further, we see that as 

the storm surge increases the population that is impacted by fooding dramatically increases. We present a 

summary of the damaged caused as a result of storm surge in Table 1. 
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Table 1: Storm surge scenarios 

Scenario Storm Surge Description 

1 10 feet 
This generates 74 damaged power arcs and 148 damaged trans-
portation arcs for a total of 222 damaged arcs. We present a geo-
graphical representation of this scenario in Figure 1. 

2 15 feet 
This generates 190 damaged power arcs and 380 damaged trans-
portation arcs for a total of 570 damaged arcs. We present a geo-
graphical representation of this scenario in Figure 2. 

3 20 feet 
This generates 552 damaged power arcs and 1104 damaged trans-
portation arcs for a total of 1656 damaged arcs. We present a 
geographical representation of this scenario in Figure 3. 

Figure 1: 10-foot storm surge impacting the transportation and power networks in Juan Diaz, Panama. Refer 
to storm surge description in Table 1 for description. 
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Figure 2: 15-foot storm surge impacting the transportation and power networks in Juan Diaz, Panama. Refer 
to storm surge description in Table 1 for description. 

Figure 3: 20-foot storm surge impacting the transportation and power networks in Juan Diaz, Panama. Refer 
to storm surge description in Table 1 for description. 
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B. Machines Capability and Location Selected 

We consider up to 10 work crews that can repair the transportation network, power network, or both net-

works. We examine how the confguration of the number of transportation work crews and number of power 

work crews impact restoration efforts. Further, we examine how the initial geographic location of the work 

crews when restoration begins impacts the restoration of different regions in Juan Diaz. In Figure 4, we 

present the possible 10 locations where the work crews are prepositioned and ready for when restoration 

begins. We consider 3 positions in the western region, 4 positions in the middle region, and 3 positions in 

the eastern region of Juan Diaz. In Table 2, we outline the 7 scenarios we consider comprised of different 

work crew capabilities and locations. We synonymously use machines and work crews to represent the en-

tity performing restoration activities on the damaged arcs. We denote work crews that can work in both the 

transportation and electrical power networks at multi-function machines (work crews). 

Figure 4: Regions and possible starting locations (source nodes) for restoration work crews in the town of 
Juan Diaz, Panama. Three possible locations are identifed in the West region, 4 in the central region, and 3 
in the East. 
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Table 2: Machines capabilities and locations 

Machine 

Scenario Number and Type Location 

1 10 multi-function ma-
chines 

Each machine is located as shown in Figure 4. 

2 10 multi-function ma-
chines 

Machines are only location in the west and east regions. 2 work 
crews are at locations 1, 2, 8 and 9. There is 1 work crew at 
locations 3, and 10 (Figure 4) 

3 10 multi-function ma-
chines 

All 10 machines are located in the middle region. There are two 
work crews at locations 4 and 6. 3 works crews are at locations 5 
and locations 7. ( Figure 4) 

4 4 power machines 
6 transp. machines 

All power machines are located in the middle position at nodes 
4, 5, 6, and 7. 3 transportation machines are location in the east 
region at nodes 1, 2, and 3. 3 transportation machines are located 
at the west region at nodes 8, 9, and 10. 

5 6 power machines 
4 transp. machines 

3 power machines are located in the east region at node 8, 9, and 
10 and 3 power machines are location in the west region at node 
1,2, and 3. All transportation machines are located in the middle 
position at node 4, 5, 6, and 7. 

6 5 power machines 
5 transp. machines 

At location 2 in the west there are 2 power and 1 transportation 
machines. At location 6 in the middle there are 2 transportation 
and 2 power machines. At location 9 in the east there are 1 power 
and 2 transportation machines. 

7 5 power machines 
5 transp. machines 

In the west, there is 1 transportation machine at location 2 and 2 
power machines at location 1. In the middle, there are 2 power 
machines at location 7 and 2 transportation machines at location 
6. In the east, there is 1 power machine at location 10 and 2 
transportation machines at location 9. 
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C. Processing Time Estimation 

For our computational experiments, we consider two options for the processing time needed to restore each 

damaged arc. For each option we convert simulated restoration times to time units for the IINDS-MM 

model. In Table 3, we present the values for Option A where the restoration processing times range from 2 

to 4 hours as indicated by 8 to 15 values for the time units in our model. In Table 4, we present the values 

for Option B where the restoration processing times range from 30 minutes to 1.5 hours as indicated by 2 to 

6 values for the time units in our model. 

In the IINDS-MM model, we consider both the transportation and electrical power network in Juan Diaz, 

Panama. We examine all combinations of processing times using Option A and B: (1) the transportation net-

work has option A processing times, the power network has option A processing times; (2) the transportation 

network has option A processing times, the power network has option B processing times; (3) the transporta-

tion network has option B processing times, the power network has option A processing times; and (4) the 

transportation network has option B processing times, the power network has option B processing times. 

With these combinations, we consider different magnitudes of damage which require different time units of 

effort in both networks. 

In order to assign arc values from the real processing time, a factor is chosen. The real times are divided 

by this factor and the results are the time units used in the model. For this experimental plan, we chose the 

factor of 16. 

Table 3: Processing time option A with values that range from 2 to 4 hours. 

Real Time (min) Time Unit 

120 ( 2 hours) 8 

150 (2.5 hours) 9 

180 (3 hours) 11 

210 (3.5 hours) 13 

240 (4 hours) 15 
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Table 4: Processing time option B with values that range from 30 minutes to 1.5 hours 

Real Time (min) Time Unit 

30 ( 0.5 hours) 2 

45 (0.75 hours) 3 

60 ( 1 hours) 4 

75 (1.25 hours) 5 

90 (1.5 hours) 6 

D. Scenario Summary 

In this section, we summarize the experimental plan that we utilize to conduct our computational experi-

ments. In Table 5, we indicate the number of possible scenarios specifc to each changing aspect (e.g., storm 

surge, work crew capability and location, and processing time). We note, that the work crew capability 

scenario number and location number will always be the same. For each storm surge level, there are 28 

possible scenarios (see Table 6) thereby generating a total of 84 scenarios.These 84 settings are obtained 

from all combination of (i) 3 possible storm surge levels; (ii) 7 possible work crew capability and starting 

location scenarios; and (iii) 4 possible processing time scenarios. 

Table 5: Summary of experimental plan 

Storm Surge Work Crew Processing Time 

Capability Location 

1 1 1 1 

2 2 2 2 

3 3 3 3 

4 4 4 

5 5 

6 6 

7 7 
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Table 6: Total number of scenarios by storm surge. 

Storm Surge Total Number of Scenarios by 
Storm Surge 

10 1–28 

15 1–28 

20 1–28 

Grand Total 84 

For ease of presenting the results, we assign an identifcation (ID) for each scenario used for each storm 

surge using the schematic outlined in Figure 5. The frst number of the ID indicates the scenario number 

from 1 to 28. The second and third numbers must equal and represents the work crew capability and 

location information, respectively using a number from 1 to 7. The fnal number represents the processing 

time scenario using a number from 1 to 4. 

Figure 5: Scenario Indentifcation 

VI. Computational Results and Analysis 

Using the data outlined in Section V., we perform a series of computational experiments to deduce policy 

insights about restoration infrastructure in Juan Diaz, Panama. We proceed by discussing the total amount 

of met demand over time, the insights gained by analyzing the high, middle, and low performing scenarios, 

and model effectivity. We solve the IINDS-MM using the optimization software package CPLEX 12.6.3. 

With a time limit of 2 hour was set up in the program. If the time limit is reached, we report the best known 

solution upon termination. 
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A. Total Met Demand Over Time 

In this section, we examine the total amount of demand met over time for the 84 scenarios. In Figures 6, 7, 

and 8, we display the amount of met demand over time for the scenarios after experiencing 10, 15, and 20 

feet storm surges, respectively. When comparing the different storm surge levels, we note that the maximum 

amount of demand met at the end of the time horizon (T = 50) varies dramatically. Further, we see that the 

amount of met demand that is restored can be done more quickly when the storm surge is lower. 

When comparing the 28 scenarios examined within each individual graph, we see groups of scenarios 

that perform similarly. In Figures 6, 7, and 8 we group similar performing scenarios together into high, mid-

dle, and low performing groups. We proceed in Section A. and explain the characteristics of the scenarios 

that are grouped into high, middle, and low and the additional annotations we indicate on Figures 6, 7, and 

8. 

Figure 6: Total met demand over time periods for the 28 scenarios experiencing 10 foot storm surge. The 
color of the lines have no signifcance other than to distinguish each of the scenarios. On the right of the 
fgure, we list the 28 scenarios and group them into high, medium, and low performing scenarios. 
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Figure 7: Total met demand over time periods for the 28 scenarios experiencing 15 foot storm surge. The 
color of the lines have no signifcance other than to distinguish each of the scenarios. On the right of the 
fgure, we list the 28 scenarios and group them into high, medium, and low performing scenarios. 
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Figure 8: Total met demand over time periods for the 28 scenarios experiencing 20 foot storm surge. The 
color of the lines has no signifcance other than to distinguish each of the scenarios. On the right of the 
fgure, we list the 28 scenarios and group them into high, medium, and low performing scenarios. 

