Visualization, Strategic Assessment, and Decision Support for Arctic Observing: The Arctic Observing Viewer (AOV)

William F. Manley1, Allison G. Gaylord2, Ari Kassin3, Sandra Villarreal3, Mauricio Barba3, Ryan Cody3, Mike Dover4, Stephen Escarzaga3, Ted Habermann5, John Kozimor5, Roberta Score6, and Craig E. Tweedie3

1) Institute of Arctic and Alpine Research (INSTAAR), University of Colorado, Boulder CO 80309-0450
2) Nuna Technologies, P.O. Box 1483, Homer AK 99603
3) Systems Ecology Lab, Department of Biology, University of Texas at El Paso, 500 W University Ave., El Paso TX 79968-0519
4) CH2M HILL Polar Services, 9191 South Jamaica Street, Englewood, CO 80112
5) The HDF Group, 1800 South Oak Street, Suite 203, Champaign IL 61820
6) Polar Field Services Inc., 8100 Shaffer Parkway #100, Littleton CO 80127

To better assess progress in Arctic Observing made by U.S. SEARCH, NSF AON, SAON, and related initiatives, an updated version has been released for the Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org). This web mapping application and information system conveys the who, what, where, and when of “data collection sites” – the precise locations of monitoring assets, observing platforms, and wherever repeat marine or terrestrial measurements have been taken. Over 7700 sites in AOV encompass a range of boreholes, ship tracks, buoys, towers, sampling stations, sensor networks, vegetation plots, stream gauges, ice cores, observatories, and more. Contributing partners are the U.S. NSF, ACADIS, ADIwg, AOOS, a2dc, AON, CAFF, GINA, IASOA, INTERACT, NASA ABoVE, and USGS, among others. While focusing on U.S. activities, information exchange with international groups is welcomed for mutual benefit. Users can visualize, navigate, select, search, draw, print, view details, and follow links to obtain a comprehensive perspective of environmental monitoring efforts. We continue to develop, populate, and enhance AOV. Recent improvements include: a more intuitive and functional search tool, a modern cross-platform interface using javascript and HTML5, and hierarchical ISO metadata coupled with RESTful web services & metadata XLinks to span the data life cycle (from project planning to establishment of data collection sites to release of scientific datasets). AOV is founded on principles of interoperability, such that agencies and organizations can use the AOV Viewer and web services for their own purposes. In this way, AOV complements other distributed yet interoperable cyber resources, and helps science planners, funding agencies, investigators, data specialists, and others to: assess status, identify overlap, fill gaps, optimize sampling design, refine network performance, clarify directions, access data, coordinate logistics, and collaborate to meet Arctic Observing goals.