Mandibular Advancement Achieved through a Stepped Mouthpiece Design Can Change the Size of the Upper Airways

K. Nikander1, I. Petherbridge1, E. Scarberry2, D. Von Hallen1, J. Viviano1, H. Chrystyn1
1Philips Respironics, Parsippany, NJ, USA; 2Philips Respironics, Chester, West Sussex, UK
1Philips Respironics, Munraysia, PA, USA; 2Mississauga, ON, Canada; University of Huddersfield, Huddersfield, UK.

Introduction
Factors which affect the deposition of inhaled aerosols in the lungs are important as good lung deposition is important for the treatment of respiratory diseases with inhaled aerosols. The geometry and the volume of the upper airways are important to affect the deposition of aerosol to the lungs. The design of both inhalers and inhaler mouthpieces, specifically change in the vertical diameter, has also been shown to affect lung and upper airway deposition.1 Acoustic pharyngometry (Eccovision; Sleep Group Solutions; North Miami Beach, FL) is a non-invasive technique which can be used to measure the cross-sectional area of the upper airway.2 It has previously been used to determine the effect of different horizontal movements (in mm increments) of the lower jaw on the amount of upper airway volume can be derived.

Acoustic pharyngometry was used to analyze the upper airways of four healthy male subjects (four of the authors), age range 45-65 years, using prototype stepped mouthpieces for mandibular advancements. The upper airways analyzed included the oral cavity, the oropharynx, the epiglottis, the hypopharynx, and the glottis. The prototype stepped mouthpieces were 28 mm wide with three different oval orifices to be placed between the teeth with maximal vertical diameter of 10 mm (small), 15 mm (medium), and 20 mm (Large). The horizontal movements were generated by offsets of -3 mm (lower jaw moved back), 5 mm (teeth aligned), +3 mm and +6 mm (lower jaw moved forward). The acoustic pharyngometry measurements were made during both exhalation (two recordings at functional residual capacity) and inhalation (two recordings during mid-inhalation), during tidal breathing with nose-clips.

Method

Figure 1a. Illustration of the upper airways.
Figure 1b. The acoustic pharyngometer.
Figure 1c. The stepped mouthpieces used in the study for horizontal and vertical mandibular advancements.

During acoustic pharyngometry, sound waves are launched from a loudspeaker along a wave tube into the subject’s airways. They are then reflected and a microphone located at the subject’s mouth records both the incident and reflected waves.1 The difference between the two signals is then analyzed and changes in the area of the airways inferred as a function of distance from the recording microphone. From this, a graphic representation (pharyngogram) of the variations of the pharyngeal cross-sectional area (cm2) through the length of the upper airways (cm) can be obtained (Fig. 2). Computer processing of the incident and reflected sound waves from the airways provides an area distance curve representing the lumen from which the cross-sectional area and volume can be derived.

Figure 1d. Vertical and horizontal mandibular advancements in subject 4 when using the medium size (15 mm, vertical size) stepped mouthpiece. The horizontal movement of +3 mm (----) did not change the size from the +3 mm (----), whereas the advancements of +1 mm (----) and +4 mm (----) caused a shift in the cross-sectional area of the oropharynx and the hypopharynx.

Results

Figure 3. Changes in airway volume (0 to 20 cm) during inhalation are shown for the four subjects. The impact of the vertical movement of the lower jaw is shown in figure 3a, for the 10 mm diameter mouthpiece orifice, and for the 15 mm orifice, and as such, for the 20 mm orifice. The impact of the horizontal movement of the lower jaw is shown as a function of the X-axis scale of -3, 0, +3 and +6 mm.

The impact of the vertical movement of the lower jaw was obvious in three of the four subjects (subjects 1-3), whereas the impact of the horizontal movement of the lower jaw was pronounced in all subjects. There was no difference in airway volume between measurements performed during inhalation and exhalation. The changes in volume occurred in different parts of the upper airways as shown in the example in Figure 4. In this example, when using the medium sized stepped mouthpiece and the +3 mm and +6 mm mandibular advancements, the main changes in cross-sectional area occurred in the oropharynx (~12 – 17 cm on the X-axis) and in the hypopharynx (~17 – 24 cm on the X-axis).

Conclusions

Mandibular advancements through the use of stepped mouthpieces were shown to increase the volume of the upper airways. The use of acoustic pharyngometry enabled a detailed analysis of the changes from the oral cavity to the glottis. The incorporation of stepped mouthpieces in inhalers might increase the amount of aerosol deposited in the lungs, and warrants further research.

References


Acknowledgements: Editorial assistance was provided by J. Pears and H. Smith of PR Writing Ltd. Some graphics supplied by The Blueprint Design Company Ltd.

Presented at Respiratory Drug Delivery 2010, 25th - 29th April 2010, Orlando, Florida, USA.