Insights for High, Middle, and Low Performing Scenarios 

To interpret the characteristics of the scenarios present in the high, middle, and low performing groups, 

we present Table 7 which lists the scenario IDs by performance group and storm surge amount. We reiterate 

the scenario ID information from Section V.: the frst number indicates the scenario number, the second and 

third numbers indicate the work crew capabilities and location, and the fourth number indicates the process-

ing time confguration. 

In Table 7 and Figures 6, 7, and 8, we highlight the scenarios that appear in the same group (high, mid-

dle, low) for each of the storm surge values. Scenario 26 appears in the high performing group for all 3 storm 

surge levels. In scenario 26, we have 5 power work crews and 5 transportation work crews spread through-

out the region relatively evenly (see Table 2 in Section V.). It is interesting to note that scenario 26 using 

processing time scenario 2 which has Option A for the transportation network and Option B for the power 

network. If you recall, Option A has longer average processing times and Option B has shorter average pro-

cessing times. The result that scenario is high performing is counter to our intuition. We would expect that 

because portions of the transportation network much be repaired to enable access to power restoration tasks, 
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we would hypothesize that when the transportation network has Option B processing times, we would see 

better performance in terms of the total met demand over time. Further, we would hypothesize that scenarios 

with processing time scenario 24 would perform best due to the reduced overall processing times. In high 

performance groups, most part of the scenarios have Option A in processing time for both the transportation 

and power networks, and processing time Option B on power network. Work capability and location seems 

to not have any infuence on the high performance scenarios since combinatorial factors from 1-7 appears 

for machine capability and location. 

Among the scenarios that are in the middle performing group, Scenarios 24 and 25 appear for all three 

storm surge levels. Scenario 24 has 5 transportation work crews and 5 power work crews wherein both trans-

portation and power work crews and location in the east, middle, and west regions of Juan Diaz. Scenario 

24 has processing time scenario 4 which using Option B for both the transportation and power networks. 

Scenario 25 has 5 transportation work crews and 5 power work crews spread throughout the region relatively 

evenly. Scenario 25 has processing time scenario 1 which uses Option A for the transportation and power 

network. We note that all of the scenarios that consistently occur in the high and middle performing groups 

all used the same number of transportation and power work crews spread throughout the region. This leads 

us to the policy insight that to obtain the best results for this case study, we recommend evenly splitting the 

number of work crews between the infrastructure networks and locating all types of work crews throughout 

the network. This insight is counterintuitive as we would have expected that the multi-function work crews 

would result in the highest performance. 

There are many scenarios which consistently perform in the low group including scenarios 3, 8, 11, 12, 

23, and 28. Similar among all of these scenarios is processing time scenarios 3 and 4 combined with not 

convinient capability/location makes the scenario to have low performance. Also, we see that work crew 

capability 3 appears in both scenarios 11 and 12 which locations all work crews in the middle region of Juan 

Diaz. 
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Table 7: Summary of scenarios by storm surge and performance. 

Storm Surge 

Performance 10 feet 15 feet 20 feet 

High 1 - 1 1 1 22 - 6 6 2 2 - 1 1 2 

5 - 2 2 1 26 - 7 7 2 6 - 2 2 2 

9 - 3 3 1 10 - 3 3 2 

13 - 4 4 1 18 - 5 5 2 

14 - 4 4 2 22 - 6 6 2 

16 - 4 4 4 26 - 7 7 2 

17 - 5 5 1 

18 - 5 5 2 

19 - 5 5 3 

21 - 6 6 1 

26 - 7 7 2 

Middle 4 - 1 1 4 1 - 1 1 1 1 - 1 1 1 

7 - 2 2 3 5 - 2 2 1 5 - 2 2 1 

15 - 4 4 3 13 - 4 4 1 9 - 3 3 1 

22 - 6 6 2 14 - 4 4 2 13 - 4 4 1 

24 - 6 6 4 17 - 5 5 1 14 - 4 4 2 

25 - 7 7 1 18 - 5 5 2 15 - 4 4 3 

27 - 7 7 3 19 - 5 5 3 17 - 5 5 1 

21 - 6 6 1 19 - 5 5 3 

24 - 6 6 4 20 - 5 5 4 

25 - 7 7 1 21 - 6 6 1 

24 - 6 6 4 

25 - 7 7 1 

27 - 7 7 3 

Low 2 - 1 1 2 2 - 1 1 2 3 - 1 1 3 

3 - 1 1 3 3 - 1 1 3 4 - 1 1 4 

6 - 2 2 2 4 - 1 1 4 7 - 2 2 3 

8 - 2 2 4 6 - 2 2 2 8 - 2 2 4 

10 - 3 3 2 7 - 2 2 3 11 - 3 3 3 

11 - 3 3 3 8 - 2 2 4 12 - 3 3 4 

12 - 3 3 4 9 - 3 3 1 16 - 4 4 4 

20 - 5 5 4 10 - 3 3 2 23 - 6 6 3 

23 - 6 6 3 11 - 3 3 3 28 - 7 7 4 

28 - 7 7 4 12 - 3 3 4 

15 - 4 4 3 

16 - 4 4 4 

20 - 5 5 4 

23 - 6 6 3 

27 - 7 7 3 

28 - 7 7 4 
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From this analysis, we deduce some key insights. We observed that when the power network has Option 

B with smaller processing time the networks come back online faster and meet more demand. This insight 

occurs even when the transportation network has longer processing times. Additionally, we observe that 

when all work crews are located in the middle of Juan Diaz, the amount of met demand is less. The most 

amount of met demand occurs when there are an even number of transportation and power crews spread 

relatively evenly throughout the region or closer to damaged areas. Finally, if we observe Figures 1, 2, 

and 3, the west area has more damaged arcs than any of other area. This means that if we allocate more 

power machines on the west area, the met demand will increase faster. Scenarios that provide closer power 

machines to the west area are: 6 and 7 from machine capability and location. 

B. Machine Movement and Optimality Gaps 

In the last set of analysis, we examine the performance of the IINDS-MM model using the solver CPLEX 

12.6.3. We frst examine the movement of work crews for a selected scenario. Next, we report on the op-

timality gaps for all 84 scenarios upon termination at the 2 hour time limit. The computer specifcation is: 

MacOS Sierra version 10.12.5, Intel Core i7 processor with 2.2 GHz speed, and RAM memory of 8 GB 

1600 MHz DDR3. 

First, we examine the movement of the machines for scenario 1 (1-1 1 1 from Table 7) and 15 feet storm 

surge. In scenario 1, there are 10 multi-function work crews that can perform tasks on both the transporta-

tion and power networks. Each work crew is pre-positioned at the locations indicated in Figure 4. In Figure 

9, we present the movement and sequence of tasks conducted in Juan Diaz for 3 selected work crews: (i) 

Work crew 1 located in the west region of Juan Diaz town; (ii) Work crew 7 located at the middle region of 

Juan Diaz town; and (iii) Work crew 10 located at the east region of Juan Diaz town. 

In Figure 9, a blue highlight on an arrow with a continue line means that a work crew is restoring a 

transportation arc. If the highlight is orange a work crew is restoring an electrical power arc. If the work 

crew wait in a node, this is indicated by a red circle. In Figure 9 part (a), we show that work crew 1 starts 

at location 1 and moves (dashed lines) on 3 different operational transportation arcs before reaching the frst 

transportation restoration task. Next, work crew 1 completes the second restoration task in the power net-

work, and lastly work crew completed restoration of a transportation arc. Until the end of the time horizon, 

work crew 1 waits at the red in Figure 9 part (a) until to the end of the time horizon. In part (b) of Figure 
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9, the movement of work crew 7 is very different from work crew 1. Work crew 7 is farther away from the 

damage and thus, must spend more time moving through the network in order to reach a restoration task. 

Thus, work crew 7 is only able to complete one restoration task before the end of the time horizon. We note, 

a current limitation of our model is the difference in time scales between traversing arcs and completing 

restoration tasks. Future work, should consider different magnitude between traversing an arc and perform-

ing processing. Work crew 10 uses the operational portion of the transportation network to reach a location 

with 3 damaged arcs (see part (c) Figure 9). Work crew 10 performs restoration of two power arcs and then 

performs restoration of 1 transportation arc. 

Figure 9: Scenario 1 from 15-foot storm surge. In part (a), the movement of machine 1 is presented starts 
at location 1 in the Western region then moves South, West, and North. In Part (b), the machine starts at 
location 7 in the central region and moves Southeast. In (c), the machine starts at location 10 in the Eastern 
region, and moves along one road to the Southeast. 

