THE KLASSEIC® KNEE SYSTEM
SURGICAL TECHNIQUE MANUAL
TABLE OF CONTENTS

Klassic Design 1
Less is More® 3
Extensive Sizing 3
Fixation 4
Indications for Use 4
Preoperative Planning 4
Resecting the Distal Femur 5
Sizing the Femur 7
Making the Femoral Cuts 8
Preparing the Tibia 9
Sizing the Tibia 12
Broaching the Tibia 13
Preparing the Patella 14
Trialing 16
Implanting the Final Components 17
Warnings and Precautions 19
Klassic® Knee System 20
Implant Ordering Information

1
3
3
4
4
4
4
5
7
8
9
12
13
14
16
17
19
20
ACKNOWLEDGEMENTS

The Klassic® Knee System was developed in conjunction with:

Michael P. Bolognesi, MD
Durham, North Carolina

John K. Drake, MD
Ocean Springs, Mississippi

Shawn B. Hocker, MD
Wilmington, North Carolina

E. Jeff Kennedy, MD
Flowood, Mississippi

Stanton Longenecker, MD
Jacksonville, Florida

Trevor H. Magee, MD
Salt Lake City, Utah

Jeremy B. McCandless, MD
El Cajon, California

Rodney L. Plaster, MD
Tulsa, Oklahoma

Corey Ponder, MD
Edmond, Oklahoma

Jordan F. Schaeffer, MD
Salt Lake City, Utah

The Klassic® Porous Knee System was developed in conjunction with:

Michael P. Bolognesi, MD
Durham, North Carolina

Thomas L. Bradbury, MD
Atlanta, Georgia

Joshua L. Carter, MD
Mooresville, Indiana

William G. Hamilton, MD
Alexandria, Virginia

Rodney L. Plaster, MD
Tulsa, Oklahoma

Jordan F. Schaeffer, MD
Salt Lake City, Utah
The Klassic® Knee System is a modern universal design that offers both cemented and cementless options in sizes to accommodate a variety of patient anatomy, and requires only three trays of instruments.

The Klassic Knee System is designed to replicate the patient’s natural anatomy by using measured resection, which references the least-affected portion of the femoral condyle, the least-affected portion of the tibial plateau, and the thickest portion of the medial facet of the patella. Replacing bone millimeter for millimeter with the implant restores bony anatomy and joint line kinematics.¹

Bone resection, followed by an equal amount of prosthetic replacement, provides the knee with near normal varus-valgus and rotational stability throughout the full range of motion; cruciate-retaining and ultracongruent inserts offer bone sparing solutions for either PCL-retention or posterior stabilization.² ³

The Klassic Femur has a unique, patented⁴ trochlear groove that allows optimal patellar tracking along a 9° double Q-angle on both left and right anatomy, while retaining a neutral outside profile of the anterior flange. The thin anterior flange incorporates a deepened trochlear groove that eliminates the need for a bone sacrificing and time consuming fifth cut and bone preparation for the anterior notch. Features also include anatomically tapered posterior condyles, a proportional AP/ML ratio, and an optimized bone covering geometry that minimizes potential lateral overhang.

The Cobalt Chrome Klassic Femur is available in seven sizes, in either cementless or cemented options. The Klassic Porous Femur features Cobalt 3D™, an ultraporous three-dimensional sintered porous coating for long-term biological fixation.⁵ The femoral pegs are smooth to help prevent stress shielding and increase stabilization. The Klassic Femur for use with cement is grit-blasted to improve implant cement fixation.

The Klassic Tibial Baseplate is offered in six sizes, either cemented or cementless options, and is modular, allowing for stem extensions and future augments, for use in both primary and revision cases. The Klassic Porous Tibial Baseplate features Ti-Coat®, an ultraporous, three-dimensional sintered porous coating for long-term biological fixation.⁵ The pegs are smooth to help prevent stress-shielding and increase stabilization; the pegs also allow for an incremental amount of press-fit...
to enhance initial fixation. The Klassic Tibial Baseplate for cemented use is grit-blasted to improve implant/cement fixation.

Since the normal posterior tilt of the tibia is not a constant angle (it ranges from 4-12°), the tibial cut must be adjusted in order to reproduce each patient’s normal posterior slope. If the posterior slope is fixed or if the tibia is cut perpendicular to the tibial shaft axis, the normal kinematics of the knee may not be simulated. Cutting the tibia parallel to the patient’s natural posterior slope may improve the load-carrying capacity of the supporting bone. The Klassic Knee System includes adjustability for the tibial cut to be made parallel to the joint line on the anterior/posterior plane, in order to reproduce each patient’s natural posterior slope and avoid cam impingement or laxity during extension and flexion. Previous research efforts have demonstrated that the ultimate compressive strength is improved 40% when bone cuts are made parallel to the joint versus perpendicular to the tibial shaft axis.

If the tibial cut closely matches the anatomic posterior slope, anterior subsidence may be avoided. The tibial baseplate is designed to optimally cover the tibial plateau using a universal geometry. The M/L edges of the tibial baseplate and inserts have matching conforming geometry to provide consistent polyethylene thickness all the way to the peripheral edges.

