Rural landscape change as a product of US federal policy

Introduction

This chapter discusses three types of rural landscape change in America: changes within agricultural production, losses to rural towns and conversion of agricultural land to other uses (Figure 10.1). It describes how federal agricultural policy directly affects rural landscape change, and it will characterise potentials for international trade agreements to affect agricultural policy and rural landscapes. Other federal policies and laws that affect American rural landscapes less obviously but equally profoundly are also discussed. Federal agricultural policy interacts with policy for energy, the environment, housing, transportation, taxes and trade, as well as with the American legal system for land-use controls, all of which propel rural landscape change. At the nexus of all these forces, individual farm operators are confronted with a bewildering array of entrepreneurial opportunities, technological possibilities, and policy options from which to make decisions about their farms each year. Only by critically and imaginatively examining these influential policies can we anticipate and affect the future condition and sustainability of local rural landscapes in America. The chapter is in four main parts – first, landscape condition and trends in the Corn Belt are summarised; second, relevant US federal policies are discussed in relation to aims of the WTO; third, the relationship of Corn Belt agriculture to federal policies is briefly reviewed, and finally, the prospect of alternative futures is examined.
Current landscape change in the Corn Belt

If Americans notice their rural landscapes changing, they tend to think that local farmers have made those changes in response to markets, but this chapter will suggest that farmers’ market choices are only a part of the system driving rural landscape change. The analysis focuses on the Corn Belt of the Midwest (Figure 10.2), a region that has dominated American farming for the past century (Hart, 1975). It produces about 70% of the US corn crop and includes the top five corn-producing states in the USA today: Iowa, Illinois, Nebraska, Minnesota and Indiana (Foreman, 2006). In field production, corn is typically rotated with soybeans, and together these two crops account for more than 25% of the value of US agricultural exports. In the heart of the Corn Belt, the state of Iowa alone accounted for more than 16% of US corn and soybean export value (Harris et al. 2008). About 89% of Iowa’s 145 744 km² is farmland, and 87% of that is cultivated crop land, leaving less than 13% in perennial cover such as pasture, woodland or conservation practices (USDA NASS, 2008b) (Figure 10.3). In comparison, France, which leads Europe in corn production, is almost four times as large as Iowa, but produces less than one third as much corn (USDA, Foreign Agriculture Service, 2005; OECD–FAO, 2008).
Such high grain production has come with environmental and societal costs (Nassauer & Kling, 2007). Two hundred years ago, before European settlement, the Corn Belt was dominated by prairies and wetlands that built deep organic soils. Now Corn Belt landscapes are nearly completely drained, making ideal conditions for cultivation of corn and soybeans but also ideal conditions for rapid movement of surface and ground water to carry pollutants downstream (Turner et al., 2007). Much of this pollution is invisible until streams and lakes have a murky stench. But other aspects of landscape change are more apparent.

Figure 10.2.
The Corn Belt, which extends over nine states in the upper Mississippi River Basin, produces about 70% of the US corn crop.

Figure 10.3.
Less than 13% of Iowa farmland includes perennial woody or herbaceous cover. Corn is planted so densely that rows are impossible to discern by midseason.
Throughout the Corn Belt, people notice that the characteristic farmsteads, barns, silos, fences, fencerows, woodlots, pasture, hay, and oat fields are disappearing. Only the slopes of hillsides introduce variety into this landscape planted with corn so dense that rows are impossible to discern by midseason. On the best farmland, the wide open flat country of deep rich prairie wetland soils, neighbourhoods of wind turbines sprout sporadically from soybean fields or an imposing white ethanol plant spews clouds of steam above the horizon. In many small towns, a single petrol-station convenience store is the only business remaining, and schools and churches have been closed. Where citizens are particularly devoted, a town may feature a repurposed school building where ‘antiques’, household goods from the era when more than half of all Americans were farmers, are offered for sale.

