Developments in Advanced SATCOM Networking from Hughes

Presented by: Dan Losada
Sr. Director – Defense Systems
MILCIS 2015
November 10, 2015
Agenda

- Technology trends in Satcom
 - New developments in protected satcom waveforms and systems
 - Global Airborne BLOS C4ISR networks
 - Smaller, lighter terminals for quick deployments
- Overview of HM System
- Overview of Jupiter System
Hughes Company Overview

- Now under Echostar ownership, 5th largest satellite operator in the world

- World Leader in Global Managed Services for Ground and Airborne Networks

- End to end systems and solutions for data transport
The Hughes Solution – Complete Defense Satcom Network Interoperability

- **Strategic/Enterprise Network**
- **Intelligence Surveillance and Reconnaissance**
- **Tactical SATCOM**
- **Affordable Protected Satcom**
NEW DEVELOPMENTS IN PROTECTED SATCOM WAVEFORMS AND SYSTEMS
Military Protected SATCOM Challenges

- Future contested warfighting environment
 - Anti-Access/Area Denial (A2/AD) scenarios present a challenge for combat forces command and control (C2)

- Ever-increasing demand for mobile SATCOM users
 - Intelligence, Surveillance and Reconnaissance (ISR) data is integral for warfighting effectiveness

- Ground and Airborne platforms require small antennas supporting high data rate requirements
 - Comm-on-the-move (COTM) vehicles and remotely piloted aircraft (RPAs) require asymmetric SATCOM links

Defense Forces want Affordability and Resiliency
Resilient Communications

Affordable Resiliency
- Multiple Waveforms
- Digital RF Interfaces
- COTS Technologies
- Networking Standards
- Management Systems

Unified Management
- Situational Awareness (RF, Cyber)
- Dynamic Resource Allocation
- Ground Diversity
- Space Segment Diversity
- Mission-Specific QoS Assurance

Space Segment
- WGS
- Commercial SATCOM
- Small Satellites
- Hosted Payloads
- HTS

Packet Network Devices
- IPS
- IDS
- AES-256
- COTS

Resilient Comms

Advanced Protected Waveforms
- R2CP
- Multipath Routing
- FAST

Ground Infrastructure
- IPS
- IDS
- AES-256
- COTS
US DoD SATCOM Roadmap for Affordable A2/AD Ops

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTESTED ENVIRONMENT SATCOM</td>
<td></td>
</tr>
<tr>
<td>Protected Early Development</td>
<td></td>
</tr>
<tr>
<td>Protected Tactical Satcom Field Demo</td>
<td></td>
</tr>
<tr>
<td>Protected Ops</td>
<td></td>
</tr>
<tr>
<td>Transitional Architecture</td>
<td></td>
</tr>
<tr>
<td>COMMERCIAL BASED AJ SATCOM</td>
<td></td>
</tr>
<tr>
<td>HUGHES SCMA Demo</td>
<td></td>
</tr>
<tr>
<td>Address Security Needs Study Gaps</td>
<td></td>
</tr>
<tr>
<td>HUGHES SCMA Demo</td>
<td></td>
</tr>
<tr>
<td>Transitional Architecture</td>
<td></td>
</tr>
<tr>
<td>New Architecture</td>
<td></td>
</tr>
<tr>
<td>Address AoA Mission Needs</td>
<td></td>
</tr>
<tr>
<td>BENIGN ENVIRONMENT SATCOM</td>
<td></td>
</tr>
<tr>
<td>Commercial Transponded SATCOM</td>
<td></td>
</tr>
<tr>
<td>• Transition to High Throughput Satellites</td>
<td></td>
</tr>
<tr>
<td>• Upgraded Modem</td>
<td></td>
</tr>
<tr>
<td>• Upgraded RF Terminal</td>
<td></td>
</tr>
<tr>
<td>Development</td>
<td>Prototype</td>
<td>Operational</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
USAF Protected Tactical Service Program Background and need

<table>
<thead>
<tr>
<th>DoD Capability</th>
<th>System</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protected Strategic SATCOM</td>
<td>AEHF</td>
<td>• Too expensive for defense-wide rollout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inadequate capacity for tactical communications</td>
</tr>
<tr>
<td>Wideband SATCOM</td>
<td>WGS</td>
<td>• Non-protected Satellites</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Relatively Low bandwidth compared to HTS</td>
</tr>
<tr>
<td>Commercial Mil-SATCOM</td>
<td>Satellite Bandwidth</td>
<td>• Satellite bandwidth lease expensive based on current contracting models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Not protected</td>
</tr>
</tbody>
</table>

