Thin Lift Asphalt Overlays:
Project Selection, Design, and Construction

Danny Gierhart, P.E.
Senior Regional Engineer
Asphalt Institute

Kent R. Hansen, P.E.
Director of Engineering
National Asphalt Pavement Association

Dr. Michael Heitzman, P.E.
Assistant Director / Senior Researcher
National Center for Asphalt Technology
This presentation was developed with support from the Federal Highway Administration
Outline

• Introduction
• Project Selection
• Thin Lift Asphalt Design
• Moisture Considerations
• Surface Preparation
• Construction
• Testing and QA
• Case Studies
• Conclusions
Introduction
How is “thin lift” asphalt defined?

State survey responses - **NCHRP Synthesis 464: Thin Asphalt Concrete Overlays**
Dense-Graded: has a well-distributed aggregate gradation throughout the entire range of sieves used.

- It is by far the most commonly-specified type of mix for all lifts within a pavement structure, including thin surface lifts.
Thin Lift Mix Types

Gap-Graded: has a high coarse-aggregate content (typically 70 - 80%), a high binder content (typically > 6%), and a high mineral filler content (typically > 8%), but few intermediate-sized particles.

- The high binder and filler content make it durable and the stone-on-stone contact makes it rut resistant.
Open-Graded: are designed to have a high percentage of air voids (typically 18-22%) by using uniformly-graded aggregates with minimal fines.

- These mixes drain readily to reduce surface spray and glare for enhanced safety and also reduce road noise.
How is “thin lift” asphalt used?
Benefits of Thin Asphalt Overlays
(Dense-Graded and Gap-Graded Mixtures)

- Long service life, low life-cycle cost
- Can handle heavy traffic
- Can be constructed quickly, minimizing traffic delays
- Protects existing pavement
- Seals the surface
- Reduces rate of pavement deterioration
- Corrects surface deficiencies
- Restores skid resistance
- Can be recycled
- Aesthetically pleasing
- Safe
- Quiet
- Smooth
- *Looks and feels new to the traveling public*
Benefits of Thin Asphalt Overlays (Open-Graded Mixtures)

• Reduces road spray in wet weather
• Reduces nighttime glare in wet weather
• Reduces potential for hydroplaning
• Can handle heavy traffic
• Can be constructed quickly, minimizing traffic delays
• Restores skid resistance
• Can be recycled
• Aesthetically pleasing
• Safe
• Quiet
• Smooth
• Looks and feels new to the traveling public
Noise Reduction

NCAT Noise Trailer on SMA Mixtures

Smaller Aggregate = Less Noise

NCAT - Hanson, James and NeSmith 2002
Permeability - Dense Graded Mixtures

NCAT - Brown and Heitzman 2013
Permeability - Dense Graded Mixtures

Permeability in a coarse dense-graded 12.5mm Superpave surface mix.
Expected Longevity

Service Life of Dense-Graded Thin Asphalt Overlays in Ohio

Miles of Thin Overlays

Actual Service Life in Years

Total Miles = 4075
No. of Sections = 1923
Mean Service Life = 9.1 yrs
St. Dev. = 3.0 yrs

FHWA/OH-2008/4
Effectiveness of Thin Hot Mix Asphalt Overlay on Pavement Ride and Condition Performance
Chou, Datta, Pulugurta
Project Selection - Thin Asphalt Overlays
Versatile - Materials and Mix Types for All Roads

IR 675 Montgomery County – Ohio
Smoothseal, Type B
Components of a Basic Evaluation

• Visual Survey
• Structural Assessment
• Drainage Evaluation
• Functional Evaluation
• Maintenance Personnel
• PMS
Identifying/Classifying Distresses in Existing Pavement

DISTRESS IDENTIFICATION MANUAL
for the
Long-Term Pavement Performance Program
The Asphalt Institute’s MS-4 Asphalt Handbook categorizes the common types of asphalt pavement distress:

- **Cracking**
 - Fatigue Cracking
 - Block Cracking
 - Edge Cracking
 - Longitudinal Cracking
 - Slippage Cracking
 - Reflection Cracking

