Designing a Modern Data Warehouse + Data Lake

Strategies & architecture options for implementing a modern data warehousing environment

Melissa Coates
Solution Architect, BlueGranite

Blog: sqlchick.com
Twitter: @sqlchick

Presentation content last updated: March 29, 2017
Designing a Modern Data Warehouse + Data Lake

Agenda

Discuss strategies & architecture options for:

1) Evolving to a Modern Data Warehouse
2) Data Lake Objectives, Challenges, & Implementation Options
3) The Logical Data Warehouse & Data Virtualization
Evolving to a Modern Data Warehouse
Data is inherently more **valuable** once it is integrated from multiple systems. Full view of a customer:
- Sales activity +
- Delinquent invoices +
- Support/help requests

A DW is designed to be user-friendly, utilizing business terminology.

A DW is frequently built with a denormalized (star schema) data model. Data modeling + ETL processes consume most of the time & effort.
Transaction System vs. Data Warehouse

<table>
<thead>
<tr>
<th>OLTP</th>
<th>Data Warehouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus:</td>
<td>Focus:</td>
</tr>
<tr>
<td>✓ Operational transactions</td>
<td>✓ Informational and analytical</td>
</tr>
<tr>
<td>✓ “Writes”</td>
<td>✓ “Reads”</td>
</tr>
<tr>
<td>Scope:</td>
<td>Scope:</td>
</tr>
<tr>
<td>One database system</td>
<td>Integrate data from multiple systems</td>
</tr>
<tr>
<td>Ex. Objectives:</td>
<td>Ex. Objectives:</td>
</tr>
<tr>
<td>✓ Process a customer order</td>
<td>✓ Identify lowest-selling products</td>
</tr>
<tr>
<td>✓ Generate an invoice</td>
<td>✓ Analyze margin per customer</td>
</tr>
</tbody>
</table>
Traditional Data Warehousing

Operational Data Store

- Organizational Data
- Batch ETL
- Third Party Data

Data Warehouse

- Master Data
- Data Marts

OLAP Semantic Layer

- Historical Analytics
- Operational Reporting

Analytics & reporting tools

Loan Repayment Scenario:

Organizational data:
- Customer application (income, assets)
- Loan history
- Payment activity

Third party data:
- Credit history
Modernizing an Existing DW

Loan Repayment Scenario:

Predictive Analytics:
- Model to predict repayment ability

Phone Records:
- Sentiment analysis

E-mail Records:
- Text analytics

Social Media:
- Personal comments
What Makes a Data Warehouse “Modern”

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variety of data sources; multistructured</td>
<td>Coexists with Data lake</td>
</tr>
<tr>
<td>Coexists with Hadoop</td>
<td>Larger data volumes; MPP</td>
</tr>
<tr>
<td>Multi-platform architecture</td>
<td>Governance model & MDM</td>
</tr>
<tr>
<td>Data virtualization + integration</td>
<td>Support all user types & levels</td>
</tr>
<tr>
<td>Flexible deployment</td>
<td>Deployment decoupled from dev</td>
</tr>
<tr>
<td>Deployment decoupled from dev</td>
<td>Governance model & MDM</td>
</tr>
<tr>
<td>Promotion of self-service solutions</td>
<td>Near real-time data; Lambda arch</td>
</tr>
<tr>
<td>Advanced analytics</td>
<td>Agile delivery</td>
</tr>
<tr>
<td>Agile delivery</td>
<td>Cloud integration; hybrid env</td>
</tr>
<tr>
<td>Cloud integration; hybrid env</td>
<td>Bimodal environment</td>
</tr>
<tr>
<td>Automation & APIs</td>
<td>Data catalog; search ability</td>
</tr>
<tr>
<td>Data catalog; search ability</td>
<td>Scalable architecture</td>
</tr>
<tr>
<td>Scalable architecture</td>
<td>Analytics sandbox w/ promotability</td>
</tr>
<tr>
<td>Analytics sandbox w/ promotability</td>
<td>Bimodal environment</td>
</tr>
</tbody>
</table>
Ways to Approach Data Warehousing