Summary

USAF SMC
- **Affordable Protected Tactical Service**
 - Jam-Resistant Communications
 - Advanced Waveform
 - Tactical Users in non-linear Battlefield
 - Commercial and WGS Satellites
 - Commercial Crypto (Coalition Partners)
 - Future PTS Satellites and Payloads

US DoD Programs of Record (PoR)
- Protected SATCOM

US Army CERDEC
- RFI

US Navy
- Protected Program

NATO, UK MoD
- Protected SATCOM

Affordable Anti Jam Modems key for future MILSATCOM system and segments
Team Hughes PTS Solution
Affordability and Compatibility

- Based on DoD Developed PTW Waveform
- Terminal modem hardware
 - High Speed processing hardware and interfaces
 - Integration with legacy Navy, Army and Air Force terminals using common platform design
- Software development
 - State-of-the-art FPGA for programmable logic – future proof
 - SDR platform also runs EBEM and other protected waveforms
- Future Ground System roll-out leveraging NMS and UMS
- Low cost alternative to AEHF
- Designed to operate over WGS or commercial satellites.
GLOBAL AIRBORNE BLOS C4ISR NETWORKS
UAS/Airborne Architecture Concept

Airborne System Elements

• Aero Terminal
 – Modem
 – Antenna including Positioner and RF
 – Radome

• Satellite Air Interface
 – Wideband Channels
 – Standards based
 – Multiple Access capable

• Mobility Gateway(s)
 – Multiple GWs depending on HTS Satellite Beam Mapping/Coverage
 – Baseband Equipment includes satellite modulator/demodulator and protocol processing
 – Common Networking Equipment to support terrestrial communication
 – RFT

• Network Management System (NMS)
 – Centralized NMS controls multiple Mobility GWs
 – Supports Multi-beam and Multi-satellite
Today’s Airborne SATCOM Requirements

- Sufficient uplink bandwidth to transmit Full Motion Video and more
- Global coverage with seamless regional transition
- Provide TRANSEC and COMSEC capability
- End-to-end QoS across global network – Bandwidth Efficiency
- Low jitter and latency for VTC, VoIP and Video
- Minimal impact of equipment to aircraft flight dynamics. Requires low profile and ultra small aperture antennas
- Interoperability with Land and Maritime Systems in and outside the same AOR

Today’s COTS Satcom Solutions meet many of these requirements
Unified SATCOM Management
Global Network Operations – OV-1

Remote management to support global network operations over multiple satellites and SATCOM modem families – resiliency and efficiency
Hughes/GEE Network Coverage (Ku)
SMALLER, LIGHTER TERMINALS FOR QUICK DEPLOYMENTS
User Requirement for Portable Tactical Broadband

❖ Information Exchange Requirement:
 – Tactical Beyond Line of Site (BLoS)
 – Support for small teams or staff section, liaison officer; 2-5 personnel
 – Asymmetric links for broadcast/multicast receive, med rate transmit
 ❖ Up to 1 Mbps symmetric data
 ❖ <384 Kbps upload
 – Services including email, VoIP, FTP, low-rate video
 – Alternate bearer for larger nodes

❖ Patrol Man-pack
 – Truly man-packable – field pack, briefcase
 – Short duration deployment
 – Tactical Security
 ❖ Antenna footprint
 ❖ Low probability of detection

❖ Mobility Applications
 – Flexible and tactical antennas for platform integration
 – Maritime – patrol boats; minor warfare vessels; coast guard
 – Airborne – rotary wing; fast-jets; light surveillance aircraft
 – Land – troop mobility/C2 vehicles; armored vehicles; logistic tracking
HM SYSTEM
EFFICIENT AND AGILE
SATCOM FOR FIXED,
MOBILE AND PORTABLE
APPLICATIONS
HM Product System Applications

- **Applications**
 - **Airborne**
 - Rotary-wing aircraft
 - Fixed-wing aircraft
 - Manned/unmanned (UAV)
 - **Ground/sea**
 - Mobile
 - Vehicle/boat mounted
 - Fixed/transportable
- **Suitable environments**
 - BLOS/ISR Missions
 - Special Forces
 - Rapid response/reaction
 - Customs/Border Patrol
 - Broadcast aviation
 - Search and rescue
 - Disaster response
 - A2/AD Environments
HM System Waveform Overview

