THE Klassic Knee is a modern universal design that offers seven sizes of femurs, six sizes of tibial inserts and baseplates, and five sizes of patellae to accommodate a variety of patient anatomy and provide a precision fit. The system requires only one tray of streamlined instrumentation for up to 90% of surgeries in order to reduce O.R. time and sterilization costs, help reduce the incidence of infection, and optimize efficiency and ergonomics, without preoperative imaging, templating, or disposables. Modularity permits stems and augments to offer a variety of surgical options for each patient’s anatomy throughout an Evolution of Stability™ with the bone conservation of a primary implant.

KLASSIC® FEMUR

The femur features a patented trochlear groove that allows optimal patellar tracking along a 9° double Q-angle on both left and right anatomy, while retaining a neutral outside profile of the anterior flange. The femur also offers anatomically tapered posterior condyles, a thin anterior flange, a proportional AP/ML ratio, and a neutral anterior flange shape to minimize potential lateral overhang.

EXCEPTIONAL FIXATION

The Klassic Porous Femur features Cobalt 3D®, our proprietary assymmetric ultra-porous coating; the Klassic Porous Tibia features Ti-Coat®, an ultraporous, three-dimensional sintered porous coating. Both coatings offer excellent biological fixation with proven long-term ingrowth.

NO ANTERIOR STEP CUT

The femur is designed with a deepened trochlear groove to facilitate patellar tracking while eliminating a bone sacrificing and time consuming fifth cut for an anterior notch.

KLASSIC® PATELLA

The geometrically forgiving Klassic Domed and Klassic Sombrero Patellae optimize patellofemoral contact area during tracking.
CONFORMING CONGRUENCY
The M/L edges of the tibial baseplate and inserts have matching conforming geometry to provide consistent polyethylene thickness all the way to the peripheral edges. One-to-one sizing for femur/insert articulation maximizes congruency and optimizes mid-flexion stability.

INSERT LOCKING MECHANISM
The Klassic Tibial Insert locking mechanism combines a tibial set screw, anterior snap, M/L constraints, and a polished tray to minimize backside wear. The insert features an anti-backout mechanism to ensure retention of the screw.

ANATOMICALLY OPTIMIZED TIBIAL BASEPLATE WITH MODULAR FEATURES
The tibial baseplate is designed to optimally cover the tibial plateau using a universal geometry. The sweptback keel offers 4° of posterior slope and features modularity to allow for stem extensions and future augments*. The Klassic Porous Tibia features Ti-Coat®, an ultraporous, three-dimensional sintered porous coating and offers a central stemmable keel and four enhanced peripheral pegs for initial mechanical fixation and rotational stability. The pegs are uncoated to decrease stress-shielding and sized to allow for an incremental amount of press-fit.

CRUCIATE RETAINING AND CRUCIATE SACRIFICING TIBIAL INSERTS
Both a deep-dished Ultra-PS® Insert and a standard CR/Congruent Insert are compatible with the Klassic CR Femur. The Ultra-PS insert provides a high anterior jump height and increased conformity to provide stability through a range of flexion for a PCL-sacrificing surgery without a cam and post design. The posterior lip of both the CR/Congruent and the Ultra-PS Insert is relieved to minimize impingement.

E-LINK® VITAMIN E STABILIZED POLY
E-Link Poly is cross-linked at 10 MRads, quenching free radicals generated during the cross-linking process, yielding oxidative stability, and increasing strength without brittleness. E-Link has shown improved wear characteristics over standard polyethylene. The Klassic Knee System is also available in standard UHMWPE.

ALL-POLY TIBIA
The Klassic All-Poly Tibia is available in both CR/Congruent and Ultra-PS® to provide exceptional outcomes at a bundled payment price point. The underside of the component is roughened to improve cement fixation.

3 US Patents 9,289,305 and D755,971
5 Study in collaboration with Dartmouth Biomedical Engineering Center. Data forthcoming.
6 US Patents 9,289,305 and D755,971
7 Not available for sale in the US