Intraoperative use of bone slurry at the bone-implant interface provides up to three times the amount of bone ingrowth at the interface as compared to specimens implanted without bone slurry.

Both a deep-dished Ultra-PS® Insert and a standard CR/Congruent Insert are available. The Ultra-PS insert provides a high anterior jump height and increased conformity to provide stability through a range of flexion without a cam and post design. Insert sizes are matched one-to-one with tibial/femur sizes (sizes 6 and 7 femoral components share the size 6 insert) to maximize congruency and enhance mid-flexion stability. The posterior lip of both the CR/Congruent and the Ultra-PS Inserts is relieved to minimize impingement and maximize flexion.

The Klassic Tibial Insert locking mechanism incorporates a tibial set-screw, along with an anterior snap and M/L constraints, in order to minimize backside wear. The insert features an anti-backout mechanism to ensure retention of the screw.

The geometrically forgiving Klassic Sombrero and Klassic Domed Patellae optimize patellofemoral contact area during tracking.
The Klassic Knee System is designed to significantly reduce the amount of inventory needed to perform a knee replacement surgery. The result is a streamlined system that offers a surgeon both ease and flexibility of use while reducing costs for the hospital. Our goal is to provide a state-of-the-art, efficient product.

A variety of anatomical sizes allow for an optimal patient fit.

- **Klassic Femurs** are available in seven sizes: 1-7, in both porous and nonporous options.
- **Klassic Tibial Baseplates** are available in six sizes: 1-6, in both porous and nonporous options.
- **Klassic Tibial Inserts** are available in both CR/Congruent (for cruciate retaining surgeries) and Ultra-PS (for cruciate sacrificing surgeries), in six sizes: 1-6, and five thicknesses: 10, 12, 14, 16, and 18mm.
- **Klassic All-Poly Tibias**, Ultra-PS (for cruciate sacrificing surgeries) are available in five sizes: 1-5, and three thicknesses: 10, 12, and 14mm.
- **Klassic Patellae** are available in four sizes (in both Domed and Sombrero configurations): 1 (28mm), 2 (31mm), 3 (34mm), 4 (37mm).
- **Klassic Tibial Stem Extensions** are available in four lengths: 25, 50, 100, and 150mm.
FIXATION

The Klassic Porous Femur features Cobalt 3D™, a three dimensional ultraporous, porous coating made from asymmetrical CoCr grains. The Klassic Porous Tibia features TiCoat®, an ultraporous three-dimensional, commercially pure titanium porous coating with a mean porosity of 60% for biological fixation and demonstrated bone ingrowth.11 Both coatings offer a mean porosity of 60% for biological fixation and demonstrated bony ingrowth.

11 Data on file

INDICATIONS FOR USE

The Klassic Knee System is intended for prosthetic replacement in treatment of the following:

- Patient conditions of non-inflammatory degenerative joint disease (NIDJD): avascular necrosis and osteoarthritis
- Patient conditions of inflammatory joint disease (IJD): rheumatoid arthritis
- Patients with failed previous surgery where pain, deformity, or dysfunction persists
- Correctable varus-valgus deformity and moderate flexion contracture
- Revision of a previously failed knee arthroplasty
- Patients who require a total knee replacement
- The Klassic Knee System is indicated for cemented use only, except for the Klassic Femur, Porous, and the Klassic Tibial Baseplate, Porous, which are indicated for cementless use.

PREOPERATIVE PLANNING

Obtain a long standing, anteroposterior, and lateral radiograph of the knee, as well as a merchant or sunrise view of the patella. The entire femur should be visualized to rule out any structural abnormality, as the distal femoral cut will be referenced from an intramedullary rod in the medullary canal.

Templating for size is most accurate on the lateral radiograph since many patients present with a flexion contracture that distorts magnification on the anteroposterior radiograph.

The degree of constraint in the tibial insert may be planned, such as the use of the Ultra-PS Insert for more constraint in patients with posterior cruciate ligament (PCL) deficiency.
1. RESECTING THE DISTAL FEMUR

Locate the medullary canal by drilling into the distal femoral shaft, approximately 2mm above the true roof of the intercondylar notch, using the 3-in-1 Drill.

Align the drill with the lateral and frontal planes to correctly position the femoral component relative to flexion/extension (Fig. 1).

Toggle the drill upon exit to vent the canal and center the Intramedullary Rod (I/M Rod) at the entry point.

Incorrect posterior placement of the entry hole may lead to flexion of the femoral component. Incorrect placement anteriorly may lead to extension of the femoral component (Fig. 2).

Insert the tapered I/M rod into the isthmus (Fig 3). Remove the I/M rod from the I/M canal. Assemble the Distal Femoral Cut Guide by attaching the Universal Cut Block and setting the desired valgus rotation for the given side. The distal femoral cut guide offers both left and right configurations and the option for 4, 5, or 6° of valgus distal femoral resection (Fig. 4).