- Waveform Based on Hughes newly developed Scrambled Code Multiple Access (SCMA) technology
- Innovative waveform based on very low-rate coding and new multiple access techniques
- Efficient sharing of the same bandwidth by using specific scramblers to separate timeslots
- Enables small antenna users, supporting COTM, RPAs, and other Intel and SOF users
- Independent of frequency band used (Ku-, Ka-, X-band, etc)
SCMA utilizes low rate LDPC codes with moderate length and then scrambled by a sequence

- Spreading sequence may be clocked at symbol rate, if no spreading needed

Information is encoded by a low rate k/n LDPC code, typically, n = 9, k = 1, 2, 3, 4

Each LDPC code block starts with a unique word (UW), allowing independent acquisition should the previous code block not be received successfully

Optional pilot symbols are inserted once per m symbols for synchronization purposes, typically, m > 10, to minimize overhead

For time multiplexing from different terminals, a guard interval is added at the beginning of the UW.
SCMA Salient Features

- SCMA operates under the noise floor, not visible by spectral analysis
- Provides an affordable protected satcom solution
- Variable code rates, modulation, and spreading factors allow trades between throughput, bandwidth vs. power and anti-jamming capabilities
- Synchronization is designed to support reliable operation in the most adverse noise/interference environment
- Independent code block by code block acquisition lends itself for upper layer capabilities
 - Frequency hopping to wider bandwidth
 - Upper Layer Protocol Enhancement (ULPE) protection against pulse jamming and other disruptions
 - Other enhancements for Low Probability of Detection (LPD)
- Inherent Low Probability of Intercept/Detect (LPI/LPD) and Anti-Jam (AJ) characteristics
Hughes Core Software Defined Modem Technology

- The Software Defined Modem (SDM) is the Core Technology for our COTM, Airborne and HUB products
 - Microsat Waveform Properties
 - Integrated Product Solutions
 - Production Hardware
 - Versatile Applications

- The SDM was designed and developed at Hughes
- Allows for customer specified waveforms
- Porting of MSS and FSS waveforms
HM100 Rack-Mounted Hub Modem

- Universal HUB
 - Airborne
 - COTM
 - Maritime
- Utilizes Core SDM Technology
- Transportable
- Light Weight
- High-throughput capabilities
- SCPC
- Protection
HM 300
XEBRA SERVICE
Announcing Airbus XEBRA Service (HM300 Terminal)
Terminal Specification
Form Factor
- W: 247.9mm L: 236.9mm H: 84.3mm
- Weight: 5.4kg

Other Details
- Interfaces: 1x RJ45
- Pointing: Manual
- IPv4/IPv6 agnostic

Environmental Data
- Operational Temperature: -20 to +55°C
- Storage Temperature: -30 to +80°C
- Operational Altitude: up to 10000ft
- Waterproofness: IP65
- Relative Humidity: 95%
- Shock: Mil-Std-810G Method 514.6
- Vibration: Mil-Std-810G Method 516.6

This document and its content is the property of Airbus Ltd/SAS/GmbH and is strictly confidential. It shall not be communicated to any third party without the written consent of Airbus Ltd/SAS/GmbH.
XEBRA Network Setup

IP to IP Connectivity:

- Service interface is before Customer Furnished Crypto and Baseband
- Connection to XeBRA Hub in UK SGS via Skynet 5
- Traffic delivered to and from customer JOM
- Crypto and Baseband Solutions to suit customer requirements

HUB Locations
- Oakhanger, UK
- Colerne, UK
- Adelaide, Australia
XEBRA Sample Deployment
HM200 Ruggedized COTM Modem

- High-throughput COTM BLOS capabilities
- Operates on HM System Waveform
- Low power-level requirements
- COTS ruggedized chassis, mounting tray
- MIL-SPEC connectors
- Internal power supply
- GUI for management and control
- Separate data and M&C ports
- Airborne Installs at +40000 ft
HM200 Rotary Wing applications
JUPITER HIGH THROUGHPUT TDMA PRODUCT LINE OVERVIEW
KEY Features:

- Based on High Throughput Satellite
- Open Standards based: TIA1008B, ETSI
- High density gateways minimize teleport footprint
- High throughput terminals
- Spot beam architecture support
- High Data Rates: >1 Gbps Outroute, >50 Mbps Inroute
- SCPC Return Option
- COTM Support
- Native IPv6 support
- Highest level security features
- WGS Certification
- Exceeds all JP2008 5B1 Advanced Waveform Performance requirements
JUPITER System Deployments