Not all trends point downward in the Corn Belt. Farm size (excluding small ‘residential lifestyle’ farms), field size, equipment size, amount of corn or soybeans produced per area, speed to market livestock – all these indicators of agricultural efficiency have dramatically increased in the past 25 years. What farmer wouldn’t choose to work in this more efficient way? Other upward trends suggest an answer. In Iowa, the bellwether state for Corn Belt agricultural trends, the price of farmland has risen nearly continuously for the past 25 years, driven partly by federal agricultural programmes that support farmers according to a land currency: the number of ‘base acres’ planted to commodity crops in the past (1986–88), partly by federal income tax incentives for farmers who have sold their land to developers in metropolitan areas and later buy farmland elsewhere, and partly by investment by non-farmers, who owned almost one-third of Iowa farmland by 2004 (Duffy and Smith, 2004). Corn prices that tripled between July 2006 and July 2008 while US corn exports increased dramatically and US manufacture of corn-based ethanol increased further bolstered these trends (OECD–FAO, 2008).

The overall effect is a tangible disconnection between the physical landscape of farming and community well-being in Corn Belt landscapes, places that once epitomised the agrarian ideal of US founding statesman Thomas Jefferson, who wrote that ‘small landholders are the most precious part of a state’. Embodied in a series of federal laws to dispose of frontier lands claimed for the public domain, this agrarian ideal used land disposition to engender local civic engagement. In each successive revision of the Land Ordinance Act of 1785, the scale threshold to entry to land ownership was lowered, until by 1832 a citizen could purchase a farm as small as 40 acres for as little as $1.25/acre. A focus of civic engagement was the public school. In each township of 36 640-acre (259-hectare) sections, a specific section (#16) was designated for the support of a public school, accessible to all in the
community (Johnson, 1976). In the past 50 years, technology and federal policy have undermined this ideal of strong local communities of small landholders (Salamon, 1995).

Even more, these same policies have undermined the ecosystem services upon which farming and the health of rural and urban communities depend. Since agricultural land uses, including cultivated land, pasture and rangeland extend over more than one third of the total land area of the lower 48 states in the USA (Heimlich, 2003), the water, air and energy that pass through agricultural land uses carry massive environmental effects off-site and downstream to both urban and rural areas. Soil erosion and degraded soil quality, downstream water pollution, degraded recreational opportunities and threatened aquatic habitats, drawdowns of major aquifers, polluted drinking water, massive flood destruction of cities, shipping and industry, and elimination of all but the most fragmented remnants of native ecosystems in the Corn Belt – all of these losses must be attributed in part to agricultural practices that have been encouraged by federal policy (Goldman et al., 2007; Nassauer & Kling, 2007; Dale et al., 2008).

Beyond these dramatic changes in agricultural landscapes themselves, the conversion of agriculture to built uses characterises the edges of even small cities all over the USA. This trend can be traced back to the early nineteenth century in the USA, but it rapidly escalated in the mid-twentieth century following World War II, when the federal government put nearby rural areas within a short commute to urban jobs by building the highway system and made home mortgage loans widely available to promote new residential construction (Jackson, 1985). The first modern wave of farmland conversion reached a new crescendo in the past 25 years as lending agencies made credit easily available to developers and potential homeowners, and local governments welcomed more development, particularly in areas not served by public sewer and water infrastructure. House and lot sizes grew larger, obliterating farmland and forests at an increasing rate in a phenomenon widely known as ‘sprawl’. Between 1982 and 1997 the amount of land devoted to urban and built uses in the USA increased by 34%, largely from farmland and forest conversion (Alig et al., 2004). Farm fields were replaced not only by large-lot residential development but by vast parking lots and big box stores, which further undermined the market for small-town businesses. The highway system and more recently the internet have invited rural people to bypass local businesses to shop in regional centres or online. In the Corn Belt state of Minnesota, for example, agricultural small towns tended to lose population between 1990–2000 if they were not located along major highway corridors radiating from the largest city in the region, but they gained population if they were located along such corridors (Hart, 2002).
US federal agricultural policy, energy policy and the WTO agriculture agreements

Since the nineteenth century, agricultural practices have been affected by US federal policy, such as the wetland drainage provisions of the Swamp Act of 1850, and the woodland clearing provisions of the Homestead Act of 1862 (Johnson, 1976). But the extreme climatic and economic events of the 1930s triggered a vastly enlarged federal agricultural policy that aimed to prevent soil erosion and reduce financial risk to farm families (Batie, 1985; Trimble, 1985; Dimitri et al., 2005). Since then a new, time-limited federal farm law has been passed approximately every 5 years, with the arcane prospect of default to the 1936 Agricultural Adjustment Act, were the new law not passed in time (O’Brien 2006; Classen et al., 2008).