From these 3 contrasting movement patterns, we observe that the position of the work crew can dra-

matically aid in being able to quickly reach restoration tasks. Further, we observe that when a work crew 

is capable of performing restoration in both the transportation and power, then the work crew can easily 

alternate between these tasks in order to restore many damaged arcs within a geographic region. 

Lastly, we examine the optimality gaps for all 84 scenarios. In Figures 10, 11, and 12, we present the 

gaps for 10, 15, and 20 feet storm surge values. We note, that we set a 2 hour time limit and upon termination 

capture the best known solution and optimality gap. Thus, scenarios that are solved to optimality are indi-
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cated by a 0.00% optimality gap. The largest observed optimality gap for the scenarios with a 10 foot storm 

surge is approximately 1.82%. We notice a pattern among the scenarios that repeats with every 4 scenarios. 

The similarity for each pair of scenarios: 1 and 5, 2 and 6 , 3 and 7, 4 and 8 is the same processing time. 

Scenarios 1 and 5 has processing time Option A for both networks. Scenarios 2 and 6 have processing time 

Option A for transportation network and Option B for power network. Scenarios 3 and 7 have Option B for 

tranportation network and Option A for power network. Scenarios 4 and 8 have processing time Option B 

in both networks. The scenarios with a larger optimality gap often have shorter processing times (Option B, 

see Table 4) in the power network. Smaller gaps have larger processing time (Option A, see Table 3). We 

notice a change in the trend for Scenarios 13 - 4 4 1. These scenarios have different work crew confgura-

tions: 4 power work crews and 6 tranportation work crews. All power machines are located at the middle 

position from Figure 4. Transportation work crew are located as follow: 3 at the east area and 3 at west area 

(Figure 4). From Figure 10, we notice that scenarios 2, 4, 6, 8, 10, 12, 14–16, 18, 20, 22, 24, and 26 –28 

are harder than the others. Every 2 or 3 scenarios remains with the same scenario for capabiity and location. 

For example, scenarios 2 and 4 have same capability and location for work crew (scenario 1 from Table 2): 

all multi-function machines and each machine is located as Figure 4.4. Scenarios 6 and 8 also have same 

work crew capability and location (scenario 2 from Table 2): all multi-function machines and work crew 

are located at east and west area. Scenarios 1, 5, 9, 13, 17, 19, 21, 23, and 25 are easier than the others and 

we notice that most part of them have same processing time scenario 1 where Option A is for transportation 

and power networks. 

In Figure 11, we present the optimality gaps for scenarios with a 15 foot storm surge. The pattern every 

4 scenarios is also present for these scenarios, however, we note that the optimality gaps are much larger. 

The largest optimality gap observed is 13.33%. We notice that starting with scenario 14, the second scenario 

of each 4 grouping (scenario 15, scenario 18, scenario 22, scenario 26) becomes easier. 3 out of 4 have pro-

cessing time Option A for tranportation network and Option B for power network.(Tables ??tab:ProcTimeA, 

4). The pattern among the scenarios from 1 to 13 repeats with every 4 scenarios. The processing time is the 

same for each pair of scenarios: 1 and 5, 2 and 6 , 3 and 7, 4 and 8. Scenarios 1 and 5 has processing time 

Option A for both networks. Scenarios 2 and 6 have processing time Option A for transportation network 

and Option B for power network. Scenarios 3 and 7 have Option B for tranportation network and Option A 

for power network. Scenarios 4 and 8 have processing time Option B in both networks. Same as 10 foot 

storm surge, scenarios with a larger optimality gap often have shorter processing times (see Table 4) in the 

power network. 
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Lastly, in Figure 12 we present the optimality gaps for scenarios experiencing a 20 foot storm surge. A 

trend is apparent again with every 4 scenarios. However, we note that the average optimality gap decreases 

to at most 4.6% and the second scenario of each set of 4 is easier to solve. The trend remains the same in all 

scenarios as follows: 

• Scenarios 1, 5, 9, 13, 17, 21, 25 have processing time scenario 1 with Option A in both networks. 

• Scenarios 2, 6, 10, 14, 18, 22, 26 have processing time scenario 2 with Option A in transportation 

network and Option B in power network. 

• 3, 7, 11, 15, 19, 23, 27 have processing time scenario 3 with Option B in transportation network and 

Option A in power network. 

• 4, 8, 12, 16, 20, 24, 28 have processing time scenario 3 with Option B in both networks. 

Figure 10: Average optimality gap for 10-foot storm surge where the maximum optimality gap is just over 
1.8% and the minimum is 0%. We see a pattern with every 4 scenarios where, in general, the optimality gap 
starts low, increases, decreases, and increases. 
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Figure 11: Average optimality gap for 15-foot storm surge where the maximum optimality gap is just over 
13% and the minimum is 0%. We see a pattern with every 4 scenarios where, in general, the optimality gap 
starts low, increases, decreases, and increases. 

Figure 12: Average optimality gap for 20-foot storm surge where the maximum optimality gap is just over 
4.5% and the minimum is 0%. We see a pattern with every 4 scenarios where, in general, the optimality gap 
starts low, increases slightly, increases again, and increases to the peak. 
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VII. Conclusions 

This project introduced a mixed-integer programming model for an Interdependent Integrated Network De-

sign and Scheduling problem with movement of machines (IINDS-MM) that determines (i) which tasks to 

select to be restored in a damaged interdependent network; (ii) which work crew performs the restoration 

tasks; (iii) at what time restoration is performed; and (iv) how work crews traverse through a network to 

move between restoration tasks. With an IINDS-MM model we link the restoration tasks on two or more in-

terdependent infrastructure networks by explicitly requiring the transportation network to be operational for 

work crews to move throughout the network. With this, we shown how the availability of the transportation 

network impacts system-wide infrastructure restoration. A main contribution of this work is the removal of 

the common assumption that work crews can reach any restoration task at any time. 

We performed a series of computational experiments using the transportation and electrical power net-

works of Juan Diaz, Panama. On these networks we simulated different storm surge damage, work crew 

capabilities and locations, and magnitude of damage requiring different processing times. From the results 

of our case study, we observed that scenarios with the same number of transportation and power work crews 

performed best when the work crews are evenly spread through the geographic region. We also observed 

a counter-intuitive trend that scenarios with small processing times for the power network and even large 

processing times for the transportation network performed well. 

This model is a starting point for modeling complex interdependent infrastructure restoration. Future 

work should consider modeling the transportation network as an undirected network to reduce the number of 

variables in the model. Further work should consider the different time scales between traversing arcs in the 

network and performing restoration. Lastly, heuristic methods should be developed for this complex model 

that dramatically increases when considering larger geographic regions and time horizons for restoration. 
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	I. Executive Summary 
	In this report, we describe the success of the research project examining the dependence of infrastructure restoration following an extreme event on the transportation network. Specifcally, existing optimization models that determine which damaged infrastructure components are repair by which work crew and when are defcient because they assume that anytwo consecutive tasks can be completed by any work crew. This assumption is unrealistic because the transportation network is often obstructed due to debris f
	-

	This work removed the common assumption that the transportation network is never damaged and always accessible. Instead,we createdand testedan optimizationmodels thatexplicitly modelsthe damageto the transportationnetwork, restorationofthe transportationnetworkovertime,andimpactofthe accessibility of the transportation on the restoration efforts for other infrastructure networks. Specifcally,we modeled how the damage and restoration to the transportation network impacted the restoration and accessibility to
	-
	-

	We cultivated and refned infrastructure data sets representing the realistic transportation and power net-worksin Juan Diaz,Panama. We performed computationalexperimentstovalidatethe performanceofthe new model.With the computational tests, weexaminedhow the numberofwork crews, magnitudeof damage to the transportation and power networks, and pre-positioning of the work crews impacted restoration efforts. 
	-

	II. Introduction 
	This research project develops an approach for deriving post-disaster plans to restore components within a set of interdependent infrastructure networks. We develop a mixed-integer programming model that determines which work crews restore selected network components at what times after an extreme event. We denote this problem an Interdependent Integrated Network Design and Scheduling problem with movement of machines (IINDS-MM). 
	-

	The main contributionofThe IINDS-MMis thatweexplicitly restrict restoration decisions basedonthe abilityoftheworkcrewsto access consecutive restorationtasksbytraversinganunderrepair transportation network. Thus, the IINDS-MM is developed in order to realistically model restoration by incorporating: 
	The main contributionofThe IINDS-MMis thatweexplicitly restrict restoration decisions basedonthe abilityoftheworkcrewsto access consecutive restorationtasksbytraversinganunderrepair transportation network. Thus, the IINDS-MM is developed in order to realistically model restoration by incorporating: 
	(i) movement of work crews throughout a transportation network; (ii) interdependence of 2 or more infrastructures on the status of the transportation network; and (iii) restoration activities over time for the interdependent infrastructures based on the ability to reachthe tasks via the transportation network. Hence, we remove the common assumption thatwork crewscan instantaneously move along anytransportation arc. 
	-