<table>
<thead>
<tr>
<th>Date</th>
<th>Deployment Details</th>
</tr>
</thead>
</table>
| In-Service 2012 | EchoStar® 17
• 100+ Gbps capacity
• 16 Gateways (5+ Gbps each)
• 1 millions remote terminals shipped |
| In-Service 2013 | Telefonica Media Networks Latin America
• Amazonas 3 Ka-Band
• 2 Gateways |
| Installation Now | Russian Satellite Company
• AM5 Ka-Band
• 1 Gateway |
| Over-air | Pegaso – SCT Broadband
• Ku-Band |
| Over-air | TS Global – Malaysia Schools
• C-Band |
| Preparing for Shipment | Turksat
• Turksat 4B Ka-Band
• 1 Gateway |
| 2016 | EchoStar® 19
• Launch scheduled for 2016
• 150+ Gbps capacity |
| 2016 | 65W
• Launch scheduled for 2016
• Consumer services for Brazil |
JUPITER Service Platform

Highlights

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit</th>
</tr>
</thead>
</table>
| Wideband DVB-S2 ACM 200+ Msps | • Increased bandwidth Efficiency
 • Better suited for higher service plans |
| 32APSK outroute 5% roll off | • Increased Efficiency, Throughput |
| JUPITER SoC | • High performance (100 Mbps) yet cost effective terminals |
| Advanced Highly Scalable and Reliable Gateway Architecture | • Lower Total Cost of Ownership (TCO)
 • Lights out operation for low Opex |
| Native IPv6 transport | • Future proof |
| Hardware 256 AES encryption/TRANSEC | • Security with performance |
| WGS Certification | • Use by Coalition partners |
| QPSK, 8-PSK and 16-APSK inroutes | • High efficiency return channels for high gain spot beams |

Plus:
- **Powerful HNO/VNO**
- **Strong QoS capabilities**
- **Advanced IP routing features**
- **Flexible Service Plans and FAP**
- **Full Featured NMS**
- **Rich API**
JUPITER System Efficiencies

Bidirectional

- Advanced Web acceleration (WAS)
- IP header compression
- IP payload compression
- Byte level compression

Outroute

- GSE encapsulation
- 200+ Msps
- DVB-S2/ACM
- 32APSK modulation
- Rate 8/9 coding
- 5 or 10% roll-off

Inroute

- IPoS TDMA
- 256 Ksps – 6 Msps
- LDPC coding
- QPSK/8PSK modulation
- Rate 9/10 coding
- 90% efficiency

The result is significant reduction of “satellite bits” vs “router bits”
JUPITER Traffic Classification

Classes are arranged according to:
- Latency
- Jitter
- Packet loss
- Throughput requirements

Standards based classification approach

Priority 1 (highest)
- Optimized for two-way voice
- Tolerant to errors
- Require low latency
- Low throughput requirements

Priority 2
- Optimized for applications like Web browsing, credit card transactions
- Low tolerance to errors
- Require low latency
- Medium throughput requirements

Priority 3
- Optimized for streaming video
- Tolerant to errors
- Medium latency requirements
- High throughput

Priority 4
- Optimized for bulk file transfers
- Low tolerance to bit errors
- Insensitive to transfer delays
- High throughput requirement
Multifield Classification

MF Classifier Rules

Priority Q1 - Conversational
Priority Q2 - Interactive
Priority Q3 - Streaming
Priority Q4
Priority Q5** - Bulk (Background)

Layer 3 Packet Classification and Queuing

Queue Servicing

Terminal or IPGW
IP Features

- Dual IPv4/IPv6 stack
- Dynamic IPv4 and IPv6 addressing
- Static IPv4 addressing
- Per-flow QoS assignment using configurable traffic classifier (source/destination IP, port, protocol, DSCP)
- Outroute traffic prioritization based on QoS
- Inroute traffic prioritization based on QoS
- Outroute FAP – daily, weekly, or monthly volume quota
 - FAP by QoS, including the ability to not FAP particular classes
 - Separate daytime and off-peak FAP buckets with configurable times
- Outroute fast track (flow control bypass) for conversational class
- Inroute CBR (e.g., for conversational class VoIP or other)
- Inroute CBR virtual framing for VoIP
- VSAT SIP proxy and on-demand streaming
- Terminal DHCP server
- IPv4 NAT via COTS NAT router at gateway
Enterprise Services and Security

