

Region IV VPPPA Conference Chattanooga, TN

Global Machine Guarding Standards

Eric Cummings – ROSS CONTROLS Global Industry Manager - Safety Eric.cummings@rosscontrols.com 803-622-1161

Agenda

- Ross Controls Introduction
- Global Machine Safety Standards Trends

The ROSS Controls Story

- Founded in 1921 by Charlie Ross
- Design, manufacture and sale or pneumatic valves and systems for industrial equipment
- 1954 First double valve ever developed by ROSS
- 1962 Developed first pneumatic energy isolation device
- 2005 DM² TM

Global Facilities

ROSS Controls - Madison Heights

ROSS Controls - Troy, MI

ROSS Controls - Lavonia, GA

ROSS South America

ROSS China

ROSS Asia - Japan

ROSS UK Ltd.

ROSS Europa GmbH - Germany

ROSS India

Safety Industry

Current Committees with ROSS Representation

ANSI B11.19 Performance Criteria for Safeguarding Published 2003. Updated 2010

ANSI B11.0 General Safety Requirements & Risk Assessment Released 2008, updated 2010

ANSI Z244 Control of Hazardous Energy - Lockout Tagout Published 2003, Re-affirmed 2008

ANSI TR6 Safety Control Systems for Machine Tools
Published 2010

ANSI B155.1 Packaging and Packaging Related Converting Machinery
Published 2011

ANSI B11.151 Plastics Machinery
Under revision

ANSI B11.1 Mechanical Power Press Published 2009

ANSI B11.2 Hydraulic and Pneumatic Presses Under revision, should release in 2012

CSA Z432 Guarding of Machinery Published 2004. Updated 2009

CSA Z460 Control of Hazardous Energy - Lockout - Tagout Published 2005. Updated 2010

New! Machinery Directive 2006/42/EC (December 29, 2009)

MIOSHA
Part 24
Mechanical Power Presses

INTERNATIONAL 13849-1

INTERNATIONAL 13849-1

Safety of machinery Safety related

Safety of control systems

Parts of control systems

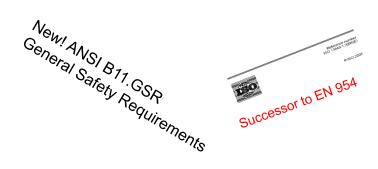
Parts of control systems

Ceneral principles for design

Ceneral principles for de

ANSI B11.19-2003

American National Standard for Machine Tools -


Performance Criteria for Safeguarding

cretariat and Accredited Standards Developing Organization

Approved: APRIL 29, 2003

Approved: APRIL 29, 200

NNSI Technical Report

Risk Assessment and Risk Reduction — A Guide to Estimate, Evaluate and Reduce Risks Associated with Machine Tools

Harmonization of Standards

- Standards are beginning to speak a similar language and have a similar structure
- Being copied with modifications
 CSA Energy Isolation = ANSI Energy Isolation
- Robotics ISO 10218 will be the first global standard

"The New Directive"

- Does not apply to US Machines but ...
 - Global users and OEMs
 - Like to standardize
 - Different machines can affect liability
 - Driving the current global manufacturing market

European Certification and Documentation

EQUALS

"YOUR PASSPORT TO EUROPE"

The Machinery Directive 98/37/EC was replaced with 2006/42/EC on December 29, 2009

- "The New Directive"
 - Requires CE mark on machinery & safety components
 - Compiling the technical construction file (Mtce. Manual, spare parts, risk assessment etc.)
 - Meet the EHSR's
 - Includes safety valves with diagnostics

ROSS EUROPA® GmbH • Robert-Bosch-Strasse 2 • D-83225 Langen
Telefore (D6103) 785-7.0 • Fax (D6103) 74594 • emai: info@roseuropa.com • www.roseuropa.com
Siz: Langen, Act Langen, 8412 • Geschäfthere: Emait: FVoss

- Robert Format - Robert Format - Robert Format F

Declaration of CE Conformity in Application of Directive 2006/42/EC, of the European Parliament and the European Council, valid from December 28, 2009

Herewith we declare that all ROSS DM^{2™} Crossflow^{7™} SERPAR[®] double valves with total dynamic monitoring and memory are in full accordance with Directive 2006/42/EC as well as Directives 73/23 EEC (amended by 93/68 EEC) and 89/336/EEC (amended by 92/31 EEC).