- **Disintegration**
 - Potholes
 - Raveling/Weathering

- **Skid Hazards**
 - Bleeding/Flushing
 - Polished Aggregates

- **Distortion**
 - Rutting
 - Corrugations and Shoving
 - Settlement/Grade Depressions
 - Upheaval/Swell
Cores as a Forensic Tool

Cores:
- determine crack depth
- bottom up or top down
- determine rut location
- other distress types
Identify Movement of Cracking

Working Crack
• ≥ 3mm (1/8”) movement
• Thermal
• Jointed Concrete

Non-Working Crack
• < 3mm (1/8”) movement
• Longitudinal and Block
• Fatigue?
Identify Percentage and Severity of Cracking

- percentage in length or area
- severity?
 - low
 - moderate
 - high
Crack Sealing Before a Thin Asphalt Overlay

Route

Clean

Seal
Reservoir and Recessed
Thin Asphalt Overlays on Pavements with Distortion

Rutting due to unstable subgrade

Rutting due to unstable plastic mix
Low rutting due to normal traffic consolidation
Thin Asphalt Overlays on Pavements with Distortion

Corrugations and shoving

Distortion due to frost heave

Leveling course in a large depression
Thin Asphalt Overlays on Pavements with Potholes or Other Localized Distress
Thin Asphalt Overlays on Pavements with Weathering or Raveling
Thin Asphalt Overlays on Pavements with Skid Hazards

Polishing

Bleeding and flushing
Project Selection for Thin Asphalt Overlays

* Several distress types must be treated or corrected in some manner before thin asphalt overlay
MIX DESIGN FOR THIN LIFTS
Binder Selection

- Superpave - typically based on climate and traffic
- SMAs and PFCs - modified binders often required
Aggregate Selection

- NMAS should be 1/2”, 3/8”, or No. 4.
- The lift thickness should be 3 to 5 times the NMAS.
Aggregate Quality for Small NMAS Dense-Graded Asphalt Mixtures

<table>
<thead>
<tr>
<th>NMAS</th>
<th>12.5mm</th>
<th>9.5mm</th>
<th>6.3mm</th>
<th>4.75mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency</td>
<td>Agency</td>
<td>Agency</td>
<td>Agency</td>
<td>Agency</td>
</tr>
<tr>
<td></td>
<td>Alabama</td>
<td>N. Carolina</td>
<td>Nevada</td>
<td>Utah</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>New York</td>
<td>Maryland</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Georgia</td>
<td>Ohio</td>
</tr>
</tbody>
</table>

Aggregate Quality

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Alabama</th>
<th>N. Carolina</th>
<th>Nevada</th>
<th>Utah</th>
<th>New York</th>
<th>Maryland</th>
<th>Georgia</th>
<th>Ohio</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA Abrasion, % loss</td>
<td>48 max</td>
<td>35 max</td>
<td>37 max</td>
<td>35/40 max¹</td>
<td>40 max</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Sulfate Soundness, % loss</td>
<td>10 max</td>
<td>15 max</td>
<td>12 max</td>
<td>16/16 max¹</td>
<td>12 max</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% 2 or More Fractured Faces</td>
<td>85 min</td>
<td>80 min</td>
<td>90/90 min¹</td>
<td>10/100 min¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% 1 or More Fractured Faces</td>
<td>100 min</td>
<td>95/90 min¹</td>
<td>10/100 min¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand Equivalent, %</td>
<td>45 min</td>
<td>60/45 min¹</td>
<td>45 min</td>
<td>28/40 min²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAA, %</td>
<td>43/45 min¹</td>
<td>40 min</td>
<td>43 min</td>
<td>40 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Low or Medium Volume / High Volume
² Carbonate / Other Aggregates

NAPA IS 135 - Newcomb 2009
Aggregate Types

- For skid resistance, the coarse portion should consist of angular, polish-resistant aggregate.
- Granites, sandstones, quartzites, rhyolites, etc.