	Managersof infrastructuresystemsrequiretoolsthat dictatethebest system-wide restorationonasetof interdependent infrastructures. Infrastructure systems are critical to the function of society as theyprovide basic services including transportation, telecommunication,water,and electricalpower systems[29]. Infrastructures are dependent or interdependent when there exists a directional or bidirectional relationship which the state of each is correlated [32]. Interdependencies cause infrastructures to be vulnerab
	-

	Countries vulnerable to natural disasters need effective disaster preparedness and response plans. In a 2010 studyexaminingover60 countries,Panamawas ranked14based on land area for high exposure to multiple hazards [12, 15]. Similarly, the United NationsOffce for Disaster Risk [16] indicates thatPanama has high indicator levels for hazard and exposure (2.9% of the population) and lacks coping capacity (4.8 outof10). Since 2000,42eventshave occurredinPanamaaffecting many people. From 1995to 2006 inPanama, 82
	th 

	Giventhe importanceofPanama,we performa casestudyusingthedeveloped IINDS-MM modelfor Juan Diaz,Panama.For this case study, we consider food scenarios using the the transportation and electriin orderto maximizethe amountof demand satisfedinthe electricalpower networkover time.We assume that restoration efforts are coordinated for both networks and analyze how the placement of work crews, capabilities of work crews, and amount of damage impact the restoration insights learned. 
	-
	calpowernetworks.We quantitatively determinethebest restorationactivitiesto conductinbothnetworks 

	There are severalfactors that motivate this research. Extremeevents canbe manmade disasters or natural disasters[14]. Historically, natural disasters, such as hurricanes, can cause large-scale damages. Floods 
	There are severalfactors that motivate this research. Extremeevents canbe manmade disasters or natural disasters[14]. Historically, natural disasters, such as hurricanes, can cause large-scale damages. Floods 
	-

	comprise the third highest percentage (8.8%) of major natural hazards that impact land area in the world [12]. In total, foods have affected around 38% of the population from 1985 to 2003 causing $14,670 × 10in damages [12]. The transportation systemsis impacted greatlyby foods wherein1,191 × 10km of road and rail from 1985 to 2003. Given these values, current infrastructure restoration models that assume the transportationnetworkisalwaysavailablefortraversingfromone restorationtasktothenextarenot realistic
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	III. Literature Review 
	There are many areas of study related to the outlined work on Interdependent Integrated Network Design and Scheduling Problems with Movement of Machines. Acollection of literature is reviewed in this chapter. The literature review is divided into three subsections: disasters and disaster management, restoration interdependence, and mathematical models related to disasters. 
	-

	A. Disasters and Disaster Management 
	According to Ergun et al. [14] there are two categories of disasters: man-made disasters and natural-disasters. Some disasters canbeslowto start suchas political crisisandfamine,but othersbegininan abrupt way, such as terrorist attacks and foods. The process of the management of anydisaster is divided into three different phases: pre-disaster, disaster and post-disaster. In pre-disaster (phase I), organizations conductmitigationand preparednessactivities.InthisphaseI,theriskfactorand vulnerability assessmen
	Phase II of the disaster management process includes response management which includes relief and logistics operations. Larson et al. [21] outline how applying operation research techniques canfacilitate decision makers when in planning emergencyresponses. The authors indicate how location theory can be used to determine placement for supplies and equipment, and new theories can be addressed in order to plan emergencyresponse possibly incorporating the inaccessibility of transportation pathways. Dispatchin
	-

	The last stage presented by Ergun et al. [14] is the post-disaster phase or phase III, actions are con
	The last stage presented by Ergun et al. [14] is the post-disaster phase or phase III, actions are con
	-

	centrated on recovery plans. Resilience is closely related to the post disaster phase. O’Rourke [30] defnes resilience in the context of extreme events, which is infrastructure recovering after an extreme event. Hos-seini, and Ramirez-Marquez [19] defne resilience using four sub-areas: organizational, social, economic and engineering. Tierneyand Bruneau [35] remark on the importance of measuring resilience in order to reduce the effects of disaster. After a disaster, resilience is measured based on the qual

	Analysis of some disasters has been done. Abramson and Redlener [1] provide a short insight of systems’ failures after an extreme event occurs. The authors mention some of the issues that occur during and after Hurricane Sandy, such as the disruption of the energy supply and fuel distribution network. For instance, gas shortages affected medical and public populations. All levels of communication were also affected due to the lack of coordination. The authors encourage that decision makersbuild an integrate
	-
	-

	The wide range of post analysis woks in disasters demonstrates the importance of disaster preparedness and response plans. Devise effective methods will improve post-disaster managment. We proceed by reviewing the literature focused on interdependence of infrastructure systems. 
	-

	B. Restoration Interdependence 
	The concepts of interdependence, infrastructure and anycombination of them have been reinforced through the years. According to Rinaldi et al. [32] infrastructure is defned as the primary structure connecting differentlevelsof systemsand processesin ordertofacilitatetheexchangeof needed goodsand services. The Department of Homeland Security in the United States [29] has identifed 16 critical infrastructures by 
	The concepts of interdependence, infrastructure and anycombination of them have been reinforced through the years. According to Rinaldi et al. [32] infrastructure is defned as the primary structure connecting differentlevelsof systemsand processesin ordertofacilitatetheexchangeof needed goodsand services. The Department of Homeland Security in the United States [29] has identifed 16 critical infrastructures by 
	sectors as follow: chemical, commercialfacilities, communication, critical manufacturing, dams, defense industrial base, emergencyservices, energy, fnancial services food and agriculture, governmentfacilities, healthcare and public health, information technology, nuclear reactors, materials and waste, transportation system, water and wastewater systems. Rinaldi et al. [32] defne interdependency as the relationship between each infrastructure ensuring the connection in both directions. From this, there are s
	-
	-


	Restoration interdependencies are a new type of interdependence introduced by Sharkey et al. [34]. Restoration interdependence occurs whena restoration task, process or activityin an infrastructureis impactedbya restoration task, process, or activityina different infrastructure.Focusing on restorationefforts after extreme events, Sharkey et al. [34] provides an overview taking in consideration the frequency, infrastructure involvement and potential impact. Theyintroduce fve classes of restoration interdepen
	-
	-
	-

	In new approaches related to interdependence, Chang, et al. [9] present the impact of interdependent failures of critical infrastructures in disasters while Mendoc¸a andWallace [25] present the behavior of disrupted interdependent critical infrastructure system. Chang, et al. [9] introduce a systematic framework called infrastructurefailure interdependencies (IFIs) which canbe usedasa tooltopost disaster impacts. Conceptual defnitions of IFIs focus on fnding experimental data patterns after one of the main 
	-

	C. Mathematical models in disasters 
	There are different mathematical models in the area of operations research and management science (OR/MS) that have been developed in disasters. A comprehensive review of this mathematical models is presented as a framework of this project research. We identify analytical methods that contribute to different disaster stages. 
	McLay [24] presents an introductory tutorial providing an overview of the discrete optimization models that have been applied to different types of disasters and homeland security problems. She provides an overview of the techniques and problems that occur during mitigation, preparedness, response and recovery stages. Further, she indicates that often disaster management efforts require the ability to handle lack of resources and address multiple criteria. Altay and Green [3] examine operations management t
	ducingthe time,andfacilitate easy recovery.In otherwords,theeffectivenessand managementeffciency 
	-

	There are other mathematical model approaches that contribute the restoration of infrastructures, such as stochastic models, simulation and economic techniques.Astochastic approach for two interdependent net-worksisdevelopedby Due˜
	nas-Osorio et al. [13]. The authors establish network interdependencies between elements of a network according to the geographical proximity. The model use graph to represent infrastructure systems and incorporate the conditional probability offailure between two elements of the electric power and potable water networks. Matisziw et al. [23] present an alternative method to mathematical programming models using simulation for assesing critical network infrastructure risk and vulnerability after a disruptio
	nas-Osorio et al. [13]. The authors establish network interdependencies between elements of a network according to the geographical proximity. The model use graph to represent infrastructure systems and incorporate the conditional probability offailure between two elements of the electric power and potable water networks. Matisziw et al. [23] present an alternative method to mathematical programming models using simulation for assesing critical network infrastructure risk and vulnerability after a disruptio
	-
	-
	-

	workforce recovery and for model different temporal aspects of recovery. Considering a number of critical interconnected sectors, output is the inoperability and input refers to one or multiplefailures, accidents or act of terrorism. In this model inoperability which is also a measure of quality of the system is describes as a numericalfactor between0and1, where0isnofawinthe operable system stateand1whenthe system is inoperable. 