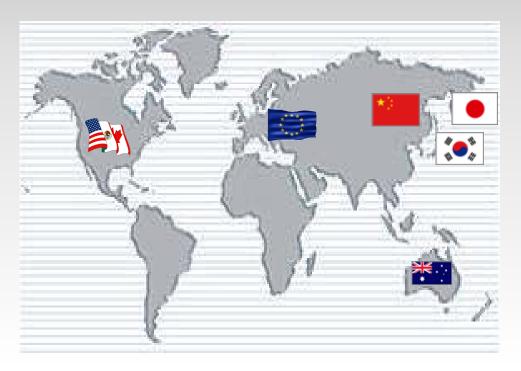
All DM2" double valves are equipped with an internal monitoring system integrated in two identical valve elements. When the two pilot valves are energized simultaneously, the two main valve elements operate as one single, normally closed, 3/2-way valve. Any asynchronous movement between both piston elements for a time period > 0.1s, during actuation or de-actuation, will result in a lock-out of the valve. The valve remains locked out until corrective action has been taken. The DM2" system with total dynamic monitoring and memory can only be reset by a defined operation.

The above described ROSS DM^{2™} Crossflow[™] SERPAR® double valves with total dynamic monitoring and memory are in full accordance with all requirements of paragraph EN ISO 13849-1, category 3 and 4.

Langen, June 29, 2009

ROSS EUROPA® GmbH

Detlef Zimmerling


Klaus Goebel
Manager Documentation

((

The CE Mark denotes that the manufacturer has declared his product in compliance with all the pertinent Directives.

International Electrotechnical Commission (IEC)
International Organization for Standardization (ISO)

Member Countries of WTO

- Type A
 - Basic safety standards and terminology
- Type B
 - B1 Standards on safety aspects
 - B2 Standards on safety components
- Type C
 - Specific machine requirements

STANDARD	USA	Canada	Europe	Brazil	Australia	China	Japan	India
Electrically Operated Valves	UL 429	CSA 22.2 No 139						
Control Of Hazardous Energy (Lockout)	ANSI Z244	CSA Z460	ISO 14118	NR 12	AS 4024			
Safeguarding of Machinery	ANSI B11.19	CSA Z432	ISO 13849			GB 17957	JIS B9700	
Safety Reqs and Risk Assessment	ANSI B11.0		ISO 12100				Article 18	IS 11016
Power Press Safety Regulation	ANSI B11.1	CSA Z142	EN 692				No 116	
Cylinder Press Regulation	ANSI B11.2	CSA Z142	EN 13736					
Robots	ANSI 15.06	CSA Z434	ISO 10218					
Packaging Machinery	ANSI B155.1		EN 415 1-9					
Plastics Machinery	ANSI B151.1		EN 422					
Hollow glass			EN 13042					
Safety Control Systems	ANSI B11.TR6		BG					
Pneumatic Systems	ISO 4414		ISO 4414			ISO 4414		
Two Hand Control			ISO 13851					
Pneumatic Fluid Power Testing			ISO 19973					

Emergency Stop:

- ANSI B11.19
- ANSI/NFPA 79
- ISO 13850

Risk Assessment Required:

- ANSI B11.0
- ANSI B155.1
 - ANSI Z244
 - ISO 12100
 - ISO 13849
 - ISO 10218
 - RIA 15.06
 - CSA 432
 - CSA 434
 - CSA 460

Risk Assessment Requirements:

Performed by:

- OEM
- Integrator
- End User

Must consider:

- Foreseeable misuse
- Failure Modes

Risk Assessment

- Risk Assessment
 - Task based process
 - Consider severity, frequency, & probability
 - Consider foreseeable misuse & failure modes

Machine Guarding Hierarchy

Action Steps Goal Result Change task, function, location, etc... Stage 1 Eliminate Hazards Eliminated Substitution of materials Engineering controls Awareness (warnings, signs & devices, placards, etc...) Reduce Risks to a Safe and Accept-Balance Stage 2 Safe operating procedures able Level Training (operator, maintenance, etc...) (Culture Drives the Mix) Personal protective equipment

Risk Assessment – EN 954

S - Severity of Injury

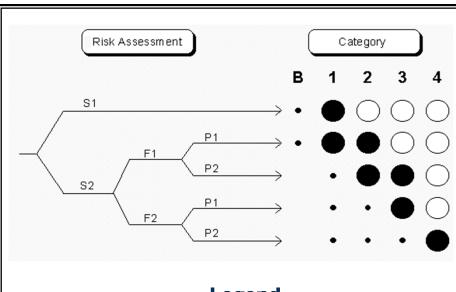
Slight (reversible) Serious (non-reversible)

S1

Take the worst case injury into account. If this is no more than a slight cut or bruise, then select S1. If the consequences are more severe, up to and including death, then select S2.