Note: Ensure that the adjustable screws are dialed so that they are flush with the posterior side of the guide.
Insert the I/M rod into the distal femoral cut guide at the chosen valgus alignment and place the assembly on the distal femur, inserting the I/M Rod into the canal (Fig. 5).

The height of the universal cut block may be adjusted by loosening the attachment knob one-quarter turn. Re-tighten the knob once the block is at the desired height.

Dial the medial or lateral adjustable screw down to the deficient condyle to compensate for lost cartilage. Adjust the distal femoral cut guide for rotational alignment, and place the universal cut block in contact with the anterior cortex of the distal femur before tightening the attachment knob. For additional stability, attach the Universal Handles to the universal cut block or drill through the lateral hole on the distal femoral cut guide and fill with a Long, Smooth Quick Pin into the condyle.

Surgical Pearl: A quick pin placed in the hole in the distal femoral cut guide should not interfere with the anterior posterior pin placed in the universal cut block at a 0 position.

Stabilize the distal femoral cut guide by drilling the 3.2mm Drill into the universal cut block through the holes marked 0 and tapping two Short, Smooth Quick Pins into the universal cut block until they are flush with the saw guide to eliminate saw impingement. If desired, double check the alignment with the Alignment Tower and Alignment Rod before making the bone cuts (Fig. 6).

Remove the I/M rod, then remove the distal femoral cut guide by unthreading the screw attached to the universal cut block. Cut the distal femoral condyles through the saw guide of the universal cut block using a 1in. wide 1mm (.040in.) thick saw blade, which may allow for easier resection (Fig. 7).

Surgical Pearl: Check the distal femoral cut for flatness by placing the flat side of a femoral cut block on the cut surface of the distal femur, making sure that the cut is flat.

Remove the pins using the Pin Puller (Fig. 8).

*Note: The Klassic Knee System will accommodate up to a 1.27mm (.050in.) thick saw blade. The actual cut slot is 1.40mm (.054in.).

Surgical Pearl: Multiple saw blade passes ensure a more accurate cut with less skiving.
2. SIZING THE FEMUR

Set the desired external rotation on the A/P Sizer by aligning the arrows to either 0 or 3° of external rotation (Left or Right). With the knee in maximal flexion, center the A/P sizer on the cut femoral condyles (Fig. 9). Position the A/P sizer by referencing the posterior femoral condyles on the skids, and tap the captured set pins with a mallet to stabilize it. Use the A/P sizer as a caliper to determine the correct anterior/posterior femoral size. Remove the A/P sizer using the Knee Slap Hammer.

Surgical Pearl: Excessive wear on either posterior portion of the medial or lateral condyle may require slight compensation of the position of the skids. Rotational alignment is important and multiple landmarks, including Whiteside’s Line, the epicondylar axis, and the posterior condyles, should be utilized to orient rotation of the femoral component on the femur.

If between sizes, choose the larger size. Once cuts are made, the femur may be re-cut for a smaller implant by making the anterior and anterior chamfer cuts with the smaller sized cut block. The posterior resection and chamfer remain the same for all sizes. Once the anterior cut has been made for a given size, you cannot size up as you have already removed additional anterior bone.

FEMORAL SIZING

<table>
<thead>
<tr>
<th>Size</th>
<th>A/P Dimensions (mm)</th>
<th>M/L Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>54</td>
<td>59</td>
</tr>
<tr>
<td>2</td>
<td>57.5</td>
<td>63</td>
</tr>
<tr>
<td>3</td>
<td>61</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>64.5</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>68</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>71.5</td>
<td>79</td>
</tr>
<tr>
<td>7</td>
<td>75</td>
<td>83</td>
</tr>
</tbody>
</table>

Femurs are compatible with a tibial insert up to two sizes larger and two sizes smaller than the selected femur. Femur lugs are uniform in distance between sizes. Selecting an alternate femur after drilling the lug holes does not require drilling additional holes.
3. MAKING THE FEMORAL CUTS

Place the appropriately sized femoral cut block into the reference holes (Fig. 10), and, if necessary, secure the block through the oblique holes using the short, smooth quick pins (Fig. 11). The Universal Handles may be attached for additional stability (Fig. 12).

Surgical Pearl: Ensure the femoral cut block is completely seated against the distal femoral cut. If necessary, use several sharp taps with a mallet.

Place the Angel Wing through the anterior slot of the femoral cut block to visualize the exit path of the saw blade during the anterior cut. If the cut appears that it will notch, choose one size larger femoral cut block. Remove the angel wing and use a .75in. wide saw blade to make the anterior, posterior, posterior chamfer, and anterior chamfer cuts (Fig. 13). Afterwards, check the flatness of the cuts with the bottom of the femoral cut block.

If between sizes, choose the larger size. Once cuts are made, the femur may be re-cut for a smaller implant by making the anterior and anterior chamfer cuts with the smaller sized cut block. The posterior resection and chamfer remain the same for all sizes. Once the anterior cut has been made for a given size, you cannot size up as you have already removed additional anterior bone.