 Crushed Granite Crushed Quartzite Mine Chat
RAP Use

• Use RAP in reasonable quantities to reduce cost
• RAP will help
 – Stabilize cost
 – Prevent rutting
 – Prevent scuffing
• Use up to maximum allowable while maintaining gradation and volumetrics
RAP Use

- RAP may need to be fractionated
- Finer fractions will have a higher binder content
- Rap Binder Ratio of lower %
 Fine RAP = higher % of unprocessed RAP
AASHTO Gradations for Small NMAS Dense-Graded Asphalt Mixtures

<table>
<thead>
<tr>
<th>NMAS</th>
<th>37.5mm</th>
<th>25.0mm</th>
<th>19.0 mm</th>
<th>12.5mm</th>
<th>9.5mm</th>
<th>4.75mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>50.0</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>37.5</td>
<td>90</td>
<td>100</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25.0</td>
<td>-</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19.0</td>
<td>-</td>
<td>-</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>12.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>90</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>9.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>4.75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.36</td>
<td>15</td>
<td>41</td>
<td>19</td>
<td>45</td>
<td>23</td>
<td>49</td>
</tr>
<tr>
<td>1.18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.075</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>VMA</td>
<td>11.0</td>
<td>12.0</td>
<td>13.0</td>
<td>14.0</td>
<td>15.0</td>
<td>16.0</td>
</tr>
</tbody>
</table>
Example State Gradations for Small NMAS Dense-Graded Asphalt Mixtures

<table>
<thead>
<tr>
<th>NMAS</th>
<th>12.5mm</th>
<th>9.5mm</th>
<th>6.3mm</th>
<th>4.75mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agency</td>
<td>Alabama</td>
<td>N.</td>
<td>Nevada</td>
<td>Utah</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carolina</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gradation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sieve Size</td>
<td></td>
<td>% Passing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.0 mm</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5 mm</td>
<td>90 - 100</td>
<td>85 - 100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>9.5 mm</td>
<td>< 90</td>
<td>60 - 80</td>
<td>85 - 100</td>
<td>90 - 100</td>
</tr>
<tr>
<td>4.75 mm</td>
<td>28 - 38</td>
<td>50 - 75</td>
<td>< 90</td>
<td>90 - 100</td>
</tr>
<tr>
<td>2.36 mm</td>
<td>28 - 58</td>
<td>19 - 32</td>
<td>32 - 67</td>
<td>37 - 70</td>
</tr>
<tr>
<td>0.300 mm</td>
<td>8 - 13</td>
<td>32 - 67</td>
<td>37 - 70</td>
<td>36 - 76</td>
</tr>
<tr>
<td>0.075 mm</td>
<td>2 - 10</td>
<td>4 - 7</td>
<td>3 - 8</td>
<td>2 - 10</td>
</tr>
</tbody>
</table>

NAPA IS 135 - Newcomb 2009
How many gyrations should be used on asphalt mixtures intended for thin lifts?

- AASHTO R 35 specifies the following for all Superpave mixtures:

<table>
<thead>
<tr>
<th>Design ESALs (M)</th>
<th>N_{initial}</th>
<th>N_{design}</th>
<th>N_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.3</td>
<td>6</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>$0.3 \text{ to } < 3$</td>
<td>7</td>
<td>75</td>
<td>115</td>
</tr>
<tr>
<td>$3 \text{ to } < 30$</td>
<td>8</td>
<td>100</td>
<td>160</td>
</tr>
<tr>
<td>≥ 30</td>
<td>9</td>
<td>125</td>
<td>205</td>
</tr>
</tbody>
</table>
Different Criteria for Asphalt Mixtures Intended for Thin Lifts

For Dense-Graded mixtures (AASHTO M 323):

9.5mm mixes
For design ESALs ≥ 3M, VFA shall be 73% to 76% *
(other mix sizes 65% to 75%)