F - Frequency & Duration of Exposure

Seldom Frequent to continuous and/or long exposure


Select F2 if a person is exposed to the hazard frequently. It is irrelevant whether it is the same person or a different person. Select F1 if access is only required from time to time and the exposure time is short.

P – Possibility of Avoiding the Hazard

1 F

Possible under specific conditions Less possible

Determine the possibility of avoiding the hazard if the monitoring & control devices used (such as light curtains) failed. This is generally related to the speed at which the hazard moves, proximity to the hazard, level of training, and expertise of operators. If, in your opinion, the operator could recognize the hazard and avoid injury, select P1. Otherwise, select P2

Legend

- Preferred Category. Some risk levels offer two selection possibilities. If the equipment is clean and dry and the levels of maintenance and inspection of the safety related system are high, select the lower category. Otherwise, select the higher.
- Possible Lower Category. In some applications the designer can select a lower category by using other safeguard measures, such as hard guarding.
 -) More than required for the relevant risk

Risk Assessment - ANSI B11.0

Severity of harm

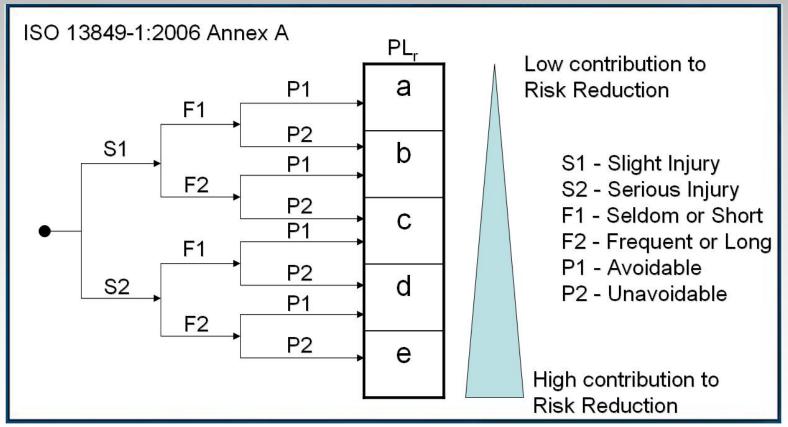
Catastrophic Serious Moderate Minor

Probability of occurrence of harm

Very Likely

Likely

Unlikely


Remote

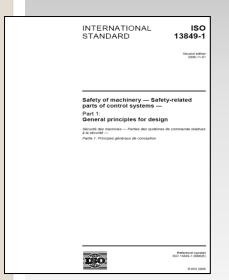
High	High	High	Medium
High	High	Medium	Low
Medium	Medium	Low	Negligible
Low	Low	Negligible	Negligible

Risk Assessment - ISO 13849

Machine Guarding Hierarchy

Table 3 — The Hazard Control Hierarchy						
		Protective Measure	Examples	Influence on Risk Factors	Classification	
	Most Preferred	Elimination or Substitution	Eliminate pinch points (increase clearance) Intrinsically safe (energy containment) Automated material handling (robots, conveyors, etc.) Redesign the process to eliminate or reduce human interaction Reduced energy Substitute less hazardous chemicals	 Impact on overall risk (elimination) by affecting severity and probability of harm May affect severity of harm, frequency of exposure to the hazard under consideration, and/or the possibility of avoiding or limiting harm depending on which method of substitution is applied. 	Design Out	
		Guards and Safeguarding Devices	Barriers Interlocks Presence sensing devices (light curtains, safety mats, area scanners, etc.) Two hand control and two-hand trip devices	Greatest impact on the probability of harm (Occurrence of hazardous events under certain circumstance) Minimal if any impact on severity of harm	Engineering Controls	
		Awareness Devices	 Lights, beacons, and strobes Computer warnings Signs and labels Beepers, horns, and sirens 	Potential impact on the probability of harm (avoidance) No impact on severity of harm		
7	7	Training and Procedures	Safe work procedures Safety equipment inspections Training Lockout / Tagout / Tryout	Potential impact on the probability of harm (avoidance and/or exposure) No impact on severity of harm	Administrative Controls	
	Least Preferred	Personal Protective Equipment (PPE)	Safety glasses and face shields Ear plugs Gloves Protective footwear Respirators	Potential impact on the probability of harm (avoidance) No impact on severity of harm		