Federal agricultural policy has continued to have the broad aims of resource conservation and income stabilisation for farmers. But the specifics of policy change and become increasingly complex with each new farm law. One way to deduce the simple message to farmers from these complex policies is to compare the proportion of federal agricultural support allocated to conservation with the proportion allocated to commodity support. For more than 50 years, production subsidies have vastly exceeded conservation spending – by almost ten times today (Womach et al., 2006), and this ratio has been clearly understood by farmers making production decisions. Commodity production support is paid according to the amount of land that was producing commodities (e.g. corn, wheat, soybeans, sugar, cotton) during a 1986–88 base period (i.e. ‘base acres’), as well as through insured-price loans for crops that are actually produced. This benefits larger farms, which have more base acres and produce more commodity crops (O’Brien, 2006).

Using the agricultural programmes to limit their financial risk, farmers cultivate their land for production of federally supported commodities. Direct federal government payments to agriculture averaged about 50% of net farm income in the Corn Belt from 2000–2004 (Duffy, 2006), and that predictable income has been an essential incentive for agricultural land use and management choices, including increasing farm and field size, higher land rents, and technological changes (such as adoption of genetically modified crops). Between 1992–2002 the number of small ‘lifestyle’ farms, (with sales less than $1000), increased by 37%, and the number of very large farms (sales over $1 million) increased by 8%, but the number of farms of all other sizes decreased (Duffy, 2006). By 2007 nearly half (900 000) of all 2.2 million American farms were described as lifestyle farms (with sales less than $2500), and just 5% of all farms (125 000) accounted for 75% of American agricultural production (USDA, NASS, 2008a). Fewer than one in five farms received payments specifically for
conservation and these tended to be very small farms of the sort operated by hobby farmers or retirees (USDA, NRCS, 2006).

Agricultural conservation programmes do not compete well against financial returns for commodity production as supported by agricultural commodity programmes. In addition, other federal policies, most prominently energy policy for biofuels, tip the balance further in favour of commodity production. Enrolment trends for the most successful American agri-environmental programme, the Conservation Reserve Program (CRP), demonstrate this dynamic. Established with the 1985 farm law, the CRP moved about one-tenth of formerly cultivated land, much of it highly erodible, out of production and into perennial cover for at least 10 years (Zain and Lovejoy, 2004). The CRP land has delivered massive societal benefits, estimated at about $694 million per year in non-market benefits from soil erosion reduction and another $704 million per year in benefits from wildlife viewing and pheasant hunting (Claassen et al., 2008). These benefits outweigh the costs of the programme.

However, in the past decade as their contracts have expired, many farmers have chosen to cultivate their CRP acres again, particularly when corn and soybean prices tripled over the past 2 years. Demand for corn for ethanol production (enhanced by a $0.10/gallon ethanol producer tax credit introduced in the Omnibus Budget Reconciliation Act 1990, as well as by federal requirements to replace certain polluting fuel additives) contributed to these much higher prices and undermined the farmers’ financial rationale for keeping even highly erodible areas enrolled in the CRP (Simpson et al., 2008). The 2007 Energy Independence and Security Act, which established a Renewable Fuels Standard of 36 billion gallons by 2022 including 15 million gallons of corn ethanol (compared with less than 4 million gallons produced in 2005) (Renewable Fuels Association, 2008), contributes further to farmers’ decisions to take land out of the perennial cover of the CRP into corn cultivation. Policy-driven demand for biofuels, combined with global demand for grain feedstocks to accommodate increasing meat consumption, further weakens the effectiveness of agricultural conservation policy (OECD–FAO, 2008).

While past agricultural policy and, more recently, energy policy have driven current trends in agricultural production, with related environmental and societal costs, international trade agreements, particularly agreements under the World Trade Organization (WTO) could moderate these trends (Nassauer & Kling, 2007). The WTO classifies agricultural payments as: ‘Amber Box’, which includes all market-distorting payments such as commodity price supports; ‘Blue Box,’ which is not seen as market distorting, but comprises direct subsidies based on land area in production or the amount of commodity produced during a past agreed-upon baseline period (85% of 1986–88 for the USA); or ‘Green Box’, which is seen as not distorting markets, and includes
payments for environmental benefits from agricultural landscapes, limited to the cost of the practices, as well as decoupled income-support payments to farmers (USDA, NRCS, 2006). Under the current Agreement on Agriculture, the USA is committed to reducing ‘Amber Box’ payments to a percentage of past expenditures. This could promote increases in Green Box payments, if American policy-makers seek to maintain overall income support to farmers near current levels. In this way, world trade policy could lead to federal agricultural policy in which conservation incentives are equally as attractive as commodity production supports for American farmers.