4.75mm mixes
For design ESALs < 3M, dust-to-binder ratio shall be 1.0 to 2.0
(other mix sizes 0.6 to 1.2)
For design ESALs ≥ 3M, dust-to-binder ratio shall be 1.5 to 2.0
(other mix sizes 0.6 to 1.2)
The relative density shall be 94.0 to 96.0 (other mix sizes 96.0)
For design ESALs ≥ 0.3M, VFA shall be 66% to 77%
(other mix sizes 65% to 75%)
Many states limit the use of natural sand to 15% maximum, even if FAA parameters are met.
PLANT OPERATIONS FOR THIN LIFTS
Moisture Considerations

Thin lift mixes are composed of a high percentage of fine aggregate

Coarse Stockpile
% Moisture ≈ 0.5 to 2%

Fine Stockpile
% Moisture ≈ 3 to 7%
Moisture Considerations

• Aggregates must be properly dried
• May mean slowing down production
• Aggregates containing moisture after the plant drying process contribute to stripping and tenderness issues with mixes
Moisture Considerations

• Construct paved, sloped stockpile areas
 – Reduces aggregate waste
 – 1% decrease in moisture ≈ 10% decrease in burner fuel usage.
Moisture Considerations

• Cover stockpiles to reduce moisture from rainfall
• Covers can be permanent or temporary
• Cover fine aggregates especially
At the plant:

- Don’t run the plant hotter to account for heat loss
- Volatilizes light fractions
- Prematurely ages mix
Mitigation of Temperature Concerns Using WMA

At the plant:

• WMA can mitigate rapid heat loss

Photo courtesy of Steve Muench, U. of Washington
Managing Variability

At the plant:

• Thin overlays mixes include a high percentage of fines.

• Split aggregate component used at a rate of about 50% into two cold feed bins to reduce the potential variability
SURFACE PREPARATION FOR THIN LIFTS
If there is surface cracking or rutting due to plastic movement of the mix, the entire surface should be milled. Benefits include:

- Removal of distressed pavement (core to help determine proper depth)
- Improved smoothness
- Reshape cross slopes (uniform overlay thickness)
- Maintain or create curb exposure
- Maintain clearances at overhead structures
- Maintain or create drainage
- Create a textured surface to help prevent sliding of new HMA overlays
Milling into the structurally sound surface will help avoid scabbing and delamination.
Use Leveling Course on Uneven Surfaces

Use 4.75mm or sand mix for leveling course. Note how fine mix fills in lower areas and skims across high areas for a smooth paving surface. (Clearly shows where screed adjustments are needed)

Don’t try placing a leveling course using a mix with coarse aggregate!
CONSTRUCTION OF THIN LIFTS
Climate Considerations for Thin Lift Overlays

1 Inch Lift
50°F Air, Surface Temp
Mix Delivery temp - 300°F
7 minutes to complete compaction operations

3 Inch Lift
50°F Air, Surface Temp
Mix Delivery temp - 300°F
44 minutes to complete compaction operations

Download MultiCool for free at the NAPA store!
Night paving can also be a challenge:

- Tack break times extended
 - cooler temperatures and often higher humidity
- Cooler temperatures make obtaining proper compaction more difficult
- General visibility issues
On the project:

- Interface between the old and new pavement is in close proximity to the shear forces created by vehicles during turning and braking movements.
- The tack coat between the old surface and the new overlay is especially important.
Proper Tack Coat is Critical for Thin Lift Overlays

On thin lifts, pay extra attention to:

• Existing roadway cleanliness (milled surfaces especially)
• Tack coat application rate
• Tack coat uniformity

Tack pickup due to unclean roadway surface

Looking good!