Control Integrity


Table 4 — Approximate Relationships Between Levels in ANSI B11.TR6 and Other Relevant Standards

Risk Reduction	System Architecture				
Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
ANSI B11.TR6 (ISO 13849-1:1999)	ANSI B11.0	Robotics Industry (RIA R15.06 / CSA Z434)	CATEGORY (ISO 13849- 1:1999)	SIL (IEC 61508)	Performance Level (ISO 13849-1: 2006
Highest: Requirements of B and the use of well-tried safety principles shall apply. Safety-related parts shall be designed, so that a single fault in any of these parts does not lead to a loss of the safety function, and the single fault is detected at or before the next demand upon the safety function, but that if this detection is not possible, an accumulation of undetected faults shall not lead to loss of the safety function.	Highest: Redundancy w/ continuous self- checking (e.g., Dual channel w/ continuous monitoring)	R1 / R2A (Control reliable)	4	3	е
Intermediate / High: Requirements of B and the use of well-tried safety principles shall apply. Safety-related parts shall be designed, so that a single fault in any of these parts does not lead to the loss of the safety function, and whenever reasonably practicable, the single fault is detected.	Intermediate / High: Redundancy w/ self-checking upon start-up (e.g., Dual channel w/ monitoring at cycle/start-up)	R2A / R2B (Control reliable / Single channel with monitoring)	3	3 to 2	d or c
Low / Intermediate: Requirements of B and the use of well-tried safety principles shall apply. Safety function shall be checked at suitable intervals by the machine control system.	Low / Intermediate: Redundancy that may be manually checked (e.g., Dual channel w/ optional manual monitoring)	R2B / R2C (Single channel with monitoring / Single channel)	2	2 to 1	b
Lowest: Requirements of B shall apply. Well-tried components and well-tried safety principles shall be used.	Lowest: Single channel	R3A (Single channel)	1	0	a
B: SRP/CS and/or their protective equipment, as well as their components, shall be designed, constructed, selected, assembled and combined in accordance with relevant standards so that they can withstand the expected influence. Basic safety principles shall be used.		R3B / R4 (Simple)	В		а

Global users choose the "highest" standard

- o Tend to be ISO due to legal requirements
- Desire one machine globally
- Should not have lesser safety requirements depending upon country
- Allows for global design standards

OEMs design to customer specs

User Customer Demand

OEM Special

Standard requirements

OEM Standard Design

Lockout Tagout

OSHA 1910.147 The control of Hazardous energy

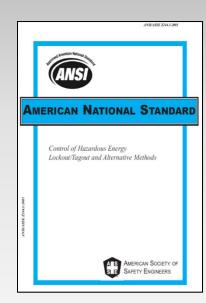
ANSI Z244 Lockout/Tagout

- Lockout whenever a body part is put into a point of operation
- Production related issues may be performed using "alternative measures which provide effective protection".

May <u>only be used</u> for tasks that are part of the normal production and operation

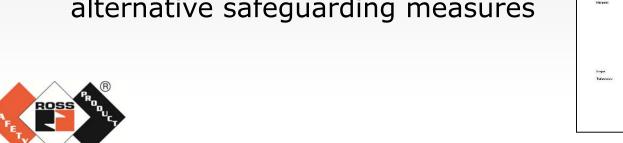
- Routine
- Repetitive
- Integral to the manufacturing process

Examples: jam clearing, tool changes, lubrication, roll polishing



- Allows for rapid access
- Maintains safety of employees
- ANSI Z244 provides specific process

- Process Requirements (3 steps)
 - Risk assessment
 - Hierarchy of control defined
 - Control circuit integrity defined



OSHA Instruction CPL 02-00-147 (Highlights)

- Directive to inspectors to address ANSI Z244.1
- Machine guarding becomes an important economical alternative to LOTO
- Hazardous energy that is present must be released
- Apply this safeguard through a risk assessment process
- Control reliability would provide alternative safeguarding measures

Risk Reduction

ANSI B11.19 Hierarchy

a) Guards

Only methods recognized by OSHA

- b) Safeguarding devices
- c) Awareness devices
- d) Safeguarding (work) methods
- e) Safe work procedures

Risk Reduction

Control circuit integrity (Z244)