The current round of negotiations to reach the aims of the Agreement on Agriculture began in Doha, Qatar, in 2001 but has not made substantial progress to date. While WTO leadership has continued to press for increased global regulation of trade (Lamy, 2008), the global financial crisis has reduced demand and agricultural exports have begun to shrink (USDA, NASS, 2008a). This could lead to substantial shifts in trade policy worldwide in 2009 (Bouet & LaBorde, 2008), and international pressure could be reduced for OECD nations, including the USA, to move their agricultural policies further toward Green Box payments.

Environmental policy and agriculture

Green Box, non-commodity, payments are one way to address the imbalance between agricultural conservation programmes and agricultural commodity programmes. In fact, most OECD nations have considerable room for improvement in redressing this imbalance. For example, compared with the OECD average over 2004–6, EU nations continue to spend more, as a percentage of gross farm receipts, on payments requiring commodity production and less on payments based on non-commodity criteria (like agri-environmental benefits). The USA, in contrast, spends slightly less than the OECD average on payments requiring commodity productions and more on payments based on non-commodity criteria as a percentage of gross farm receipts. On the far end of the spectrum, both Switzerland and Norway spend far more than the OECD average on overall farmer payments as a percentage of gross farm receipts, but their relative spending based on non-commodity criteria is very different. Switzerland spends somewhat more than the USA on non-commodity payments, and Norway spends much less (OECD, 2008). Several EU policies move Europe toward greater investment in non-commodity payments, but these policies may not have yet had their potential effect. For example, the EU Common Agricultural Policy (CAP) Agenda 2000 introduced a decoupled cross-compliance system that required farmers to select appropriate agri-environmental measures from a lengthy menu of landscape and biogeochemical conservation enhancements (Nassauer & Wascher,
2007), and the potential of these measures to deliver wide-ranging societal and environmental benefits is great.

Even if the balance between agricultural conservation payments and commodity payments remains uneven in the USA, in theory, federal environmental policies could limit environmental damage from agriculture. However, the most broadly influential federal environmental laws, the Clean Air Act (CAA) and the Clean Water Act (CWA), have dramatically affected business, industry, and the public sector, while only gingerly touching on agriculture. Agriculture is largely exempt from the Clean Water Act, which regulates both point and non-point sources of water pollution from industry and public sewer systems. Larger confined-animal feeding operations (CAFOs) are regulated under the CWA as point sources, but agricultural non-point source stormwater run-off, from the rain that falls on nearly one-third of the land area of the lower 48 states, is explicitly exempted. If agricultural run-off were required to meet the same legal performance standards as run-off from other uses, an agricultural landscape that included more perennial cover would be a plausible alternative to meet standards (Santelmann et al., 2004; Boody et al. 2005; Burkart et al., 2005).

Agriculture is required to meet air quality standards, which are developed by each state as mandated by the CAA. The most affected practice is prescribed burning, which is used for weed control in some regions like the Willamette Valley of Oregon, where grass seed is produced (EPA, US, 2000). Since 2005, the US Environmental Protection Agency (EPA) has been seeking an efficient way to apply the CAA to CAFOs as well. If, in the future, the CAA were more broadly applied to greenhouse gases generated by agriculture, it could prompt further changes in rural landscapes, especially for animal agriculture operations, which produce about 15% of methane emissions worldwide (EPA, US, 2000).

Other policies affect farmland protection and small towns

Beyond farmers’ choices for agricultural production, changes in federal policy could also affect the conversion of farmland to other uses. Conversion of farmland to metropolitan uses has long been indirectly subsidised by federal support for highway construction (beginning with the Federal Highway Act and the 1956 Interstate Highway Act) and home mortgages (beginning with the 1933 authorization of the Home Owners Loan Corporation and the 1934 National Housing Act) (Jackson, 1985). While the sprawling development that is preferred by most Americans does not necessarily reduce water quality or biodiversity, provided it is designed to produce environmental benefits (Nassauer et al., 2004), it certainly has increased
vehicular travel with related increases in air pollution and public health issues (Frumkin et al., 2004; Stone, 2008). Changes in transportation, housing or environmental policy could prompt more concerted efforts to provide marketable alternatives to sprawl, including compact development that would use less farmland. These same types of changes could possibly raise the cost of travel to regional centres for shopping, making shopping in small towns more attractive, as well as increase the value of existing housing stock in some small towns, helping to stabilise or reverse the losses of some small agricultural towns.