The DW *is* Hadoop:
✓ Many open source projects
✓ Can utilize distributions (Hortonworks, Cloudera, MapR)
✓ Challenging implementation

OR

The DW & Hadoop co-exist & complement each other:
✓ Generally an easier path
✓ Augment an existing DW environment
✓ Additional value to existing DW investment

Focus of the remainder of this presentation
Growing an Existing DW Environment

Growing a DW:
- Data modeling strategies
- Partitioning
- Clustered columnstore index
- In-memory structures
- MPP (massively parallel processing)
Larger Scale Data Warehouse: MPP

Massively Parallel Processing (MPP) operates on high volumes of data across distributed nodes.

Shared-nothing architecture: each node has its own disk, memory, CPU.

Decoupled storage and compute.

Scale up compute nodes to increase parallelism.

Integrates with relational & non-relational data.

Examples: Azure SQL DW, APS, Amazon Redshift, Snowflake.
Growing an Existing DW Environment

Growing a DW:
✓ Data modeling strategies
✓ Partitioning
✓ Clustered columnstore index
✓ In-memory structures
✓ MPP (massively parallel processing)

Extending a DW:
✓ Complementary data storage & analytical solutions
✓ Cloud & hybrid solutions
✓ Data virtualization (virtual DW)

-- Grow around your existing data warehouse --
Multi-Structured Data

Objectives:

1. Storage for multi-structured data (json, xml, csv...) with a ‘polyglot persistence’ strategy
2. Integrate portions of the data into data warehouse
3. Federated query access (data virtualization)
Lambda Architecture

Objectsives:

- Support large volume of high-velocity data
- Near real-time analysis + persisted history

Speed Layer:
- Low latency data

Batch Layer:
- Data processing to support complex analysis

Serving Layer:
- Responds to queries

Devices & Sensors → **Data Ingestion** → **Data Processing** → **Data Lake**

- **Batch ETL**
- **Master Data**
- **Raw Data**
- **Curated Data**
- **Data Warehouse**

Objectives:

- Support large volume of high-velocity data
- Near real-time analysis + persisted history

Serving Layer:
- Machine Learning
- Analytics & reporting tools
- Reports, Dashboards
Hybrid Architecture

Objectives:
1. Scale up MPP compute nodes during:
 - Peak ETL data loads, or
 - High query volumes
2. Utilize existing on-premises data structures
3. Take advantage of cloud services for advanced analytics
Data Lake Objectives, Challenges & Implementation Options
A **repository** for analyzing large quantities of disparate sources of data in its native format.

One **architectural platform** to house all types of data:

- Machine-generated data (ex: IoT, logs)
- Human-generated data (ex: tweets, e-mail)
- Traditional operational data (ex: sales, inventory)
Objectives of a Data Lake

✓ Reduce up-front effort by ingesting data in any format without requiring a schema initially

✓ Make acquiring new data easy, so it can be available for data science & analysis quickly

✓ Store large volume of multi-structured data in its native format
Objectives of a Data Lake

✓ Defer work to ‘schematize’ after value & requirements are known

✓ Achieve agility faster than a traditional data warehouse can

✓ Speed up decision-making ability

✓ Storage for additional types of data which were historically difficult to obtain
Data Lake as a Staging Area for DW

Strategy:
- Reduce storage needs in data warehouse
- Practical use for data stored in the data lake

1. Utilize the data lake as a landing area for DW staging area, instead of the relational database
Data Lake for Active Archiving

Strategy:
Data archival, with query ability available when needed

1. Archival process based on data retention policy
2. Federated query to access current & historical data
Iterative Data Lake Pattern

1. Ingest and store data indefinitely in its native format.
 - Acquire data with cost-effective storage.

2. Analyze in place to determine value of the data ("schema on read").
 - Analyze data on a case-by-case basis with scalable parallel processing ability.

3. For data of value:
 - Integrate with the data warehouse ("schema on write"), or use data virtualization.
 - Deliver data once requirements are fully known.
A data lake is a conceptual idea. It can be implemented with **one or more** technologies.