	Network models have been developed in post disaster efforts. Guha et al. [17] address the effects and the effcient recovery after a disaster impacts a power system. Theypresent two mathematical options for analyzing the effects and the effcient recovery: thebudgeted problem and the minimum weighted latency problem. They examine both options for a general network, tree network, and bipartite network. In evacuation plan, Kalafatas and Peetas [20] present experiments and sensitivity analysis focused on computa
	-
	-
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	In interdependentnetwork approach,Leeetal.[22]examineanetworkfowmodelfor restoring interdependent infrastructures after an extreme event. The authors identify fve types of interrelationships between infrastructure systemsin the frameworkof their study. Theybuilda network model as an interdependent layer network, ILN, by considering multiple commodities in which they seek to minimize the cost and weighted fow. In order to model a realistic scenario of this INL, the authors use data from interdependent 
	In interdependentnetwork approach,Leeetal.[22]examineanetworkfowmodelfor restoring interdependent infrastructures after an extreme event. The authors identify fve types of interrelationships between infrastructure systemsin the frameworkof their study. Theybuilda network model as an interdependent layer network, ILN, by considering multiple commodities in which they seek to minimize the cost and weighted fow. In order to model a realistic scenario of this INL, the authors use data from interdependent 
	-

	infrastructure systems of power, telecommunications and subways after the September 11 attacks on the WorldTrade Center.Inanextensionof this frst approachbyLeeetal. [22],Cavdarogluetal.[8] present a mathematical model for restoration and scheduling model in disrupted interdependent infrastructure systems. Capturing different type of interdependence, Cavdaroglu et al. [8] concentrate on modeling the power and telecommunications infrastructure of lower Manhattan, NewYork. The objective function consists of th
	-
	-


	Signifcant effort has been given to integrating network design and scheduling decisions. Boland et al. 
	[6] examine the problem of selecting and scheduling maintenance on a network over time. Theyprove the problem is NP-hard and propose four different heuristics which integrate maximum fow solutions, explore the maximum fow objective function structure, the availability of primal and dual solvers, and dual information. Theyseek to maximize the fow through the network over time while maintenance is conducted using an integer programming formulation. In restoration efforts on the network,Averbakh [4] schedules 
	[6] examine the problem of selecting and scheduling maintenance on a network over time. Theyprove the problem is NP-hard and propose four different heuristics which integrate maximum fow solutions, explore the maximum fow objective function structure, the availability of primal and dual solvers, and dual information. Theyseek to maximize the fow through the network over time while maintenance is conducted using an integer programming formulation. In restoration efforts on the network,Averbakh [4] schedules 
	-
	-
	-
	-

	scheduling problem developed by Nurre et al. [27]. The authors proposed a centralized environment for decision-making process in order to reduce the loss when the systems among interdependent infrastructures are decentralized. Furthermore,NurreandSharkey[28]examineavariationofthe interdependentintegrated network design and scheduling problem by using parallel identical machines. With this new approach, the performance of the network is evaluated. 

	From this review, this research aims to contribute in the recovery planning phase helping the decision-making process of the infrastructure system managers. The INDS model presented by Nurre et al. [27] is the base model of this research project extending the restoration activities of the model on a set of two interdependent infrastructure networks. The modelis unique from others interdependent infrastructurework becauseintegrate interdependencebyusingthe transportationnetworkto support restorationeffortson
	IV. Problem Statement 
	In this section, we formally defne the interdependent integrated network design and scheduling problem with movement of machines (IINDS-MM). In the formal defnition, we explicitly defne the layered networks, scheduling and machine environment, and interdependence between the status of the transportation network and ability for scheduling machines to move from job to job. 
	-

	Given a set of networks layers ` ∈ L and time t ∈ T, let G`t =(N`,A`t,A) represent the network of 
	0 

	`tlayer ` at time t, where N` represents the set of nodes, A`t ∪ Arepresents the set of directed arcs comprised 
	0 

	`t of operational arcs A`t and non-operational arcs Aat time t. Without loss of generality, we assume nodes 
	0 

	`t 
	are always operational. This is not a simplifying assumption as non-operational nodes can be equivalently represented as non-operational arcs in a network through the use of a standard network transformation tech-
	SS S
	nique [2]. For the set of all network layers L, we denote Gt =( N`, A`t,A) as the entire 
	`∈L
	`∈L
	`∈L
	0 

	`t
	multilayered network at time t, where G0 is the initial multilayered network. 
	Machines must complete processing on a non-operational arc (i, j) ∈ Afor it to transition to the op
	0 
	-

	`t erational set A`t¯for some time period t¯> t. In order for anymachine m to start processing arc (i, j) ∈ A, machine m must be able to feasibly reach the location associated with node i. Machines use layer 0, which we denote as the transportation network layer, to move from node to node throughout the network. Thus, 
	`t erational set A`t¯for some time period t¯> t. In order for anymachine m to start processing arc (i, j) ∈ A, machine m must be able to feasibly reach the location associated with node i. Machines use layer 0, which we denote as the transportation network layer, to move from node to node throughout the network. Thus, 
	0 
	`t

	we assume that each node i∈ N` for ` 6is present in the transportation network 
	`0 


	= 0 such that (i, j) ∈ Alayer. Further, we assume that when the transportation network is not damaged (i.e., A= /0) thatG0t is a 
	0 
	0 

	0t connected network, i.e., thereexistsadirected path from anynode kto node kfor k,k∈ N0 using arcs in A0t. 
	0 
	0

	For each network layer`,nodei∈ N` is eitherasupply,transshipment, or demand node, where S` and D` denote the supply and demand nodes of network layer `, respectively. We denote the supply of node i∈ S` as si` and demand of node i∈ D` as di`. At the start of the time horizon T, nodes i∈ Im are the set of source nodes for machines m. In other words, i∈ Im are the set of nodes of starting locations for machines m. At the end of the time horizon T, nodes i∈ Fm for m is the set of sink nodes for machines m. This
	0 
	` 
	ij 

	`t arc (i, j) ∈ A`t can carry up to u units of fow at a cost of c per unit. The fow for all network layers ` ∈ L\{0} is assumed to be instantaneous, however one unit of fow across arc (i, j) in the transportation network layer takes tij time periods to go from node ito node j. 
	` 
	ij 
	` 
	ij 

	Flow may only traverse (or start to traverse) arc (i, j) in network ` at time t if the arc is operational at 
	`
	time t. We a denote decision variable βto indicate whether (equal to 1) or not (equal to 0) arc (i, j) in network ` is operational at time t.For all network layers ` ∈ L\{0}, excluding the transportation network, let decision variable x Let binary decision variable 
	ijt 
	` 

	denote the fow on arc (i, j) in network ` at time t. 
	ijt 

	γ0 
	equalize if commodity m (e.g., machine m)leaves nodeialong arc (i, j) in the transportation network (network layer0) at time t. Hence, if γ= 1then commoditym arrives at node jat time t+tij.
	mijt 
	0 

	kijt 
	Machines mustbe assignedtoand processa non-operational arctomakethe arc operational.Asthe differentnetwork’slayers representdifferentphysical entities,thesetof machineswhocanperform processing ¯
	-

	on arcs in network layer ` may not be able to perform processing on arcs in network layer `for ` 6= `. As follows, let Mdenote the set of machines who can perform processing on non-operational arcs within layer `, where M= M. We assume that if machine m ∈ M, this machine is able to perform processing on all non-operational arcs within layer `. 
	¯
	` 
	S 
	`∈L
	`
	`

	Weassumeanon-preemptiveschedulingenvironment, whereif machinemis assigned to arc (i, j) within layer ` once it starts processing it must continue processing for p time periods until processing is complete. 
	` 
	ij 

	`
	Let αdenote the binary decisionvariable which equals1if machine m completes processing of arc (i, j) in network ` at time t. For machine m to be assigned consecutive jobs (i, j) and (k,`), the machine must move (fow) using the transportation network between nodes jand kduring some time period after processing is complete on (i, j). If needed, the machine may sit idle or wait at a node in the transportation network between processing of jobs. Let wmit denotethe binary decisionvariable which equals1if machine
	mijt 
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	The combination of machines moving(γ
	0 

	–variable) and idling(wmit –variable) between consecutive jobs can be viewed as the general idea of sequence dependent set-up times [31]. However, in contrast to traditional scheduling problems, the value of the sequence dependent set-up time depends on the shortest traversal time path in the operational transportation network between the consecutive sets of jobs. The com-plicatingfactoristhatthe shortestpathvaluechangesovertimeasthe operational statusofthe transportation network changes over time. 
	mijt 