For land development, farmland is ‘cheap’ compared with other uses, potential profits from land development dwarf farmers’ potential net income from agriculture, and, under local land-use regulations, farmland owners typically have few restrictions on selling their land for other uses. Strong protections of private property rights and legal interpretations of public ‘health, safety, and welfare’, under American law, allow land markets to fundamentally determine rural landscape conversions to other uses in most locales. Furthermore, until 2007, federal income tax rules made sale of farmland for development more inviting by allowing farmers who sold their land for development (at very high prices) to defer paying income tax on gains that were reinvested in farmland elsewhere (Section 1031, US Tax Internal Revenue code). This not only encouraged farmers to sell their land on the urban fringe, it raised prices for farmland elsewhere, further exacerbating the trend toward very large farms and reducing the number of farm families in small towns.

Local governments typically have legal control over land use and development, as delegated by states, which retain control of land use under the American constitution. Because local governments depend on local property taxes for revenue, and because rural areas often have modest professional planning resources in keeping with modest budgets, there is often little local resistance to the conversion of farmland for development. While farmland protection matching funds have been offered as part of the federal farm bill since 2002, the money available is a small fraction of that for farm income support and conservation programmes. More relevant, all funding to support agricultural land uses is dwarfed by potential profits from land development. Consequently, federal government programmes that enhance land markets by making transportation efficient and inexpensive, or by making home mortgages widely available, have the indirect effect of promoting conversion of farmland to other uses. The current international recession, prompted in part by profligate mortgage lending and financing practices, will undoubtedly lead to federal reform of lending practices, but those reforms may not be attentive to the negative effects of sprawl, including haphazard farmland conversion.
Alternative futures

A structural shift in federal agricultural policy to meet WTO agreements under evolving economic pressures, combined with complementary changes in federal energy and environmental policies, could have profound effects on American agricultural landscapes, their sustainability, and their broader societal and environmental effects. Such changes could lead farmers to adopt enterprises and practices that have environmental and societal benefits sufficient to justify public investment in farm income support. Achieving these benefits does not mean going back to old ways of farming. Rather it calls for policy and technology innovations to produce multifunctional landscapes that meet current and future societal needs including food and fibre production, a healthy environment and sound communities.

We explored how this could be achieved in a large transdisciplinary project in which we developed and tested the effects of three alternative policy scenarios on Corn Belt agricultural landscapes (Figure 10.4). Using the 1997 landscape condition as a starting point, we designed alternative futures for two different Iowa watersheds based on the three alternative scenarios. Then we participated in conducting an integrated assessment of their environmental, societal and economic performance (Nassauer et al., 2002, 2007a; Santelmann et al., 2004). The integrated assessment demonstrated that profitable agricultural production, pursued by combining effective past practices with innovations in conservation and production, is entirely consistent with dramatically improved water quality and habitat quality in the Corn Belt. Increasing the proportion of farmland in perennial herbaceous cover or woodland is integral to each of the environmentally beneficial futures. Other similar investigations have drawn similar conclusions (Boody et al., 2005; Burkart et al., 2005).

Past practices and innovations like those we employed could be achieved by adjusting some current Green Box policies, land retirement and working lands conservation programmes, as well as current Amber and Blue Box policies. Fully enforced ‘cross compliance’, which requires that farmers meet minimum environmental standards in order to participate in income-support programmes, is a plausible policy device for putting Green Box goals on a level playing field with commodity production support (Nassauer and Kling, 2007; Claassen et al., 2008). While cross-compliance has not yet produced notable results as a central policy device in the CAP of the EU, and cross-compliance under the 1985 US farm law had little lasting effect because enforcement mechanisms were not robust (Claassen, 2006), it may nonetheless hold promise if OECD nations are able to come together with firm agreements for further action under the WTO. If it were fully enforced, cross-compliance could be a linchpin for rural landscape change that helps...
the USA conform with WTO agreements and achieve substantial, noticeable societal and environmental benefits.