Low tack coat application rate AND non-uniform tack coat application
<table>
<thead>
<tr>
<th>Surface Type</th>
<th>Residual Rate (gsy)</th>
<th>Appx. Bar Rate Undiluted* (gsy)</th>
<th>Appx. Bar Rate Diluted 1:1* (gsy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Asphalt</td>
<td>0.020 – 0.045</td>
<td>0.030 – 0.065</td>
<td>0.060 – 0.130</td>
</tr>
<tr>
<td>Existing Asphalt</td>
<td>0.040 – 0.070</td>
<td>0.060 – 0.105</td>
<td>0.120 – 0.210</td>
</tr>
<tr>
<td>Milled Surface</td>
<td>0.040 – 0.080</td>
<td>0.060 – 0.120</td>
<td>0.120 – 0.240</td>
</tr>
<tr>
<td>Portland Cement Concrete</td>
<td>0.030 – 0.050</td>
<td>0.045 – 0.075</td>
<td>0.090 – 0.150</td>
</tr>
</tbody>
</table>
Manage Paver Speed

On the project:

- When paving thin lifts, each ton goes a long way
- The paver can get down the road very quickly
- Don’t allow the paver to leave the rollers behind
- Thin lifts cool very rapidly and need to be compacted more quickly than thicker lifts

Hello-o-o-o-o back there!
Material Transfer Vehicles Often Specified for Placing SMAs and OGFCs

On the project:

• Thin lifts of SMA and OGFC (PFC) are often placed using a Material Transfer Vehicle.

• Some agencies require the use of an MTV when placing “premium” mixtures such as SMA and PFC
Spray Pavers Often Specified for Placing Ultra Thin Bonded Wearing Courses

On the project:

• Thin lifts of Ultra Thin Bonded Wearing Course are typically placed using a Spray Paver.

• Other types of thin asphalt lifts can be placed using a spray paver also.

• Specialized tack material must be used because paver sprays tack about 6” in front of mixture during paving.
Rolling Thin Asphalt Overlays

On the project:

- Rolling strategies depend on the type of thin lift
- For Superpave and SMA, you *may* be able to use a vibratory roller (but probably not) - check for roughness, broken aggregate
- Otherwise, use static rollers. (may be able to use pneumatic on Superpave)
Rolling Thin Asphalt Overlays

On the project:

• For PFCs and OGFCs, static rollers are typically used
 - only one or two passes to seat the mix onto the existing surface
 - mix is intended to be permeable, so don’t overcompact

• Be very careful with pneumatic rollers on OGFC and SMA mixes because they can pick up badly
TESTING AND QUALITY ASSURANCE
Determining roadway density on thin lifts:

- Cannot get accurate, repeatable results from thin roadway cores
- If thickness is at least 1”, thin lift nuclear gauges or electromagnetic gauges could be used
- Roller types, patterns are often set and documented as sole source of QA
Determining Smoothness on Thin Asphalt Overlays

- Increases in smoothness are minimal with thin lifts
- Smoothness can be improved with milling or leveling course
Thin Lift Case Studies - Ohio DOT’s “Smoothseal”

Section 424: Fine Graded Polymer Asphalt Concrete

<table>
<thead>
<tr>
<th>Type A Recipe Mix</th>
<th>Type B Volumetric Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_b = 8.5%)</td>
<td>(P_a = 4.0%, \ VMA \ 15.0% \ \text{min.}, \ P_b \ 6.4% \ \text{min.})</td>
</tr>
<tr>
<td>1/2” 100</td>
<td>1/2” 100</td>
</tr>
<tr>
<td>3/8” 100</td>
<td>3/8” 95 - 100</td>
</tr>
<tr>
<td>No. 4 95 - 100</td>
<td>No. 4 85 - 95</td>
</tr>
<tr>
<td>No. 8 90 - 100</td>
<td>No. 8 53 - 63</td>
</tr>
<tr>
<td>No. 16 80 - 100</td>
<td>No. 16 37 - 47</td>
</tr>
<tr>
<td>No. 30 60 - 90</td>
<td>No. 30 25 - 35</td>
</tr>
<tr>
<td>No. 50 30 - 65</td>
<td>No. 50 9 - 19</td>
</tr>
<tr>
<td>No. 100 10 - 30</td>
<td>No. 100 -</td>
</tr>
<tr>
<td>No. 200 3 - 10</td>
<td>No. 200 3 - 8</td>
</tr>
</tbody>
</table>