	A. Mixed Integer Programming Formulation 
	In this section, we present the mixed integer programming (MIP) formulations of the IINDS-MM problem. 
	`
	Decision Variables: Let x represents whether 
	` 
	ijt 

	represent the fow on arc (i, j) in network ` at time t;β 
	ijt 

	`
	(equal to 1) or not (equal to 0) arc (i, j) in network ` is operational at time t;αequals1when machine m completes processing of arc (i, j) in network ` at time t;wmit equals1if machine m is idle at node i∈ N
	mijt 
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	`
	from time t to time t+ 1; νrepresent the fow consumed by demand node i∈ Din network ` at time t; and γ
	it 
	` 
	0 

	represent that commodity m (e.g., machine m)leaves nodeialong arc (i, j) in the transportation network (network layer 0) at time t. 
	mijt 

	Parameters: gt is the weight associated with the performance of the network at time t; si` is the supply 
	l
	generated at node ion network `;di` is the demand generated at node ion network `;anduis the capacity associated to the network ` on arc (i, j). The full MIP formulation is as follows. 
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	The IIMDS-MMis characterizedbyintegratingthemovementof machinesalongthe transportationnet
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	work and the coupled with all the network layers related to the entire independent system. The IIMDS-MM objective function depends on the fow that arrives at demand nodes, maximizing the cumulative weighted fow at each node over all time periods. Constraint (1) -(3) ensures fow balance for the movement of machines (work crews) along the transportation network. There are three activities performedby the machines alongthe transportation network:(i) Machines canbeworking(α)on anynon-operational arc (i, j) ∈ A
	-
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	`0 
	, or (ii) machines can be moving along anytransportation arc(γ)or (iii) machines canbewaiting(w)ata specifc node i∈ N0 . Constraint (2) forces each machine conduct one of these activities at the source node of the machine(Im)during the frst time periodt. Constraint (3) ensures that each machine must fnish an activity that allowsitto arriveatthe sink node(Fm)at timeT. 
	Each work group must do one task at time which is guaranteed in constraint (13), in other words, any machinemustbeexecutingajob,movingalongarcs withoutexecutingajob,orwaitinguntilthenextactivity is assigned. 
	-

	Flow conservation constraints of commodities in non-transportation networks are represented in Constraints (4) -(6). Constraint (4) ensures that the fow leaving a supply node is less or equal to the supply capacity. Constraint (6) ensures that the demand is not exceeded at each demand node. For those nodes which are neither supply nor demand nodes, Constraints (5) guarantee the fow in equals the fow out. 
	-

	Constraints (7) to (11) are capacity constraints. For the transportation layer, Constraints (7) and (8) limit the fow of work machines on each starting operational and starting non operational arc respectivly. Likewise, Constraints (10) and (11) are capacity constraints for networks ` ∈ L\{0} that limit the fow on operational arcs at each time and non-operational arcs over time based on restoration status. 
	Constraints (12) relates the operability of an arc (i, j), and the completion this job for all time periodst. For instance, the operability of anyarc cannot become online if restoration tasks are not completed at frst. Constraints (14) ensure that arc (i, j) will not become operational before the processing time. Similarly, Constraints (15) forces that a machine will not complete a job before the completion or processing time. For those non-operational arcs(i, j) ∈ Athat are in the transportation network an
	0 
	`0 

	V. Experimental Plan 
	To test the developed IINDS-MM model, we perform a series of computational experiments. We use the transportation and electrical power data sets for Juan Diaz,Panama. For this case study, we assume that the electrical power network has the same topology as the transportation network. We insert 1962 nodes into the transportation and electricalpower networks that represent population demand points.Wegathered nect these nodes, we add arcs which connect the population nodes to the nearest existing transportatio
	population data from Juan Diaz,Panama [11] that represents 128 neighborhoodsin the network.To con
	-


	On these networks, we simulate the damage incurred from different levels of storm surge. We assume that damage occurs in both the transportation and electrical power networks equally (i.e., if arc (i, j) in the transportation network is damaged then (i, j) in the power network is also damaged). When work crews repair the damaged networks, we assume it takes one time unit to traverse an arc in the transportation network. In the following subsections, we describe in detail all of the data used to create scena
	A. Storm Surge Simulation 
	We generateusingGISthreelevelsof stormsurgeforJuanDiaz,Panama.InFigures1,2,and3we present the visualization for storm surges equal to 10, 15, and 20 feet. In the fgures, we identify the population areas via circles where the size of the circle corresponds to the population amount. Further, we see that as the storm surge increases the population that is impacted by fooding dramatically increases. We present a summaryof the damaged caused asa resultof storm surgeinTable1. 
	Table 1: Storm surge scenarios 
	Scenario 
	Scenario 
	Scenario 
	Storm Surge 
	Description 

	1 
	1 
	10 feet 
	This generates 74 damaged power arcs and 148 damaged transportation arcs for a total of 222 damaged arcs. We present a geographical representation of this scenario in Figure 1. 
	-
	-


	2 
	2 
	15 feet 
	This generates 190 damaged power arcs and 380 damaged transportation arcs for a total of 570 damaged arcs. We present a geographical representation of this scenario in Figure 2. 
	-
	-


	3 
	3 
	20 feet 
	This generates 552 damaged power arcs and 1104 damaged transportation arcs for a total of 1656 damaged arcs. We present a geographical representation of this scenario in Figure 3. 
	-



	Figure
	Figure1: 10-foot storm surge impactingthe transportationandpower networksin Juan Diaz,Panama. Refer to storm surge descriptioninTable1for description. 
	Figure
	Figure2: 15-foot storm surge impactingthe transportationandpower networksin Juan Diaz,Panama. Refer to storm surge descriptioninTable1for description. 
	Figure
	Figure3: 20-foot storm surge impactingthe transportationandpower networksin Juan Diaz,Panama. Refer to storm surge descriptioninTable1for description. 
	B. Machines Capability and Location Selected 
	We consider up to 10 work crews that can repair the transportation network, power network, or both net-works.Weexaminehowthe confgurationofthe numberoftransportationwork crewsand numberofpower work crews impact restoration efforts. Further, we examine how the initial geographic location of the work crews when restoration begins impacts the restoration of different regions in Juan Diaz. In Figure 4, we present the possible 10 locations where the work crews are prepositioned and ready for when restoration the
	begins.We consider3positionsinthe westernregion,4positionsinthe middleregion,and3positionsin 
	-

	Figure
	Figure 4: Regions and possible starting locations (source nodes) for restoration work crews in the town of Juan Diaz,Panama. Three possible locations are identifedin theWest region,4in the central region, and3 in the East. 
	Table 2: Machines capabilities and locations 
	Table
	TR
	Machine 

	Scenario 
	Scenario 
	Number and Type 
	Location 

	1 
	1 
	10 multi-function machines 
	-

	Each machine is located as shown in Figure 4. 

	2 
	2 
	10 multi-function machines 
	-

	Machines are only location in the west and east regions. 2 work crews are at locations 1, 2, 8 and 9. There is 1 work crew at locations 3, and 10 (Figure 4) 

	3 
	3 
	10 multi-function machines 
	-

	All 10 machines are located in the middle region. There are two work crews at locations 4and 6. 3 works crews are at locations 5 and locations 7. (Figure 4) 

	4 
	4 
	4power machines 6transp. machines 
	All power machines are located in the middle position at nodes 4, 5, 6, and 7. 3transportation machines are location in the east region at nodes 1, 2, and 3. 3transportation machines are located at the west region at nodes 8, 9, and 10. 

	5 
	5 
	6power machines 4transp. machines 
	3power machines are located in the east region at node 8, 9, and 10 and 3power machines are location in the west region at node 1,2, and 3. All transportation machines are located in the middle position at node 4, 5, 6, and 7. 

	6 
	6 
	5power machines 5transp. machines 
	At location 2in the west there are 2power and 1transportation machines. At location 6in the middle there are 2transportation and 2power machines. At location 9in the east there are 1power and 2transportation machines. 

	7 
	7 
	5power machines 5transp. machines 
	In the west, there is 1transportation machine at location 2and 2 power machines at location 1. In the middle, there are 2 power machines at location 7and 2transportation machines at location 6. In the east, there is 1 power machine at location 10 and 2 transportation machines at location 9. 