- a) Negligible Risk Potential Infrequent exposure, low injury severity
 - Single channel hardwired circuit
- b) Low Risk Potential Frequent exposure and low injury severity
 - Dual channel hardwired circuit
- c) Medium Risk Potential ANY exposure to serious injury
 - Dual channel hardwired circuits that are redundant and monitored
- d) High risk potential ANY exposure to catastrophic injury
 - Requires control reliable components"

- Must use traditional lockout for maintenance
- Alternative lockout for production (routine, repetitive, & integral)
 - Requires risk assessment
 - Concerned with hazardous energy
 - Control reliable systems can be an effective means
 - Exclusive control by the employee

Lockout costs (time related):

- Initial problem occurs
- Troubleshooting the true problem
- Locating repair parts
- Lockout all energy sources
- Repair installation
- Restart

Alternative lockout reduces the risk of an operator missing a LOTO for one energy source when he is rushed.

Alternative lockout reduces the time required to put the machine into a safe mode.

TIME = MONEY

SAFETY + PRODUCTIVITY

Table 1 — Recommended application of IEC 62061 and ISO 13849-1

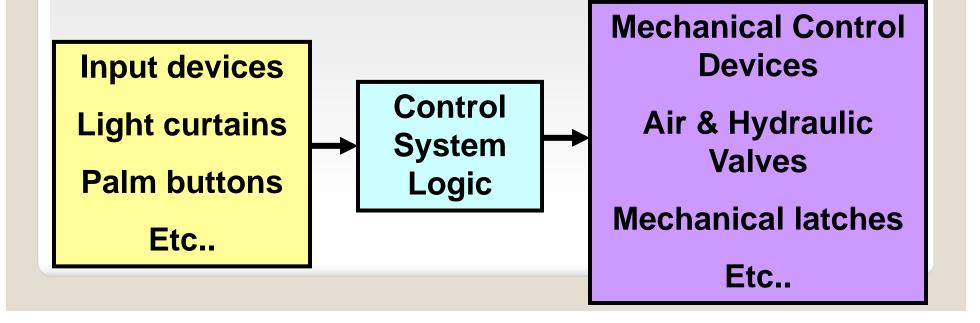
	Technology implementing the safety-related control function(s)	ISO 13849-1	IEC 62061
Α	non electrical, e.g. hydraulics	X	not covered
В	electromechanical, e.g. relays, and/or non complex electronics	restricted to designated architectures (see Note 1) and up to PL = e	all architectures and up to SIL 3
С	complex electronics, e.g. programmable	restricted to designated architectures (see Note 1) and up to PL = d	all architectures and up to SIL 3
D	A combined with B	restricted to designated architectures (see Note 1) and up to PL = e	X see Note 3
E	C combined with B	restricted to designated architectures (see Note 1) and up to PL = d	all architectures and up to SIL 3
F	C combined with A, or C combined with A and B	X see Note 2	X see Note 3

X indicates that this item is dealt with by the standard shown in the column heading.

NOTE 1 Designated architectures are defined in 6.2 of ISO 13849-1 to give simplified approach for quantification of performance level.

NOTE 2 For complex electronics: Use designated architectures according to ISO 13849-1 up to PL = d or any architecture according to IEC 62061.

OSS


NOTE 3 For non-electrical technology use parts according to ISO 13849-1 as subsystems.

above is used. This falls under the responsibility of the component manufacture. not the system designer.

Control System

The Control system does NOT END with the wire!

It includes all components involved in performing the safety function; sensors, manual input, and mode selection elements, interlocking and decision-making circuitry, and output elements that control machine operating devices or mechanisms.

Machine Guarding

B11.19 Highlights

Section 6 General Safeguarding Requirements:

Requires monitoring of all safety circuit applications involving stopping distances where the **stopping time** might change based on the systems components (sticky valve, worn spring on a switch, etc.)

Safety Valves

ANSI B155.1 Packaging Machinery Standard

7.2.9.2 Stop functions

 When pneumatic or hydraulic elements are incorporated into a safety stopping function, the circuit design and component selection shall be appropriate for the required level of safety performance. Devices that produce a hazard shall have power removed during a stop function, provided a greater hazard is not created in the process.

- Introduction of Functional Safety
 - TR6 Revision
 - Export OEMs
- Harmonizing IEC 62061 & ISO 13849
 - Equate SIL & PL
- ANSI harmonization

Global Machine Guarding Standards

Eric Cummings – ROSS CONTROLS Global Industry Manager - Safety Eric.cummings@rosscontrols.com 803-622-1161