Binder type must be either PG 76-22M (SBS) or PG 64-22 with 5% SBR

Sand must have at least 50% Silicon Dioxide for skid resistance
Thin Lift Case Studies - Ohio DOT’s “Smoothseal”

Overlay Thickness Guidelines

Type A
5/8” to 1-1/8”

Type B
3/4” to 1-1/2”
Thin Lift Case Studies - Ohio DOT’s “Smoothseal”

I-71

- City of Cleveland
- Age = 3 years
- Treatment:
 - 1/2” Planing
 - 1” Smoothseal, Type B
- ADT = 99,360 vehicles
- 3% trucks
- Future Resurfacing - 2020
- Anticipated age at next resurfacing - 11 years

One of many examples of Smoothseal given by Ohio DOT’s James Marszal, P.E., at the APA’s Asphalt Paving Conference in 2012 in Charlotte, NC
TABLE 1 – Types of Thin HMA Overlays.

<table>
<thead>
<tr>
<th>Mix Types</th>
<th>Key Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense-Graded</td>
<td></td>
</tr>
<tr>
<td>Ultra-thin (UT) mix (Item 347)</td>
<td>Resists cracking</td>
</tr>
<tr>
<td>Crack attenuating mix (CAM) (Special Specification [SS] 3262)</td>
<td>Improves ride
Minimizes in-vehicle noise</td>
</tr>
<tr>
<td>Gap-Graded</td>
<td></td>
</tr>
<tr>
<td>Thin overlay mix (TOM) (Item 347)</td>
<td>Improves skid resistance
Improves ride
Resists rutting
Resists cracking</td>
</tr>
<tr>
<td>Stone-matrix asphalt Type F (SMA-F) (Item 3262)</td>
<td></td>
</tr>
<tr>
<td>Open-Graded</td>
<td></td>
</tr>
<tr>
<td>Permeable friction course Type F (PFC-F) (SS 3269)</td>
<td>Improves skid resistance
Improves ride
Minimizes splash and spray
Reduces ambient traffic noise</td>
</tr>
</tbody>
</table>
Thin Lift Case Studies - Texas DOT

TABLE 3 – Mix Gradations.

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Dense-Graded</th>
<th></th>
<th>Gap-Graded</th>
<th></th>
<th>Open-Graded</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UT Mix</td>
<td>CAM</td>
<td>TOM</td>
<td>SMA-F</td>
<td>PFC-F</td>
<td></td>
</tr>
<tr>
<td>1/2 inch</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>3/8 inch</td>
<td>98–100</td>
<td>95–100</td>
<td>95–100</td>
<td>70–100</td>
<td>95–100</td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>70–95</td>
<td>70–90</td>
<td>40–60</td>
<td>30–60</td>
<td>20–55</td>
<td></td>
</tr>
<tr>
<td>#8</td>
<td>40–65</td>
<td>40–65</td>
<td>17–27</td>
<td>20–40</td>
<td>0–15</td>
<td></td>
</tr>
<tr>
<td>#16</td>
<td>20–45</td>
<td>20–45</td>
<td>5–27</td>
<td>10–30</td>
<td>0–12</td>
<td></td>
</tr>
<tr>
<td>#30</td>
<td>10–35</td>
<td>10–30</td>
<td>5–27</td>
<td>10–30</td>
<td>0–8</td>
<td></td>
</tr>
<tr>
<td>#50</td>
<td>10–20</td>
<td>10–20</td>
<td>5–27</td>
<td>5–20</td>
<td>0–8</td>
<td></td>
</tr>
<tr>
<td>#200</td>
<td>2–12</td>
<td>2–10</td>
<td>5–9</td>
<td>2–10</td>
<td>0–4</td>
<td></td>
</tr>
</tbody>
</table>

\[P_b \text{ (min): } 6.5 \quad 6.0 \quad 6.0 \quad 6.0 \quad 6.0 \]
Thin Lift Case Studies - Texas DOT

FIGURE 1 – Coarse Surface Texture of TOM.