HDFS (Hadoop Distributed File Storage) is a very common option for data lake storage. However, Hadoop is not a requirement for a data lake. A data lake may also span > 1 Hadoop cluster.

NoSQL databases are also very common.

Object stores (like Amazon S3 or Azure Blob Storage) can also be used.
Coexistence of Data Lake & Data Warehouse

Data Lake Values:
- ✔ Agility
- ✔ Flexibility
- ✔ Rapid Delivery
- ✔ Exploration

DW Values:
- ✔ Governance
- ✔ Reliability
- ✔ Standardization
- ✔ Security

<table>
<thead>
<tr>
<th>Data acquisition</th>
<th>Data retrieval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less effort</td>
<td>More effort</td>
</tr>
<tr>
<td>More effort</td>
<td>Less effort</td>
</tr>
</tbody>
</table>
Raw Data Zone

- Raw data zone is immutable to change
- History is retained to accommodate future unknown needs
- Staging may be a distinct area on its own
- Supports any type of data
 - Streaming
 - Batch
 - One-time
 - Full load
 - Incremental load, etc…
Transient Zone

✓ Useful when data quality or validity checks are necessary before data can be landed in the Raw Zone

✓ All landing zones considered “kitchen area” with highly limited access
 - Transient Zone
 - Raw Data Zone
 - Staging Area
Curated Data Zone

✓ Cleansed, organized data for data delivery:
 - Data consumption
 - Federated queries
 - Provides data to other systems

✓ Most self-service data access occurs from the Curated Data Zone

✓ Standard governance & security in the Curated Data Zone
Analytics Sandbox

- Data science and exploratory activities
- Minimal governance of the Analytics Sandbox
- Valuable efforts are “promoted” from Analytics Sandbox to the Curated Data Zone or to the data warehouse
Sandbox Solutions: Develop

Objective:
1. Utilize sandbox area in the data lake for data preparation
2. Execution of R scripts from local workstation for exploratory data science & advanced analytics scenarios
Sandbox Solutions: Operationalize

Objective:
1. Trained model is promoted to run in production server environment
2. Sandbox use is discontinued once solution is promoted
3. Execution of R scripts from server for operationalized data science & advanced analytics scenarios
Organizing the Data Lake

Plan the structure based on **optimal data retrieval**. The organization pattern should be self-documenting.

Organization is frequently based upon:

- **Subject area**
- **Time partitioning**
- **Security boundaries**
- **Downstream app/purpose**

Metadata capabilities of your technology will have a *big* impact on how you choose to handle organization.

-- The objective is to avoid a chaotic data swamp --
Organizing the Data Lake

Example 1
Pros: Subject area at top level, organization-wide, Partitioned by time
Cons: No obvious security or organizational boundaries

Raw Data Zone
- Subject Area
- Data Source: Salesforce
- Object: CustomerContacts
- Date Loaded: 2016
- File(s): 2016_12_01 CustCct.txt

Curated Data Zone
- Purpose: Sales Trending Analysis
- Type: Summarized
- Snapshot Date: 2016_12_01
- File(s): SalesTrend.txt
Raw Data Zone

- **Organization Unit**: East Division
- **Subject Area**: Sales
- **Data Source**: Salesforce
- **Object**: CustomerContacts
- **Date Loaded**: 2016
- **File(s)**: 12
 - **2016_12_01**: CustCct.txt

Curated Data Zone

- **Organizational Data Unit**: East Division
- **Purpose**: Sales Trending Analysis
- **Type**: Summarized
- **Snapshot Date**: 2016_12_01
- **File(s)**: SalesTrend.txt

Example 2

Pros:
- Security at the organizational level,
- Partitioned by time

Cons:
- Potentially siloed data, duplicated data
Organizing the Data Lake

Other options which affect organization and/or metadata:

Data Retention Policy
- Temporary data
- Permanent data
- Applicable period (ex: project lifetime)
- etc...

Business Impact / Criticality
- High (HBI)
- Medium (MBI)
- Low (LBI)
- etc...