Note: The Femoral Cut Block is 3mm wider in the M/L plane than the final implant.
Remove the pins with the pin puller, and then remove the femoral cut block using the knee slap hammer (Fig. 14).

Note: As the cuts are posteriorly referenced, the thickness of the posterior cuts and posterior chamfer do not change.

Surgical Pearl: The system will accommodate a 1in. wide saw blade, however, a narrower blade will help reduce chatter.

4. PREPARING THE TIBIA

Maximally flex the knee and excise the anterior cruciate ligament, along with any remaining meniscus. Place the Large Knee Retractor behind the tibia just lateral to the PCL to subluxate the posterior margin of the tibia anterior to the femur. Place a Small Knee Retractor medially. Place two small knee retractors laterally with one antero-laterally to retract the patellar tendon and fat pad.

To assemble the Tibial Alignment Guide, insert the Upper Tower in the Lower Tower facing backward. Rotate the upper tower 180°.

Adjust to desired tibial height and lock. Depress the button on the front of the tower to attach the universal cut block, elevated pin holes (frog eyes) up (Fig. 15).

Rotational alignment may be stabilized by inserting a short, smooth quick pin through the central vertical slot in the universal cut block, which maintains rotational stability while allowing slope and varus/valgus adjustments to be made prior to final pinning through the 0 holes.

After adjusting the tibial alignment guide to the approximate tibial length, place the ankle cradle in neutral position and place against the length of the tibia. Attach the spring clamp. Set the rotational alignment by using the tibial tubercle as a guide. The posterior edges of the true proximal tibial plateau (excluding osteophytes) should be aligned parallel to the universal cut block.

Place a long, smooth quick pin through each of the elevated pin holes on the universal cut block and rest them on the proximal tibia, ensuring the long pins come into contact with the posterior tibial plateau (Fig. 16).
Aligning the long pins with the posterior tibial plateau will reference the slope if adjusted parallel to the proximal tibia and provide an 8mm depth of cut. Alternatively, the Tibial Stylus may be used to check the depth of resection (Fig. 17). Adjust the desired slope using the large superior knob at the base of the tibial alignment guide.

Avoid excessive posterior slope, especially if sacrificing the PCL.

Check varus/valgus alignment by aligning the tibial alignment guide with the tibial tubercle and using the center of the ankle as a reference (Fig. 18). Adjust the guide as needed using the large knob at the base. Stabilize the universal cut block by drilling through the holes marked 0 and filling with two short, smooth quick pins (Fig. 19).

Surgical Pearl: Slight varus placement of the tibial alignment guide may be preferred, as the natural alignment of the proximal tibia is between 0-6° varus.

Note: The tibial alignment guide was designed to remain in place for the proximal tibial cut; it does not need to be removed prior to making the cut. The tibial alignment guide may be removed after the universal cut block is secured.
If desired, use the alignment tower and the alignment rod to verify the alignment. The tip of the alignment rod should fall 2cm lateral of the center of the ankle for a 2° varus cut, or to the center of the ankle for a perpendicular cut (Fig. 20).

Most patients require a minimum of 8mm of resection to allow for the use of at least a 10mm tibial insert in a PCL sacrificing procedure. For a PCL preserving procedure, most patients require a 10mm cut. Move the universal cut block down in 2mm increments to eliminate bone defects and match the thicknesses of the available Klassic Knee System Tibial Inserts.

Using a 1in. wide 1mm (.040in.) thick saw blade, cut the proximal tibia through the slot of the universal cut block (Fig. 21).

When cutting the proximal tibia for a porous tibial baseplate, ensure that the tibial plateau cut is completely flat. This may be checked using the bottom surface of a femoral cut block.

Note: The Klassic Knee System accommodates up to a 1.27mm (.050in.) thick saw blade. The actual cut slot is 1.40mm (.054in.).

Measure the resected tibia in an area of relatively normal cartilage using the Patella Caliper (Fig. 22). Add 1mm to this measurement for bone loss from the saw blade to predict the thickness of the Tibial Baseplate/Insert thickness in a PCL sparing procedure; select one size thicker insert than the measured resection if the PCL is sacrificed.

Surgical Pearl: If using the Klassic Porous Knee System, retain the resected tibia on the back table to create a bone slurry before implanting the final tibial implant.

It is crucial to remove all posterior osteophytes in order to properly seat the tibial baseplate and to accurately set the tibial baseplate rotation.
5. SIZING THE TIBIA

Check the tibial cut for flatness by placing the tibial baseplate sizer on the cut surface of the proximal tibia. Once the flatness and alignment are confirmed, remove the short, smooth quick pins from the proximal tibia. Position the tibial baseplate sizer on the cut surface of the proximal tibia and select the tibial baseplate sizer that does not overhang and allows some lateralization (Fig. 23). Adjust the rotation by positioning the handle of the tibial baseplate sizer at the medial 1/3-to-center of the tubercle and stabilize the tibial baseplate sizer with the short, smooth quick pins through the peripheral holes (Fig. 24).