The alternative futures project demonstrated how, starting with familiar US agricultural programmes, a device like cross-compliance could create a rationale for farmers to employ environmentally beneficial innovations. Existing working lands conservation programmes, the Environmental

Figure 10.4.
One of the Iowa study watersheds as viewed in each of three alternative futures (Nassauer et al., 2007b).
Quality Incentives Program (EQIP) and the Conservation Stewardship Program (CSP), and successful land retirement programmes like the CRP could create new agricultural landscape patterns that demonstrably deliver measurable gains for ecosystem services and societal well-being (Doering et al., 2007). For example, the two alternative scenarios for Iowa Corn Belt watersheds that were most preferred by Iowa farmers (Nassauer et al., 2007a) also reduced nitrate loading to downstream waters by more than 50% (Vache et al., 2007) and enhanced biodiversity (Santelmann et al., 2007). These multiple benefits suggest that US agricultural policy could evolve to be more similar to the EU in aiming to provide multifunctional benefits from agriculture across society (Jordan et al., 2007).

Conclusion: Prospects for the US rural landscape in 2025

The momentum of US agricultural, transportation, housing and environmental policies is toward rural landscape change that continues to cause small towns to deteriorate, allows sprawl to replace farmland, and undermines the quality of ecosystem services that all Americans – rural and urban – depend upon. But global trends and conditions suggest that this momentum can and may need to be redirected. First among these conditions is the existing Agreement on Agriculture within the WTO. While the current round of negotiations to reduce trade-distorting agricultural subsidies has been stymied for several years, the new US president could create momentum to restart those negotiations. Since non-distorting income subsidies are allowed, including income support for farmers who ‘cross comply’ to accomplish environmental goals, future US policy could push agricultural landscapes to evolve with new enterprises, patterns and practices that produce food or fibre at the same time as they provide other long-term ecosystem services. Second, a more realistic policy response to the threat of climate change, and a broad realisation of the enduring challenge of an adequate energy system, combined with heightened public concern for federal spending could lead policymakers to cast a more discerning eye on public benefits from agricultural spending. While stabilising income support for farmers will almost certainly continue in the USA, it may be more focused on delivering recognisable public benefits, including healthy, inviting rural landscapes and communities, as well as healthy, inviting cities and ecosystems downstream from agricultural watersheds.

What might Americans notice about Corn Belt rural landscapes in 2025? Many constructive changes are plausible using policy levers that respond to the threats and opportunities that we know now. Energy, housing, tax and infrastructure policies could discourage sprawl and eliminate the expectation that agricultural land at the urban fringe is merely awaiting development.
Such a change would cause adjustments in all forms of agricultural investment, from stewardship of farmland to long-term capital investments. It might also enhance the value of existing housing stock in small towns, especially if access to efficient internet communication becomes widely available in rural settings that also bring people close to nature.

Higher transportation costs could encourage people to seek recreation, as well as the opportunity to purchase fresh produce, locally in the rural landscape. Removing or reducing subsidies for agricultural commodities, combined with a more flexible transportation and marketing chain for agricultural products, would give farmers marketing choices and stronger financial reasons to pursue innovative enterprises that would also be likely to create more varied rural landscapes in the Corn Belt. Extending the statutory requirement for high standards of water and air quality to include all forms of agricultural production would help to make rural landscapes more inviting places for recreation, and small rural towns more desirable places to live. The wider stream buffers, wetlands, and strategically sited areas of native plant cover that could protect ecosystem services in rural landscapes and downstream ecosystems would also further enhance its public appeal and recreational opportunities. Forms of biofuel production that are designed to be more environmentally benign than corn grain ethanol could help to achieve these environmental standards. Labour requirements of more environmentally beneficial forms of livestock production, like rotational grazing, could require more farmers, and this could help to maintain the social capital of rural communities.

A pastoral countryside ideal is deeply embedded in the American psyche. Using policy to reconstruct the ecosystem services of the rural landscape could adjust the reality of the industrial-era agriculture to approach enduring popular expectations (Nassauer, 1997). Where such expectations are for harmony with nature, a nature that produces the food we eat and the water we drink, to do what is popular may also be to do what is wise.

References