Arizona DOT “Quiet Pavement Program”

- A three-year, $34 million project to surface about 115 miles of Phoenix-area freeways with thin lifts of rubberized asphalt is working toward a smoother ride for motorists and quieter neighborhoods for those who live adjacent to the roads. Noise readings have shown a tire noise decrease by an average of 4 decibels.

- Rubberized asphalt cannot be applied during cold weather or very hot weather. The concrete pavement surface needs to be between 85 and 145 degrees Fahrenheit for the material to adhere properly. So rubberized asphalt can only be applied in the spring and fall in the Phoenix area, from March 15 to May 31 and from September 1 to November 15. Prior to application, contractors must repair pavement cracks, chips and joints and prepare the concrete surface for the rubberized asphalt overlay.
Section 414: Asphaltic Concrete Friction Course (Asphalt-Rubber)

P_b “specified by the Engineer”

<table>
<thead>
<tr>
<th>Size</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8”</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>30 - 45</td>
</tr>
<tr>
<td>No. 8</td>
<td>4 - 8</td>
</tr>
<tr>
<td>No. 16</td>
<td>-</td>
</tr>
<tr>
<td>No. 30</td>
<td>-</td>
</tr>
<tr>
<td>No. 50</td>
<td>-</td>
</tr>
<tr>
<td>No. 100</td>
<td>-</td>
</tr>
<tr>
<td>No. 200</td>
<td>0 - 2.0</td>
</tr>
</tbody>
</table>

* The asphalt-rubber shall contain a minimum of 20 percent crumb rubber by the weight of the asphalt cement. (Section 1009-2.02)

** Requires 1% mineral admixture (Portland cement, blended hydraulic cement, or hydrated lime) by weight of the mineral aggregate
Thin Lift Case Studies - Arizona DOT

AR-ACFC, IH-10 south of Phoenix, extreme traffic

AR-ACFC on SR 64 east of Bullhead City, AZ.
SUMMARY AND CONCLUSIONS
SUMMARY AND CONCLUSIONS

• Although there is no standard definition of what constitutes a “thin lift,” they can be used to address functional issues, safety issues, and to maintain roadways in all traffic conditions as a pavement preservation technique.

• Project selection is a key issue for thin asphalt overlays. Thin overlays of structurally sound pavements can last 10 years or more.

• Thin asphalt overlays can be dense-graded, gap-graded, or open-graded, depending on the need.

• Responsible use of RAP can decrease the price of thin asphalt overlays.
SUMMARY AND CONCLUSIONS (cont.)

- Because the moisture content of fine aggregate stockpiles tend to be higher than coarse aggregate stockpiles, special attention must be paid to drying the aggregates for thin asphalt overlays at the plant.

- Use cores to evaluate causes of distress and perform local repairs to return existing pavement to adequate structural support before placing a thin overlay.

- A uniform tack application at the proper rate is even more important for thin asphalt overlays because the interface between the old and new pavement is in close proximity to the shear forces created by vehicles.

- Heat dissipates from thin asphalt layers more quickly than thick asphalt layers, which reduces available compaction time. This can be mitigated by such things as setting minimum surface, ambient, and/or mix temperatures and through the use of WMA technologies.
SUMMARY AND CONCLUSIONS (cont.)

• Because a ton of asphalt stretches farther as the lift thickness decreases, it is important for paver operators to maintain a slow, steady pace that can be matched by the roller operators.

• Rolling strategies vary depending on the type of thin lift. Typically, static steel-wheeled rollers are used on thin asphalt overlays to avoid binder sticking and crushing aggregate.

• Determining density through roadway cores is more difficult for thin asphalt lifts, and density gauges are typically recommended only for lifts 1” or greater. A common method of QA for thin asphalt lifts is to daily document the roller types and number of passes.

• A number of states have very successful thin asphalt overlays. Their success stories can be evaluated to facilitate the successful use of thin asphalt overlays in other states.
Additional Free, Downloadable Resources

- http://www.fhwa.dot.gov/Pavement/preservation/ppcl03.pdf
QUESTIONS?