Note: The alignment rod may be dropped through the handle of the tibial baseplate sizer to ensure varus-valgus alignment of the cut (Fig. 25).

Surgical Pearl: If necessary, the tibial baseplate sizer may be placed in slight external rotation. Internal rotation should be avoided.

KLASSIC TIBIAL INSERT AND ALL-POLY TIBIA SIZING

<table>
<thead>
<tr>
<th>Size</th>
<th>A/P Dimensions (mm)</th>
<th>M/L Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>67</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>47</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>49</td>
<td>79</td>
</tr>
<tr>
<td>6</td>
<td>51</td>
<td>82</td>
</tr>
</tbody>
</table>

KLassic Tibial Inserts are offered for each size of tibial baseplate, and are available in thicknesses 10, 12, 14, 16, and 18mm.

KLassic All-Poly Tibias are available in sizes 1-5, and thicknesses 10, 12, and 14mm.

Tibial inserts are compatible with femoral components up to two sizes larger and two sizes smaller than the selected baseplate.
6. BROACHING THE TIBIA

Tibial preparation is executed through the tibial baseplate sizer. For use without a Stem Extension, thread the Starter Broach onto the Broach Tower that corresponds to the tibial sizer. Insert the Tibial Broach Assembly into the tibial sizer and impact using a mallet (Fig. 26). Remove the tibial broach assembly with the knee slap hammer.

For a 25 or 50mm stem extension, thread the 25 or 50mm Stem Extension Broach onto the broach tower that corresponds to the tibial sizer. Insert the tibial broach assembly in the tibial sizer and impact using a mallet. Remove the tibial broach assembly with the knee slap hammer.

If using a tibial stem extension longer than 50mm, ream before broaching. Insert the Reamer Tower into the tibial baseplate sizer (Fig. 27). Ream to the 100mm line for the 100mm stem extension or to the hard-stop for the 150mm stem extension. Tibial reamers prepare a line-to-line envelope for the tibial stem extension implant.

If using the all-poly tibia, insert the All-Poly Tibia Broach Assembly that corresponds to the tibial sizer into the sizer and impact using a mallet.

Surgical Pearl: If the tibial broach will not seat completely in hard bone, use a 3.2mm drill bit to drill several holes through the slots of the tibial baseplate sizer.
Prepare the patella by placing the leg in full extension and stabilizing the patella with two inverted towel clips. Incise soft tissue around the patella, avoiding the quad tendon or the patellar ligament, and remove any large osteophytes. Before making any bone cuts, determine the maximum thickness of the patella using the patella calipers (Fig. 28).

Avoid overthickening the patella.

Using the 3.2mm drill, drill the highest point (patella apex) of the medial facet perpendicular to the articular surface. This acts as a guide for proper medialization of the patella (Fig. 29).

With a saw, free hand cut the patella at the osteochondral junction medial to lateral.
Using the Patella Sizer/Drill Guide, select the maximum size that will not overhang (Fig. 30). Medial placement of the patella allows for better tracking. Place the 1/8in. hole of the patella sizer/drill guide over the 1/8in. drill hole as a reference for proper medialization. Remove the patella sizer/drill guide. Select the appropriately sized Patella Planer (31mm for patella sizes 1 or 2, 37mm for sizes 3 or 4) and plane the patella (Fig. 31). The thickness of each Domed Patella is listed on the Patella sizer/drill guide. Sombrero Patellae are offered in equivalent diameters as domed patellae.

Ensure power handpiece is set to ream before planing.

Place the sizer/patella drill guide on the planed surface of the patella and drill the holes with the 3-in-1 Drill (Fig. 32).

Surgical Pearl: Six keys to component placement to optimize patellar tracking:
1. Lateralize the tibial component
2. Lateralize the femoral component
3. Ensure the femoral component is not internally rotated
4. Ensure the tibial component is not internally rotated by referencing the lateral third of the tibial tubercle with the center of the tibial component
5. Ensure the components are not placed in valgus
6. Medialize placement of the patella and ensure uniform thickness

<table>
<thead>
<tr>
<th>DOMED PATELLA SIZING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SOMBRERO PATELLA SIZING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Patella pegs are spaced uniformly regardless of size. Choosing an alternate size does not require drilling new holes.
8. TRIALING

Prior to trial reduction, remove any posterior osteophytes on the femur using a 3/4in. curved osteotome while lifting the femur with a bone hook. Osteophyte removal is recommended for maximum knee flexion.

Apply the Tibial Baseplate Trial and Tibial Insert Trials first, based on the measured tibial thickness (Fig. 33), regardless of whether the patient will receive a tibial baseplate/insert combination or an all-poly tibia.

Insert the appropriate Femoral Trial and Patella Trial (Fig. 34 and 35).

Surgical Pearl: Keeping the femoral trial lateral, verify there is no overhang posterolaterally at the popliteus or anteromedial flange. If overhang is present, adjust the position or consider downsizing.

Any fine-tuning or soft tissue releases should be done at this time.