	C. Processing Time Estimation 
	For our computational experiments, we consider two options for the processing time needed to restore each damaged arc. For each option we convert simulated restoration times to time units for the IINDS-MM model.InTable3,we presentthevaluesfor OptionAwherethe restoration processing times range from2 to4hoursas indicatedby8to15valuesforthe time unitsin our model.InTable4,we presentthevalues forOptionBwherethe restoration processingtimesrangefrom30 minutesto1.5hoursas indicatedby2to 6values for the time units 
	In the IINDS-MM model, we consider both the transportation and electrical power network in Juan Diaz, Panama.Weexamineall combinationsof processingtimesusingOptionAandB:(1)the transportationnetworkhasoptionAprocessingtimes,thepowernetworkhasoptionAprocessingtimes;(2)the transportation networkhas optionAprocessing times,thepower networkhas optionBprocessing times;(3)the transportation networkhas optionBprocessing times,thepower networkhas optionAprocessingtimes;and(4)the transportation network has optionB pr
	-
	-

	Inordertoassignarcvaluesfromthereal processingtime,afactoris chosen.Therealtimesaredivided bythisfactorandthe resultsarethetimeunitsusedinthemodel.Forthisexperimentalplan,wechosethe factor of 16. 
	Table3: Processing time optionAwithvalues that range from2to4hours. 
	Real Time (min) 
	Real Time (min) 
	Real Time (min) 
	Time Unit 

	120 (2hours) 
	120 (2hours) 
	8 

	150 (2.5 hours) 
	150 (2.5 hours) 
	9 

	180 (3 hours) 
	180 (3 hours) 
	11 

	210 (3.5 hours) 
	210 (3.5 hours) 
	13 

	240 (4 hours) 
	240 (4 hours) 
	15 


	Table4: ProcessingtimeoptionBwithvaluesthatrangefrom30 minutesto1.5hours 
	Real Time (min) 
	Real Time (min) 
	Real Time (min) 
	Time Unit 

	30 (0.5 hours) 
	30 (0.5 hours) 
	2 

	45 (0.75 hours) 
	45 (0.75 hours) 
	3 

	60 (1hours) 
	60 (1hours) 
	4 

	75 (1.25 hours) 
	75 (1.25 hours) 
	5 

	90 (1.5 hours) 
	90 (1.5 hours) 
	6 


	D. Scenario Summary 
	In this section, we summarize the experimental plan that we utilize to conduct our computational experiments.InTable5,we indicatethe numberof possible scenarios specifcto each changing aspect (e.g., storm surge, work crew capability and location, and processing time). We note, that the work crew capability scenario number and location number will always be the same. For each storm surge level, there are 28 possible scenarios (seeTable6) thereby generatinga totalof84 scenarios.These84 settings are obtained f
	-

	Table 5: Summary of experimental plan 
	Storm Surge 
	Storm Surge 
	Storm Surge 
	Work Crew 
	Processing Time 

	TR
	Capability 
	Location 

	1 
	1 
	1 
	1 
	1 

	2 
	2 
	2 
	2 
	2 

	3 
	3 
	3 
	3 
	3 

	TR
	4 
	4 
	4 

	TR
	5 
	5 

	TR
	6 
	6 

	TR
	7 
	7 


	Table6:Total numberof scenariosby storm surge. 
	Storm Surge 
	Storm Surge 
	Storm Surge 
	Total Number of Scenarios by Storm Surge 

	10 
	10 
	1–28 

	15 
	15 
	1–28 

	20 
	20 
	1–28 

	Grand Total 
	Grand Total 
	84 


	For ease of presenting the results, we assign an identifcation (ID) for each scenario used for each storm surge using the schematic outlined in Figure 5. The frst number of the ID indicates the scenario number from 1 to 28. The second and third numbers must equal and represents the work crew capability and location information, respectivelyusinga numberfrom1to7.Thefnal number representsthe processing time scenario usinga number from1to4. 
	Figure
	Figure5: Scenario Indentifcation 
	VI. Computational Results and Analysis 
	Using the data outlinedin SectionV., we performa seriesof computationalexperimentsto deduce policy insights about restoration infrastructurein Juan Diaz,Panama. We proceedby discussingthe total amount of met demandover time, the insightsgainedby analyzing the high, middle, andlow performing scenarios, and model effectivity. We solve the IINDS-MM using the optimization software package CPLEX 12.6.3. Withatimelimitof2hourwassetupinthe program.Ifthetimelimitis reached,wereportthebestknown solution upon termina
	A. Total Met Demand Over Time 
	In this section, we examine the total amount of demand met over time for the 84 scenarios. In Figures 6, 7, and 8, we display the amount of met demand over time for the scenarios after experiencing 10, 15, and 20 feet storm surges, respectively. When comparing the different storm surge levels, we note that the maximum amountof demandmetattheendofthetime horizon(T = 50) varies dramatically. Further, we see that the amount of met demand that is restored can be done more quickly when the storm surge is lower. 
	When comparing the 28 scenarios examined within each individual graph, we see groups of scenarios thatperformsimilarly.InFigures6,7,and8wegroupsimilarperforming scenariostogetherintohigh,middle, and low performing groups. We proceed in Section A. and explain the characteristics of the scenarios that are grouped into high, middle, and low and the additional annotations we indicate on Figures 6, 7, and 8. 
	-

	Figure
	Figure 6: Total met demand over time periods for the 28 scenarios experiencing 10 foot storm surge. The color of the lines have no signifcance other than to distinguish each of the scenarios. On the right of the fgure, we list the 28 scenarios and group them into high, medium, and low performing scenarios. 
	Figure
	Figure 7: Total met demand over time periods for the 28 scenarios experiencing 15 foot storm surge. The color of the lines have no signifcance other than to distinguish each of the scenarios. On the right of the fgure, we list the 28 scenarios and group them into high, medium, and low performing scenarios. 
	Figure
	Figure 8: Total met demand over time periods for the 28 scenarios experiencing 20 foot storm surge. The color of the lines has no signifcance other than to distinguish each of the scenarios. On the right of the fgure, we list the 28 scenarios and group them into high, medium, and low performing scenarios. 
	Insights for High, Middle, and Low Performing Scenarios 
	To interpret the characteristics of the scenarios present in the high, middle, and low performing groups, the scenarioID information from SectionV.: the frst number indicates the scenario number, the second and third numbers indicate thework crew capabilities and location, and the fourth number indicates the processing time confguration. 
	we presentTable7which lists the scenario IDsby performance group and storm surge amount.We reiterate 
	-

	InTable7and Figures6,7, and8, we highlight the scenarios that appearin the same group (high, mid-dle,low)foreachofthestormsurgevalues. Scenario26appearsinthehighperforminggroupforall3storm out the region relativelyevenly (seeTable2in SectionV.). Itis interestingto note that scenario26 using processing time scenario2which has OptionAfor the transportation network and OptionBfor thepower network.Ifyourecall,OptionAhaslongeraverage processingtimesandOptionBhas shorteraverageprocessing times. The result that sc
	InTable7and Figures6,7, and8, we highlight the scenarios that appearin the same group (high, mid-dle,low)foreachofthestormsurgevalues. Scenario26appearsinthehighperforminggroupforall3storm out the region relativelyevenly (seeTable2in SectionV.). Itis interestingto note that scenario26 using processing time scenario2which has OptionAfor the transportation network and OptionBfor thepower network.Ifyourecall,OptionAhaslongeraverage processingtimesandOptionBhas shorteraverageprocessing times. The result that sc
	surgelevels.In scenario26,wehave5powerwork crewsand5transportationwork crews spread through
	-

	-

	wewouldhypothesize that when the transportation network has OptionBprocessing times, wewould see betterperformanceintermsofthetotalmetdemandovertime. Further,wewouldhypothesizethat scenarios with processing time scenario 24 would perform best due to the reduced overall processing times. In high performance groups,mostpartofthe scenarioshaveOptionAin processingtimeforboththe transportation andpower networks, and processing time OptionB onpower network.Work capability andlocation seems to not have anyinfuence

	Among the scenarios that are in the middle performing group, Scenarios 24 and 25 appear for all three stormsurgelevels. Scenario24has5transportationworkcrewsand5powerworkcrews whereinboth transportation and power work crews and location in the east, middle, and west regions of Juan Diaz. Scenario 24 has processing time scenario4 which using OptionB for both the transportation and power networks. Scenario25has5transportationwork crewsand5powerwork crews spread throughouttheregion relatively evenly. Scenario 
	-
	network.We note that allof the scenarios that consistently occurin the high and middle performing groups 