- Enterprise routing protocols and services
 - BGP IPv4 and BGP IPv6
 - RIPv2
 - Default route advertisement via BGP
 - BGP communities support
 - Authenticating BGP connections with MD5
 - VLAN tagging
 - VLAN template configuration
 - Policy-based routing at the IPGW and terminal
 - Access Control List (ACL) at the terminal
 - Fenced Internet access
 - End-to-end DSCP

- Security functions and configurations
 - AES256 link layer encryption – inroute and outroute
 - Hitless terminal AES key changes
Advanced Web Acceleration

- HTTP acceleration for both static and dynamic content
 - Embedded object prefetch
 - Caching of objects in VSAT
- Highly efficient
 - Byte Level Caching and V44 combine to provide high compression ratios on HTTP traffic
- Separation of Streaming and non-streaming HTTP traffic

We tested 100 Web pages in total

![Graph showing nearly 50% reduction in response time]

Average response time in seconds
JUPITER System On A Chip (SoC)

Industry First ASIC To Support Wideband

- Megagate high-speed CMOS SoC
- 1-200+ Msps wideband receiver
- 32APSK demodulation at all symbol rates
- OQPSK/8PSK modulation
- Multicore processor with rich suite of interfaces
- Hardware-based AES engine
- Network-layer IP functions

More processing
Improved modem performance ➔ Higher speeds
Higher capacity
JUPITER (HT) Enterprise Modems

HT1400

HT1460

HT MODMAN
Gateway System Architecture

- High-availability/reliability architecture
- State-of-the-art, high-density baseband
- Optimized end-to-end IP solution
- Flexible VNO model configurations
- Integrated lights-out management
- Centralized network management
Network Management Overview

- Hierarchal management scalable to large number of gateways and millions of terminals
- Centralized high availability redundant database
- Distributed local management functions at each gateway
- Comprehensive fault and performance management using ScienceLogic EM7 solution
- Single unified interface to BSS based on RESTful API standard
Virtual Network Overview

- **Satellite Operator (SO)**
 - Owns Satellite
 - Responsible for maintaining, managing, deploying and operating the satellite
 - Sells Satellite capacity to one or more HNOs

- **Host Network Operator (HNO)**
 - Controls own capacity, owns at least one Gateway and NMS/NOC
 - Configures time/frequency plan
 - Divides the DVB/IPOS network into one or more Operator Virtual Network (OVN) and distribute own resources among them

- **Operator Virtual Network**
 - The base of contract between HNO & VNOs

- **Virtual Network Operator (VNO)**
 - Assigned to an OVN with either Mbps or MHz bandwidth
 - Owns and manages its terminals that form the virtual network
 - Restricted client mode access to NMS
JUPITER API Support

- Programmatic interface to external OSS/BSS for all service-related configuration or actions
- Support asynchronous notification to customer BSS after service-related changes (activation, deactivation, swap, move, suspension)
- API architecture
 - RESTful (Representational State Transfer)
 - Requires less dependency between client and server
 - API itself is exposed in a human-understandable manner (using verbs/nouns for URIs)
 - Works over a standardized protocol (uses HTTP and corresponding actions – GET/PUT/POST/DELETE)
 - Supports OAuth authentication and security models
 - Can easily scale across multiple clients
 - Input/Output parameters are in JSON format

Most APIs available to VNOs
- Service Plan Management
- Throughput Monitoring
- Terminal Management
JUPITER Gateway Rack

- JUPITER configuration optimized for conventional satellites
 - C-, X, Ku-, or Ka-band
 - Can also be used as a starter configuration for HTS systems
- Integrated 4IF distribution
 - Multiple transponders/beams/satellites
- Up to five networks within a single rack
 - Starter rack configured with one network
 - 1:N redundancy
- Highly scalable
 - Expansion to support 1 Gbps per rack
 - Expansion is achieved through combination of hardware and licensing

4IF distribution
1:1 LAN switch
NMS firewall
intelligent power

Up to 6
JUPITER-TCS

Up to 6
JUPITER-IPAS

1:1 redundant
JUPITER-NMS
JUPITER-Transmission Control Server

- Advanced multicore server with Modulator Demodulator Chassis
- MDC is a PCI chassis equipped with single OMM and single IDM
 Outroute processing
 - Outroute can scale from 1 to 200+ Msp s
- Inroute processing
 - Up to 24 Msp s (based on licensing)
- IP processing for outroute capacity
 - Additional IP processing achieved through expansion servers
 - Licensing required for IP expansion