Check stability in full extension, 60° of flexion, and 90° of flexion. When satisfied with range of motion and patellar tracking, drill for the lug holes in the femoral trial using the 3-in-1 drill (Fig. 36).

Note: The femoral lug holes are spaced uniformly and do not require drilling additional holes should the surgeon choose an alternate femur size. In addition, the posterior and posterior chamfer cuts are uniform for all sizes and do not require recutting when changing sizes.

Surgical Pearl: Lateral placement of the trial without any overhang of the cut surface may facilitate patellar tracking.

Note: The all-poly tibia sizing corresponds with the thickness of the insert trial used. If using a 10mm insert trial, select the 10mm all-poly tibia final implant.
9. IMPLANTING THE FINAL COMPONENTS

Remove all trial components and copiously wash the wound.

Carefully open the components on the back table, using caution when opening the Tibial Baseplate Assembly. The Tibial Insert Set Screw is included in the packaging for the tibial baseplate assembly and is required to fully engage the locking mechanism on the tibial insert.

The tibial baseplate assembly includes a preassembled threaded poly dome on the distal end of the baseplate for use without tibial stem extensions.

If using a tibial stem extension, remove the poly dome. Assemble the tibial stem extension to the tibial baseplate, and affix finger tight. Using the Tibial Stem Wrench, positioned as shown, securely tighten the tibial stem extension to the tibial baseplate (Fig. 37).

Apply a 3-4mm layer of bone cement to the underside of all of the Klassic Knee Tibial Baseplate, Femur, and Domed Patella implant components, taking care not to coat the femoral pegs. Using the Tibial Impactor, impact the baseplate assembly onto the tibial surface, pressurizing the cement into the bone (Fig. 38).

Position the tibial insert of the chosen thickness by pushing the insert posteriorly by hand and using the Tibial Assembly Clamp on the anterior aspect of the tibial component to engage the locking mechanism (Fig. 39).

Surgical Pearl: If using the porous tibial baseplate, use a saw blade or a quarter inch burr to create a bone slurry from the cut side of the resected tibial wafer. Apply the slurry to the freshly cut surface of the proximal tibia. Place the implant onto the slurry-coated proximal tibia and impact using the tibial impactor, ensuring that it is fully seated. Contact between the implant surface and the proximal tibia must be maintained all the way around the baseplate.

If using an all-poly tibia, apply bone cement to the underside of the implant and impact using the All-Poly Tibial Impactor (Fig. 40).
Place the tibial insert set screw through the hole in the tibial insert and tighten by hand using a 3.5mm Screwdriver. The screw will stop turning upon contact with the tibial baseplate (Fig. 41). The all-poly tibia does not feature a locking mechanism.

Note: Additional tibial set screws are packaged separately in the event the enclosed screw is misplaced.

Surgical Pearl: If after final seating of tibial insert a different size is selected for ligament balance or motion concerns, simply remove the set screw and place a 1/2in. osteotome in the anterior aspect of the polyethylene (after the bone cement has cured) and lift upward on the polyethylene to release the baseplate locking mechanism without damaging the baseplate itself.

Implant the femur using the femoral impactor (Fig. 42). If impacting the porous femur, the Femur Inserter/Extractor may be helpful to increase precision placement (Fig. 43). When impacting a porous femur, ensure that proper alignment in extension is maintained and the femur is fully seated. The porous femur does not require cement.

If cementing the Klassic Knee, remove excess cement. Check the range of motion and ligament stability again. Implant the patella by lining up the pegs on the patella with the previously drilled holes and applying the Patella Clamp (Fig. 44). Measure the final thickness and ensure proper patellar tracking.
WARNINGS AND PRECAUTIONS

Please refer to the *Total Joint Orthopedics Klassic® Knee System Instructions For Use* at tjoinc.com/ifu for warnings, precautions, adverse effects, and other essential product information.
KLASSIC® FEMUR, NONPOROUS
5100.01.000 Femur, Nonporous, size 1
5100.02.000 Femur, Nonporous, size 2
5100.03.000 Femur, Nonporous, size 3
5100.04.000 Femur, Nonporous, size 4
5100.05.000 Femur, Nonporous, size 5
5100.06.000 Femur, Nonporous, size 6
5100.07.000 Femur, Nonporous, size 7

KLASSIC® FEMUR WITH COBALT 3D™
5102.01.000 Femur with Cobalt 3D™, size 1
5102.02.000 Femur with Cobalt 3D™, size 2
5102.03.000 Femur with Cobalt 3D™, size 3
5102.04.000 Femur with Cobalt 3D™, size 4
5102.05.000 Femur with Cobalt 3D™, size 5
5102.06.000 Femur with Cobalt 3D™, size 6
5102.07.000 Femur with Cobalt 3D™, size 7

KLASSIC® TIBIAL BASEPLATE FOR PRIMARY OR REVISION
5201.01.000 Tibial Baseplate for Primary or Revision, size 1
5201.02.000 Tibial Baseplate for Primary or Revision, size 2
5201.03.000 Tibial Baseplate for Primary or Revision, size 3
5201.04.000 Tibial Baseplate for Primary or Revision, size 4
5201.05.000 Tibial Baseplate for Primary or Revision, size 5
5201.06.000 Tibial Baseplate for Primary or Revision, size 6

