A Heterogeneous Software Defined Networking (SDN) Architecture for the Tactical Edge

This Research was Funded by Australian Army Research Scheme

Ibrahim Elgendi Kumudu S. Munasinghe Braden McGrath

Faculty of Education Science Technology and Mathematics
University of Canberra
Australia
Modern battlefield communications networks are:

- Heterogeneous (radio, bluetooth, zigbee, wi-fi, cellular, satellite)
- DenseNets: High dense heterogeneous network
- Highly mobile (walking soldier to a supersonic jet)
- Ubiquitous access (any where, any time)
- Ultra-Low Delay and High Throughput
Challenges

Challenges of a modern battlefield communications network:

- Heterogeneous issues (interworking, interference etc.)
- Unable to support DenseNets
- Ubiquitous connectivity and access issues
- High bandwidth and Quality of Service (QoS) demands
- High latency, loss, and signaling overheads
- Mobility management and seamless handover issues
- High energy consumption
Current Technology Gaps

- Cloudlets and Mobile Cloud Techniques:
 - conventional cloud mobile technologies for controlling small cell areas
 - High delay and loss of data
- MOCHA
 - High latency around 3 seconds
 - Slow handover
- Hard Interference and Mobility management
- Decouple data and control planes is missing
- Cannot fully support heterogeneous communications at tactical edge

Elgendi, Munasinghe, and McGrath
Proposed Solution

- We propose a **3-Tier (3T) Software Defined Networking (SDN)** architecture that is capable of:
 - Interworking heterogeneous densenets and devices
 - Bluetooth, Zigbee, Wi-Fi, Cellular, WiMAX
 - **Seamless Mobility and fast** handoffs
 - Decouples **data and control planes**
 - **Ultra-Low** latency, loss, and signaling overheads
 - Enhanced integration between
 - **Tier 1** - Land Tactical Network (LTN) – Physical tier
 - **Tier 2** - Battlefield Tactical Network (BTN) – Control tier
 - **Tier 3** - Joint Task Force Headquarters (JTFHQ) – Management tier
3T SDN Architecture
3T SDN Architecture for Modern Battlefield

Elgendi, Munasinghe and McGrath
3T SDN Controller Architectures for Modern Battlefield

- **BTN Controller Functions:**
 - Controls all LTN infrastructures with GC at HQ
 - Provides information processing or orientation
 - Provide Coalition communications

- **HQ Controller Functions:**
 - Network Global View
 - Simplified network topology
 - Mobility and handover management
 - Network element discovery
 - Backhaul management

Elgendi, Munasinghe and McGrath
Mobility Management in One Battlefield Area

- Soldier sends Logical Link Control (LLC)
- LC checks its MFIB
- LC asks GC about allocation of UE
- LC updates its MFIB and allocate UE
- LC sends periodic updates to GC with PBU (Femtocell ID, UE ID, IP)
- Soldier sends RR
- LC sends RA to DMM
- Uplink & Downlink Traffic
Mobility Management in Different Battlefields

- LC1 already has UE1 in its MFIB
- LC1 sends PBU (Femtocell ID, UE1 ID, UE2 ID) to GC
- GC sends PBU to LC2
- Creates tunnel between DMM1 and DMM2
- RA from DMM1 to UE1
- IP tunnel from DMM2 to UE2
- Uplink & Downlink Traffic

Elgendi, Munasinghe and McGrath
Battlefield Session Management

Proposed URP algorithm

- Femtocells with small cell diameter and Macrocells with large diameter
- IP Multimedia Subsystem (IMS) not longer relevant
- User Rate-Perceived flow algorithm (URP)
 - LC checks URP for UE during the call
 - URP=0 LC waits T=0.5s and checks URP again
 - If URP still zero LC turns session off and update MFIB at GC
 - If URP increases again LC keep session on without any MFIB updates at GC
 - URP can solve Interference problems
 - Deep Packet Inspection (DPI) in OpenFlow Switches
Simulation Model for Battlefield

- Linux based **NS-3 simulator** used to create a virtual SDN controller and an Open vSwitch with OpenFlow protocol
- The **3-Tier** (Our proposal) and **2-Tier** (Li, et al., 2012) architectures were simulated and compared
- First - Session handoff between Femtocells and Cellular BSs simulated
- Second - Throughput with different numbers of femtocells and mobility speeds simulated
- 25 Soldiers per Femtocell
- Packet Size Distribution network traffic model used (Fraleig, et al., 2003)
Round Trip Time vs. Femtocells

- RTT was simulated for 3-Tiered and 2-Tiered SDN models against increasing Femtocells (25 users per Femtocell)
- As the number of femtocells are increased the 3-Tiered model shows
 - Lower network delay (RTT)
 - High 2-Tier Delay because using cell agent
 - Increased LTN and BTN scalability

Delay of Three-Tiered and Two-Tiered SDN Architecture with Variable Number of Femtocell.

Elgendi, Munasinghe and McGrath
Throughput vs. Femtocells

- As the number of femtocells are increased the 3-Tiered model shows
 - Higher throughput
 - Increased capacity for DenseNets

Throughput of Three-Tiered and Two-Tiered SDN Architecture with Variable Number of Femtocells and Links.
This graph illustrates how the network throughput is affected by:
- The mobility/speed of soldiers in a femtocell
- The size of the femtocell
- The throughput is reduced with increased mobility of the soldiers
Throughput vs. Soldiers per Femtocell

- This graph illustrates how the network throughput is affected by:
 - the number of soldiers in a femtocell
 - the size of the femtocell

- Throughput:
 - is high from 0 to 25m
 - is reduced with increased size and number of soldiers per femtocell

Throughput of Femtocell with 25 Soldiers

Elgendi, Munasinghe and McGrath
Seamless Handover

- URP algorithm will monitor the session to keep it on
- URP signals LC to check its MFIB to determine the location of soldiers by using femtocell index
- Seamless handover and delay reduction

Throughput of Femtocell of soldiers with Handover and Overlapping of 20 meters
Conclusion

- We present a Heterogeneous Software Defined Networking Architecture for the Tactical Edge for highly dense heterogeneous battlefield networks.
- The benefits of this novel approach is that it outperforms existing cloudlets and mobile cloud techniques for tactical communications.
- According to our simulation results:
 - Faster handoffs between mobile soldiers and devices on a battlefield
 - Improved tracking of soldiers and devices
 - Faster network mobility with seamless handoff
 - Reduce overhead signaling
 - Lower delay
 - Higher throughput and scalability
 - Simplified network operation