OMM – Outroute modulator
IDM – Inroute TDMA demod
Fully Configured JUPITER-SRS

JPTR-SRS with
- 6:4 IF distribution
- Quantity of 6 JPTR-TCS-MDC
- Quantity of 6 JPTR-EXP-SRVR
- 1:1 redundant NMS

An Operational Scenario

Servers run IPGW and WAS functionality
One rack meets all capacity requirements for SGS-E or SGS-W per JP2008 5B1 Program
JUPITER Enhanced Management System
Available

JUPITER is integrated EM7 management system
Hughes Aero Solutions and Services

Hughes Powers In-Flight Connectivity

- Hughes Equipment Platform with Comprehensive Mobility Support
 - Doppler
 - Spreading
 - Multiple Beam and Satellite Operation
 - Multiple GWs/NOCs
 - NMSS
 - Modem
 - Jupiter Technology Based Aero Solution (in development)

- Wholesale Services
 - Space Segment
 - Teleport and Uplinking
 - GW/NOC Operations and Maintenance
 - Backhaul, Internet Access and Rack Hosting
 - Engineering services
Customers current fleet of satellite-connected aircraft: 600+

Southwest

Transaero

Norwegian

Nok Air

Mango

Air China

Icelandair
Jupiter Aero System Concept

Aero System Elements

- Aero Terminal
 - Modem
 - Antenna including Positioner and RF
 - Radome

- Satellite Air Interface
 - Wideband Forward Channel
 - MF-TDMA Return Channel

- Mobility Gateway(s)
 - Multiple GWs depending on HTS Satellite Beam Mapping/Coverage
 - Baseband Equipment includes satellite modulator/demodulator and protocol processing
 - Common Networking Equipment to support terrestrial communication
 - RFT

- Network Management System (NMS)
 - Centralized NMS controls multiple Mobility GWs
 - Supports Multi-beam and Multi-satellite
Jupiter Aero System

Next Generation Aero System Based on Jupiter Technology Platform

• Complete transport solution:
 - Ground segment
 - ARINC 600 DO-160 certified aeronautical terminal
 - Ka-band aero antenna and radome
 ... All working in conjunction with customer furnished IFE, service management, and in-cabin distribution systems

• Designed for commercial aviation operation on high-throughput Ka satellites

• Enhanced beam switching supports multiple satellites, each with large numbers of spot beams and overlapping coverage

• System spanning multiple satellites and many gateways managed by a single NMS
Jupiter Aero System Architecture

Key Elements:

- Multiple transport gateways each supporting multiple beams
- Common mobility network access point provides single point of entry to Internet and therefore consistent IP address
- Single NMS manages entire system
- Uses proven Jupiter Technology air interface
Jupiter Aero Terminal

- ARINC 600 compatible MODem MANager (MODMAN) chassis with up to 2 Jupiter modems and Intel Quad-Core coprocessor board
- Doppler correction
- Mobility power control with link adaptation
- Maximum Power Spectral Density management through dynamic spreading
- Rapid beam, gateway, and satellite handovers minimize traffic delays and maintain end-to-end TCP connectivity
- Support for large aircraft with many users
 - 100+ Mbps terminal throughput (as permitted by link budget)
 - Traffic shaping provides fairness amongst cabin users
- Real time mobility terminal tracking in NMS
- Low profile antenna and radome
Aero Terminal Main Interfaces

• Satcom Modem
 – Standard Jupiter IPOS Interface
 – Wideband Forward Channel
 – MF-TDMA Return Channel
 – Optional Dual Modem Configuration

• Communications Interfaces
 – 5x Gigabit Ethernet Ports for in cabin/WiFi
 – 4G Cellular Interface

• Antenna Interface
 – L-Band IF Interfaces for Tx (950-2200) and Rx (950 – 2150MHz)
 – 50MHz Reference Signal Multiplexed on Tx Interface (10MHz option)
 – ARINC 791 AMIP Interface for Antenna Control (10/100 BaseT Ethernet)

• Aircraft Interface
 – ARINC 429 Rx Interface for Navigation Data
 – Discrete I/O (weight on wheels, Tx Mute, etc.)
 – 115VAC 360-400Hz with 200msec Hold-up

• ARINC 600 4-MCU Chassis

• DO-160 Qualification Tested
THANK YOU

QUESTIONS?
MEET THE HUGHES TEAM: MILCIS

Dan Losada
daniel.losada@ Hughes.com
+1-301-601-2699

Rick Lober
Rick.lober@ Hughes.com