KLASSIC® TIBIAL BASEPLATE WITH TI-COAT®
5202.01.000 Tibial Baseplate with Ti-Coat®, size 1
5202.02.000 Tibial Baseplate with Ti-Coat®, size 2
5202.03.000 Tibial Baseplate with Ti-Coat®, size 3
5202.04.000 Tibial Baseplate with Ti-Coat®, size 4
5202.05.000 Tibial Baseplate with Ti-Coat®, size 5
5202.06.000 Tibial Baseplate with Ti-Coat®, size 6

KLASSIC® TIBIAL INSERT, CR/CONGRUENT
5300.01.010 Tibial Insert, CR/Congruent, Std Poly, size 1, 10mm
5300.01.012 Tibial Insert, CR/Congruent, Std Poly, size 1, 12mm
5300.01.014 Tibial Insert, CR/Congruent, Std Poly, size 1, 14mm
5300.01.016 Tibial Insert, CR/Congruent, Std Poly, size 1, 16mm
5300.01.018 Tibial Insert, CR/Congruent, Std Poly, size 1, 18mm
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5300.02.010</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 2, 10mm</td>
</tr>
<tr>
<td>5300.02.012</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 2, 12mm</td>
</tr>
<tr>
<td>5300.02.014</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 2, 14mm</td>
</tr>
<tr>
<td>5300.02.016</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 2, 16mm</td>
</tr>
<tr>
<td>5300.02.018</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 2, 18mm</td>
</tr>
<tr>
<td>5300.03.010</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 3, 10mm</td>
</tr>
<tr>
<td>5300.03.012</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 3, 12mm</td>
</tr>
<tr>
<td>5300.03.014</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 3, 14mm</td>
</tr>
<tr>
<td>5300.03.016</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 3, 16mm</td>
</tr>
<tr>
<td>5300.03.018</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 3, 18mm</td>
</tr>
<tr>
<td>5300.04.010</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 4, 10mm</td>
</tr>
<tr>
<td>5300.04.012</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 4, 12mm</td>
</tr>
<tr>
<td>5300.04.014</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 4, 14mm</td>
</tr>
<tr>
<td>5300.04.016</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 4, 16mm</td>
</tr>
<tr>
<td>5300.04.018</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 4, 18mm</td>
</tr>
<tr>
<td>5300.05.010</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 5, 10mm</td>
</tr>
<tr>
<td>5300.05.012</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 5, 12mm</td>
</tr>
<tr>
<td>5300.05.014</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 5, 14mm</td>
</tr>
<tr>
<td>5300.05.016</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 5, 16mm</td>
</tr>
<tr>
<td>5300.05.018</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 5, 18mm</td>
</tr>
<tr>
<td>5300.06.010</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 6, 10mm</td>
</tr>
<tr>
<td>5300.06.012</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 6, 12mm</td>
</tr>
<tr>
<td>5300.06.014</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 6, 14mm</td>
</tr>
<tr>
<td>5300.06.016</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 6, 16mm</td>
</tr>
<tr>
<td>5300.06.018</td>
<td>Tibial Insert, CR/Congruent, Std Poly, size 6, 18mm</td>
</tr>
</tbody>
</table>