Probability of Data Access
- Recent/current data
- Historical data
- etc...

Confidential Classification
- Public information
- Internal use only
- Supplier/partner confidential
- Personally identifiable information (PII)
- Sensitive – financial
- Sensitive – intellectual property
- etc...

Owner / Steward / SME
Challenges of a Data Lake

<table>
<thead>
<tr>
<th>Technology</th>
<th>Process</th>
<th>People</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Complex, multi-layered architecture</td>
<td>✓ Right balance of deferred work vs. up-front work</td>
<td>✓ Expectations</td>
</tr>
<tr>
<td>✓ Unknown storage & scalability</td>
<td>✓ Ignoring established best practices for data management</td>
<td>✓ Data stewardship</td>
</tr>
<tr>
<td>✓ Data retrieval</td>
<td>✓ Data quality</td>
<td>✓ Redundant effort</td>
</tr>
<tr>
<td>✓ Working with un-curated data</td>
<td>✓ Governance</td>
<td>✓ Skills required to make analytical use of the data</td>
</tr>
<tr>
<td>✓ Performance</td>
<td>✓ Security</td>
<td></td>
</tr>
</tbody>
</table>
Ways to Get Started with a Data Lake

1. Data lake as **staging** area for DW
2. Offload **archived** data from DW back to data lake
3. Ingest a **new type of data** to allow time for longer-term planning
Getting Real Value From the Data Lake

1. Selective integration with the data warehouse – physical or virtual

2. Data science experimentation with APIs

3. Analytical toolsets on top of the data lake
 - Hive
 - Impala
 - Solr
 - Pig
 - Presto
 - Kafka
 - Spark
 - Drill
 - etc...

4. Query interfaces on top of the data lake using familiar technologies
 - SQL-on-Hadoop
 - OLAP-on-Hadoop
 - Metadata
 - Data cataloging
 - Data virtualization
The Logical
Data Warehouse &
Data Virtualization
Logical Data Warehouse

Foundational Systems
- Servers, network

Software
- Database Management System (DBMS)

Storage
- Data persistence

Metadata
- Views into the data storage

User Access
- Analytics & reporting tools

Data virtualization abstraction layer

Distributed storage & processing from databases, data lake, Hadoop, NoSQL, etc.
Logical Data Warehouse

An LDW is a data warehouse which uses “repositories, virtualization, and distributed processes in combination.”

7 major components of an LDW:

- Data Virtualization
- Repository Management
- Auditing & Performance Services
- Distributed Processing
- Metadata Management
- Service Level Agreement Management
- Taxonomy/Ontology Resolution

Source: Gartner

We will focus on these two aspects.
Data Virtualization

Objective:
Ability to access various data platforms without doing full data integration

1 User issues query from analytical tool of choice

2 Data returned from this federated query across > 1 data source
Data Virtualization

User Queries:

Data Access:

Data Virtualization Layer

- Big Data & Analytics Infrastructure
 - Data Lake
 - Hadoop
 - NoSQL

- Master Data

- Devices, Sensors
- Images, Video, GPS
- Social Media
- Web Logs

- Third Party Data, Flat Files
- Transactional Systems
- ERP, CRM Systems
- Cloud Systems
- Data Warehouse
Objectives of Data Virtualization

✓ Add flexibility & speed to a traditional data warehouse

✓ Make current data available quickly ‘where it lives’ useful when:
 - Data is too large to practically move
 - Data movement window is small
 - Data cannot legally move out of a geographic region

✓ Enable user access to various data platforms

✓ Reduce data latency; enable near real-time analytics

✓ Reduce data redundancy & processing time

✓ Facilitate a polyglot persistence strategy (use the best storage for the data)
Challenges of Data Virtualization

✓ Performance; impact of adding reporting load on source systems
✓ Limited ability to handle data quality & referential integrity issues
✓ Complexity of virtualization layer
 (ex: different data formats, query languages, data granularities)
✓ Change management & managing lifecycle+impact of changes
✓ Lack of historical data; inability to do point-in-time historical analysis
✓ Consistent security, compliance & auditing
✓ Real-time reporting can be confusing with its frequent data changes
✓ Downtime of underlying data sources
✓ Auditing & reconciling abilities across systems
Wrap-Up & Questions
Growing an Existing DW Environment