	There are manyscenarios which consistently perform in the low group including scenarios 3, 8, 11, 12, 23, and 28. Similar among all of these scenarios is processing time scenarios3and4combined with not convinient capability/location makes the scenario to have low performance. Also, we see that work crew capability3appearsin both scenarios11and12 which locationsallwork crewsinthe middleregionof Juan Diaz. 
	Table 7: Summary of scenarios by storm surge and performance. 
	Storm Surge Performance 10 feet 15 feet 20 feet 
	High 1-111 22 -662 2-112 5-221 26 -772 6-222 9-331 10 -332 13 -441 18 -552 14 -442 22 -662 16 -444 26 -772 17 -551 18 -552 19 -553 21 -661 26 -772 
	Middle 4-114 1-111 1-111 7-223 5-221 5-221 15 -443 13 -441 9-331 22 -662 14 -442 13 -441 24 -664 17 -551 14 -442 25 -771 18 -552 15 -443 27 -773 19 -553 17 -551 21 -661 19 -553 24 -664 20 -554 25 -771 21 -661 24 -664 25 -771 27 -773 
	Low 2-112 2-112 3-113 3-113 3-113 4-114 
	6-222 4-114 7-223 
	8-224 6-222 8-224 10 -332 7-223 11 -333 11 -333 8-224 12 -334 12 -334 9-331 16 -444 20 -554 10 -332 23 -663 23 -663 11 -333 28 -774 28 -774 12 -334 
	15 -443 16 -444 20 -554 23 -663 
	27 -773 
	28 -774 
	Bwith smaller processing time the networks come back onlinefaster and meet more demand. This insight occurs even when the transportation network has longer processing times. Additionally, we observe that when all work crews are located in the middle of Juan Diaz, the amount of met demand is less. The most amount of met demand occurs when there are an even number of transportation and power crews spread relatively evenly throughout the region or closer to damaged areas. Finally, if we observe Figures 1, 2, a
	From this analysis,we deduce somekeyinsights.We observed that whenthepower networkhas Option 

	B. Machine Movement and Optimality Gaps 
	In the last set of analysis, we examine the performance of the IINDS-MM model using the solver CPLEX 
	12.6.3. We frst examine the movement of work crews for a selected scenario. Next, we report on the op-timalitygaps for all 84 scenarios upon termination at the2hour time limit. The computer specifcation is: MacOS Sierraversion 10.12.5, Intel Corei7 processor with 2.2 GHz speed, and RAM memoryof8GB 1600 MHz DDR3. 
	First,weexaminethemovementofthe machinesfor scenario1(1-111fromTable7)and15 feet storm surge. In scenario 1, there are 10 multi-function work crews that can perform tasks on both the transportationandpowernetworks.Eachworkcrewis pre-positionedatthelocations indicatedinFigure4.InFigure 9, we present the movement and sequenceof tasks conductedin Juan Diaz for3selectedwork crews: (i) Workcrew1locatedinthewestregionofJuanDiaztown;(ii)Workcrew7locatedatthe middleregionof JuanDiaztown;and(iii)Workcrew10 locatedat
	-

	In Figure 9, a blue highlight on an arrow with a continue line means that a work crew is restoring a transportation arc. If the highlight is orange a work crew is restoring an electrical power arc. If the work crewwaitinanode,thisis indicatedbyared circle.InFigure9part(a),weshowthatworkcrew1starts at location1and moves (dashed lines) on3different operational transportation arcs before reaching the frst transportation restoration task.Next,work crew1completesthe second restoration taskinthepower network, and
	In Figure 9, a blue highlight on an arrow with a continue line means that a work crew is restoring a transportation arc. If the highlight is orange a work crew is restoring an electrical power arc. If the work crewwaitinanode,thisis indicatedbyared circle.InFigure9part(a),weshowthatworkcrew1starts at location1and moves (dashed lines) on3different operational transportation arcs before reaching the frst transportation restoration task.Next,work crew1completesthe second restoration taskinthepower network, and
	-

	9,themovementofwork crew7isverydifferent fromwork crew1.Work crew7isfartheraway fromthe damage and thus, must spend more time moving through the network in order to reach a restoration task. a current limitation of our model is the difference in time scales between traversing arcs and completing restoration tasks. Future work, should consider different magnitude between traversing an arc and performing processing.Work crew10 usesthe operational portionofthe transportation networkto reacha location with3dama
	Thus,work crew7isonly ableto complete one restoration task beforetheendofthe time horizon.We note, 
	-


	Figure
	Figure 9: Scenario1from 15-foot storm surge. In part (a), the movement of machine1is presented starts at location1 in theWestern region then moves South,West, and North. InPart (b), the machine starts at location7inthe centralregionandmoves Southeast.In(c),the machine startsat location10inthe Eastern region, and moves along one road to the Southeast. 
	From these3 contrasting movement patterns, we observe that the positionof thework crew can dramatically aid in being able to quickly reach restoration tasks. Further, we observe that when a work crew is capable of performing restoration in both the transportation and power, then the work crew can easily alternate between these tasks in order to restore manydamaged arcs within a geographic region. 
	-

	gapsfor10,15,and20feetstormsurgevalues.Wenote,thatweseta2hourtimelimitandupon termination capture the best known solution and optimalitygap. Thus, scenarios that are solved to optimality are indi
	gapsfor10,15,and20feetstormsurgevalues.Wenote,thatweseta2hourtimelimitandupon termination capture the best known solution and optimalitygap. Thus, scenarios that are solved to optimality are indi
	Lastly,weexaminethe optimalitygapsforall84 scenarios.In Figures10,11,and12,we presentthe 
	-

	catedby a0.00% optimalitygap. The largest observedoptimalitygap for the scenarios witha10 foot storm The similarityfor eachpairof scenarios:1and5,2and6 ,3and7,4and8isthe same processing time. Scenarios1and5has processingtimeOptionAforbothnetworks. Scenarios2and6have processingtime OptionAfor transportation network and OptionBforpower network. Scenarios3and7have OptionBfor tranportation network and OptionAfor power network. Scenarios4and8have processing time OptionB in both networks. The scenarios witha larg
	surgeis approximately 1.82%.We noticea pattern among the scenarios that repeats withevery4scenarios. 
	seeTable4)inthepower network. Smallergapshavelarger processing time (OptionA, seeTable3).We 
	-


	InFigure11,we presentthe optimalitygapsfor scenarioswitha15foot stormsurge.The patternevery 4scenarios is also present for these scenarios, however, we note that the optimalitygaps are much larger. of each4grouping (scenario15, scenario18, scenario22, scenario26) becomes easier.3outof4have pro-cessingtimeOptionAfor tranportationnetworkandOptionBforpowernetwork.(Tables ??tab:ProcTimeA, 4).Thepatternamongthe scenariosfrom1to13repeatswithevery4scenarios.Theprocessingtimeisthe samefor eachpairof scenarios:1and5
	Thelargest optimalitygap observedis 13.33%.We notice that starting with scenario14,the second scenario 

	Lastly,in Figure12 we present the optimalitygaps for scenariosexperiencinga20 foot storm surge.A trendis apparentagainwithevery4scenarios.However,wenotethattheaverage optimalitygap decreases toatmost4.6%andthesecond scenarioofeachsetof4iseasiertosolve.Thetrendremainsthesameinall scenarios as follows: 
	• 
	• 
	• 
	Scenarios1,5,9,13,17,21,25have processing time scenario1with OptionAin both networks. 

	• 
	• 
	Scenarios2,6,10,14,18,22,26have processing time scenario2 with OptionAin transportation network and OptionBinpower network. 

	• 
	• 
	3,7,11,15,19,23,27have processing time scenario3with OptionBin transportation networkand OptionAinpower network. 

	• 
	• 
	4,8,12,16,20,24,28have processing time scenario3with OptionBin both networks. 


	Figure
	Figure10:Average optimalitygapfor 10-foot storm surge wherethe maximum optimalitygapisjustover 1.8% and the minimumis 0%.We seea pattern withevery4scenarios where,in general, the optimalitygap starts low, increases, decreases, and increases. 
	Figure
	Figure11:Average optimalitygapfor 15-foot storm surge wherethe maximum optimalitygapisjustover 13% and the minimumis 0%.We seea pattern withevery4scenarios where,in general, the optimalitygap starts low, increases, decreases, and increases. 
	Figure
	Figure12:Average optimalitygapfor 20-foot storm surge wherethe maximum optimalitygapisjustover 4.5% and the minimumis 0%.We seea pattern withevery4scenarios where,in general, the optimalitygap starts low, increases slightly, increases again, and increases to the peak. 
	VII. Conclusions 
	This project introduced a mixed-integer programming model for an Interdependent Integrated Network Design and Scheduling problem with movement of machines (IINDS-MM) that determines (i) which tasks to select to be restored in a damaged interdependent network; (ii)which work crew performs the restoration tasks; (iii) at what time restoration is performed; and (iv) how work crews traverse through a network to move between restoration tasks.With an IINDS-MM model we link the restoration tasks on two or more in
	-
	-

	We performed a series of computational experiments using the transportation and electrical power net-worksof Juan Diaz,Panama. On these networks we simulated different storm surge damage,work crew capabilities and locations, and magnitude of damage requiring different processing times. From the results of our casestudy,we observed that scenarios withthe same numberof transportationandpowerwork crews performed best when the work crews are evenly spread through the geographic region. We also observed a counte
	This model is a starting point for modeling complex interdependent infrastructure restoration. Future work should consider modeling the transportation network as an undirected network to reduce the number of variablesinthe model. Furtherwork should considerthedifferenttime scales betweentraversing arcsinthe network and performing restoration. Lastly, heuristic methods should be developed for this complex model that dramatically increases when considering larger geographic regions and time horizons for resto
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