KLASSIC® TIBIAL INSERT, ULTRA-PS®

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5301.01.010</td>
<td>Tibial Insert, Ultra-PS®, Std Poly, size 1, 10mm</td>
</tr>
<tr>
<td>5301.01.012</td>
<td>Tibial Insert, Ultra-PS®, Std Poly, size 1, 12mm</td>
</tr>
<tr>
<td>5301.01.014</td>
<td>Tibial Insert, Ultra-PS®, Std Poly, size 1, 14mm</td>
</tr>
<tr>
<td>5301.01.016</td>
<td>Tibial Insert, Ultra-PS®, Std Poly, size 1, 16mm</td>
</tr>
<tr>
<td>5301.01.018</td>
<td>Tibial Insert, Ultra-PS®, Std Poly, size 1, 18mm</td>
</tr>
<tr>
<td>5301.02.010</td>
<td>Tibial Insert, Ultra-PS®, Std Poly, size 2, 10mm</td>
</tr>
<tr>
<td>5301.02.012</td>
<td>Tibial Insert, Ultra-PS®, Std Poly, size 2, 12mm</td>
</tr>
<tr>
<td>5301.02.014</td>
<td>Tibial Insert, Ultra-PS®, Std Poly, size 2, 14mm</td>
</tr>
<tr>
<td>5301.02.016</td>
<td>Tibial Insert, Ultra-PS®, Std Poly, size 2, 16mm</td>
</tr>
<tr>
<td>5301.02.018</td>
<td>Tibial Insert, Ultra-PS®, Std Poly, size 2, 18mm</td>
</tr>
<tr>
<td>5301.03.010</td>
<td>Tibial Insert, Ultra-PS®, Std Poly, size 3, 10mm</td>
</tr>
<tr>
<td>5301.03.012</td>
<td>Tibial Insert, Ultra-PS®, Std Poly, size 3, 12mm</td>
</tr>
<tr>
<td>5301.03.014</td>
<td>Tibial Insert, Ultra-PS®, Std Poly, size 3, 14mm</td>
</tr>
<tr>
<td>5301.03.016</td>
<td>Tibial Insert, Ultra-PS®, Std Poly, size 3, 16mm</td>
</tr>
<tr>
<td>5301.03.018</td>
<td>Tibial Insert, Ultra-PS®, Std Poly, size 3, 18mm</td>
</tr>
</tbody>
</table>
5301.04.010 Tibial Insert, Ultra-PS®, Std Poly, size 4, 10mm
5301.04.012 Tibial Insert, Ultra-PS®, Std Poly, size 4, 12mm
5301.04.014 Tibial Insert, Ultra-PS®, Std Poly, size 4, 14mm
5301.04.016 Tibial Insert, Ultra-PS®, Std Poly, size 4, 16mm
5301.04.018 Tibial Insert, Ultra-PS®, Std Poly, size 4, 18mm
5301.05.010 Tibial Insert, Ultra-PS®, Std Poly, size 5, 10mm
5301.05.012 Tibial Insert, Ultra-PS®, Std Poly, size 5, 12mm
5301.05.014 Tibial Insert, Ultra-PS®, Std Poly, size 5, 14mm
5301.05.016 Tibial Insert, Ultra-PS®, Std Poly, size 5, 16mm
5301.05.018 Tibial Insert, Ultra-PS®, Std Poly, size 5, 18mm
5301.06.010 Tibial Insert, Ultra-PS®, Std Poly, size 6, 10mm
5301.06.012 Tibial Insert, Ultra-PS®, Std Poly, size 6, 12mm
5301.06.014 Tibial Insert, Ultra-PS®, Std Poly, size 6, 14mm
5301.06.016 Tibial Insert, Ultra-PS®, Std Poly, size 6, 16mm
5301.06.018 Tibial Insert, Ultra-PS®, Std Poly, size 6, 18mm

KLASSIC® ALL-POLY TIBIA, ULTRA-PS®
5204.01.010 All-Poly Tibia, Ultra-PS®, Std Poly, size 1, 10mm
5204.01.012 All-Poly Tibia, Ultra-PS®, Std Poly, size 1, 12mm
5204.01.014 All-Poly Tibia, Ultra-PS®, Std Poly, size 1, 14mm
5204.02.010 All-Poly Tibia, Ultra-PS®, Std Poly, size 2, 10mm
5204.02.012 All-Poly Tibia, Ultra-PS®, Std Poly, size 2, 12mm
5204.02.014 All-Poly Tibia, Ultra-PS®, Std Poly, size 2, 14mm
5204.03.010 All-Poly Tibia, Ultra-PS®, Std Poly, size 3, 10mm
5204.03.012 All-Poly Tibia, Ultra-PS®, Std Poly, size 3, 12mm
5204.03.014 All-Poly Tibia, Ultra-PS®, Std Poly, size 3, 14mm
5204.04.010 All-Poly Tibia, Ultra-PS®, Std Poly, size 4, 10mm
5204.04.012 All-Poly Tibia, Ultra-PS®, Std Poly, size 4, 12mm
5204.04.014 All-Poly Tibia, Ultra-PS®, Std Poly, size 4, 14mm
5204.05.010 All-Poly Tibia, Ultra-PS®, Std Poly, size 5, 10mm
5204.05.012 All-Poly Tibia, Ultra-PS®, Std Poly, size 5, 12mm
5204.05.014 All-Poly Tibia, Ultra-PS®, Std Poly, size 5, 14mm
KLASSIC® DOMED PATELLA
5500.01.000 Domed Patella, size 1
5500.02.000 Domed Patella, size 2
5500.03.000 Domed Patella, size 3
5500.04.000 Domed Patella, size 4

KLASSIC® SOMBRERO PATELLA
5501.01.007 Sombrero Patella, size 1, 7mm
5501.02.007 Sombrero Patella, size 2, 7mm
5501.03.007 Sombrero Patella, size 3, 7mm
5501.04.007 Sombrero Patella, size 4, 7mm

KLASSIC® TIBIAL STEM EXTENSION
5600.00.025 Tibial Stem Extension, 25mm
5600.00.050 Tibial Stem Extension, 50mm
5600.00.100 Tibial Stem Extension, 100mm
5600.00.150 Tibial Stem Extension, 150mm

MISCELLANEOUS
5601.00.000 Klassic® Dome Extension
5602.00.000 Klassic® Tibial Insert Set Screw
2701.00.000 Drill and Pin Set, Smooth, Sterile
2702.00.000 Drill and Pin Set, Sharp, Sterile

For more information, please contact Total Joint Orthopedics at 888.890.0102 or sales@tjoinc.com.