Growing a DW:
- ✓ Data modeling strategies
- ✓ Partitioning
- ✓ Clustered columnstore index
- ✓ In-memory structures
- ✓ MPP (massively parallel processing)

Extending a DW:
- ✓ Complementary data storage & analytical solutions
- ✓ Cloud & hybrid solutions
- ✓ Data virtualization (virtual DW)

--- Grow around your existing data warehouse ---
Final Thoughts

Traditional data warehousing still is important, but needs to co-exist with other platforms. Build around your existing DW infrastructure.

Plan your data lake with data retrieval in mind.

Expect to balance ETL with some (perhaps limited) data virtualization techniques in a multi-platform environment.

Be fully aware of data lake & data virtualization challenges in order to craft your own achievable & realistic best practices.

Plan to work in an agile fashion. Conduct frequent proof of concept projects to prove assumptions.
Recommended Resources

Fundamentals

The Data Warehouse Toolkit
The Definitive Guide to Dimensional Modeling
Ralph Kimball, Margy Ross

Star Schema
The Complete Reference
Christopher Adamson

More Advanced

Data Virtualization for Business Intelligence Systems
Revolutionizing Data Integration for Data Warehouses
Rick F. van der Lans

Agile Analytics
A Value-Driven Approach to Business Intelligence and Data Warehousing
Ken Collier

Recommended Whitepaper:
How to Build An Enterprise Data Lake:
Important Considerations Before Jumping In by Mark Madsen, Third Nature Inc.
Thank You!

To download a copy of this presentation:
SQLChick.com “Presentations & Downloads” page

Melissa Coates
Solution Architect,
BlueGranite

Blog: sqlchick.com
Twitter: @sqlchick

Creative Commons License:
Attribution-NonCommercial-NoDerivative Works 3.0
Appendix A: Terminology
Terminology

<table>
<thead>
<tr>
<th>Logical Data Warehouse</th>
<th>Data Virtualization</th>
<th>Data Federation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facilitates access to various source systems via data virtualization, distributed processing, and other system components</td>
<td>Access to one or more distributed data sources without requiring the data to be physically materialized in another data structure</td>
<td>Accesses & consolidates data from multiple distributed data stores</td>
</tr>
<tr>
<td>Terminology</td>
<td>Polyglot Persistence</td>
<td>Schema on Write</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Using the most</td>
<td></td>
<td></td>
</tr>
<tr>
<td>effective data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>storage technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>to handle different</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data storage needs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data structure is</td>
<td></td>
<td></td>
</tr>
<tr>
<td>applied at design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time, requiring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>additional up-front</td>
<td></td>
<td></td>
</tr>
<tr>
<td>effort to formulate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a data model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data structure is</td>
<td></td>
<td></td>
</tr>
<tr>
<td>applied at query</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time rather than</td>
<td></td>
<td></td>
</tr>
<tr>
<td>when the data is</td>
<td></td>
<td></td>
</tr>
<tr>
<td>initially stored;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>deferred up-front</td>
<td></td>
<td></td>
</tr>
<tr>
<td>effort facilitates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>agility</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Terminology

Defining the Components of a Modern Data Warehouse
Appendix B:
What Makes A Data Warehouse “Modern”
What Makes a Data Warehouse “Modern”

- **Variety of subject areas & data sources** for analysis with capability to handle large **volumes** of data
- Expansion beyond a single relational DW/data mart structure to include **Hadoop, Data Lake, or NoSQL**
- Logical design across **multi-platform architecture** balancing scalability & performance
- **Data virtualization** in addition to data integration
What Makes a Data Warehouse “Modern”

- Support for **all types & levels of users**
- Flexible **deployment** (including mobile) which is **decoupled** from tool used for development
- **Governance model** to support trust and security, and **master data management**
- Support for **promoting self-service solutions** to the corporate environment
What Makes a Data Warehouse “Modern”

- Ability to facilitate **near real-time** analysis on **high velocity** data (Lambda architecture)
- Support for **advanced analytics**
- **Agile** delivery approach with fast delivery cycle
- Hybrid integration with **cloud** services
- **APIs** for downstream access to data
What Makes a Data Warehouse “Modern”

- Some DW **automation** to improve speed, consistency, & flexibly adapt to change

- **Data cataloging** to facilitate data search & document business terminology

- An **analytics sandbox** or workbench area to facilitate agility within a **bimodal BI** environment

- Support for **self-service BI** to augment corporate BI; Data discovery, data exploration, self-service data prep
Appendix C: Challenges With Modern Data Warehousing
Challenges with Modern Data Warehousing

- Reducing time to value
- Minimizing chaos
- Evolving & maturing technology
- Balancing 'schema on write' with 'schema on read'
- How strict to be with dimensional design?

Agility
Challenges with Modern Data Warehousing

- Hybrid scenarios
- Multi-platform infrastructure
- Ever-increasing data volumes
- File type & format diversity
- Real-time reporting needs
- Effort & cost of data integration
- Broad skillsets needed

Complexity
Challenges with Modern Data Warehousing

- Self-service solutions which challenge centralized DW
- Managing ‘production’ delivery from IT and user-created solutions
- Handling ownership changes (promotion) of valuable solutions

Balance with Self-Service Initiatives
Challenges with Modern Data Warehousing

Data quality

Master data

Security

Governance

The Never-Ending Challenges
Appendix D: Challenges of a Data Lake
Challenges of a Data Lake

People

Process

Technology
Challenges of a Data Lake: Technology

- Complex, multi-layered architecture
 - Polyglot persistence strategy
 - Architectures & toolsets are emerging and maturing

- Unknown storage & scalability
 - Can we realistically store “everything?”
 - Cloud deployments are attractive when scale is undetermined

- Working with un-curated data
 - Inconsistent dates and data types
 - Data type mismatches
 - Missing or incomplete data
 - Flex-field data which can vary per record
 - Different granularities
 - Incremental data loads
 - etc...
Challenges of a Data Lake: Technology

Performance
- ✓ Trade-offs between latency, scalability, & query performance
- ✓ Monitoring & auditing

Data retrieval
- ✓ Easy access for data consumers
- ✓ Organization of data to facilitate data retrieval
- ✓ Business metadata is *critical* for making sense of the data

Change management
- ✓ File structure changes (inconsistent ‘schema-on-read’)
- ✓ Integration with master data
- ✓ Inherent risks associated with a highly flexible repository
- ✓ Maintaining & updating over time (meeting future needs)
Challenges of a Data Lake: Process

Finding right balance of agility (deferred work vs. up-front work)

- Risk & complexity are still there – just shifted
- Finding optimal level of chaos which invites experimentation
- When schema-on-read is appropriate (Temporarily? Permanently?)
- How the data lake will coexist with the data warehouse
- How to operationalize self-service/sandbox work from analysts

Data quality

- How to reconcile or confirm accuracy of results
- Data validation between systems
Challenges of a Data Lake: Process

- Challenging to implement data governance
- Difficult to enforce standards
- Securing and obfuscating confidential data
- Meeting compliance and regulatory requirements

Governance & security

- New best practices are still evolving
- Repeating the same data warehousing failures (ex: silos)
- Erosion of credibility due to disorganization & mismanagement
- The “build it and they will come” mentality

Ignoring established best practices for data management
Challenges of a Data Lake: People

- **Redundant effort**
 - Little focus on reusability, consistency, standardization
 - Time-consuming data prep & cleansing efforts which don’t add analytical value
 - Effort to operationalize self-service data prep processes
 - Minimal sharing of prepared datasets, calculations, previous findings, & lessons learned among analysts

- **Expectations**
 - High expectations for analysts to conduct their own data preparation, manipulation, integration, cleansing, analysis
 - Skills required to interact with data which is schema-less

- **Data stewardship**
 - Unclear data ownership & stewardship for each subject area or source