Affinity-Directed Dynamics of Host–Guest Motifs for Pharmacokinetic Modulation via Supramolecular PEGylation

Caitlin L. Maikawa, Andrea I. d’Aquino, Eric T. Vuong, Bo Su, Lei Zou, Peyton C. Chen, Leslee T. Nguyen, Anton A. A. Aulzen, Joseph L. Mann, Matthew J. Webber,* and Eric A. Appel*

ABSTRACT: Proteins are an impactful class of therapeutics but can exhibit suboptimal therapeutic performance, arising from poor control over the timescale of clearance. Covalent PEGylation is one established strategy to extend circulation time but often at the cost of reduced activity and increased immunogenicity. Supramolecular PEGylation may afford similar benefits without necessitating that the protein be permanently modified with a polymer. Here, we show that insulin pharmacokinetics can be modulated by tuning the affinity-directed dynamics of a host–guest motif used to non-covalently endow insulin with a poly(ethylene glycol) (PEG) chain. When administered subcutaneously, supramolecular PEGylation with higher binding affinities extends the time of total insulin exposure systemically. Pharmacokinetic modeling reveals that the extension in the duration of exposure arises specifically from decreased absorption from the subcutaneous depot governed directly by the affinity and dynamics of host–guest exchange. The lifetime of the supramolecular interaction thus dictates the rate of absorption, with negligible impact associated to association of the PEG upon rapid dilution of the supramolecular complex in circulation. This modular approach to supramolecular PEGylation offers a powerful tool to tune protein pharmacokinetics in response to the needs of different disease applications.

INTRODUCTION

Biopharmaceuticals, including peptides, proteins, and antibodies, offer impactful new therapies to treat a wide range of diseases.1,2 Unfortunately, these agents still face formulation and drug delivery challenges ranging from aggregation and short shelf lives to poor circulation times.3 Covalent conjugation of poly(ethylene glycol) (PEG), an approach known as PEGylation, has been used to improve stability and increase the circulation time of proteins and peptide therapeutics.4,5,6,7 The increased size of the PEGylated agent reduces renal clearance, thereby extending circulation time, yet also introduces steric hindrance from the conjugated polymer that can reduce protein activity.5,6,7 The hydrodynamic radius of PEGylated therapeutics often exceeds the size limits for glomerular filtration and renal clearance (by design), shifting the route of elimination to hepatic clearance which can introduce unanticipated effects from targeted liver delivery.5,6,7

By comparison, dynamic and non-covalent modification of proteins with PEG chains does not permanently modify the protein drug, thus mitigating many of the negative consequences of direct covalent PEGylation.9 Supramolecular PEGylation using macrocyclic host–guest interactions thus presents an attractive alternative.9,10 One particular macrocycle, cucurbit[7]uril (CB[7]), has been proven especially useful for such applications due to its broad range of affinity in binding a variety of different guest chemistries and high water solubility relative to other macrocycles in the CB[n] class.12–16 Complexation of CB[7] and guests has been estimated to occur with dynamics near the diffusion limit, although guest binding is slowed slightly in the presence of cations (e.g., Na+ in serum) due to competition from portal interactions between the cation and CB[7].17–19 The association rate under physiological conditions can therefore reasonably be approximated as $k_{on} \sim 10^7 \text{M}^{-1} \text{s}^{-1}$,17,19 with changes in guest binding affinity ($K_{eq}$), thus enabling direct control over the exchange rate ($k_{off}$) of the interaction. The N-terminal (B1) phenylalanine on insulin has been identified as a guest molecule for CB[7] binding ($K_{eq} = 1.5 \times 10^6 \text{M}^{-1}$).20 Exploiting this interaction, the conjugation of PEG to CB[7] has been recently demonstrated useful as a supramolecular route to endow insulin with a PEG-specific function in formulation, improving insulin stability, altering insulin pharmacokinetics, and enabling co-formulation of insulin with an otherwise

Received: May 21, 2021
Revised: July 15, 2021
incompatible protein (amylin), all by leveraging dynamic non-covalent interactions.11,21,22

In this study, we demonstrate an approach for supramolecular PEGylation using tunable host–guest dynamics to alter the absorption and pharmacokinetic profile of insulin. As the first protein drug used in humans, insulin is vital in therapeutic management of over 20 million individuals with type-1 diabetes worldwide. Insulin variants with long-acting function are important to replace basal insulin and maintain glucose homeostasis between meals and overnight. Covalent PEGylation has been explored clinically for long-lasting insulin function with liver-biased activity (pegispro, Eli Lilly) by attaching a 20 kDa PEG chain to the B28 lysine on insulin lispro.8,23,24 Regrettably, this PEGylated insulin candidate resulted in increased liver fat deposits in clinical trials, linked to its hepatopreferential action and hepatic clearance route, resulting in increased liver fat deposits in clinical trials, linked to its hepatopreferential action and hepatic clearance route, ultimately resulting in discontinuation of the program.23

Previous work demonstrated that supramolecular PEGylation of insulin can modulate its duration of action by varying PEG chain length.11 We therefore hypothesized that we could further modulate insulin pharmacokinetics, extending its duration of action, by altering the host–guest binding affinity used for appending the PEG chain to the therapeutic protein. Supramolecular PEGylation does not permanently increase the hydrodynamic size of the protein, and once the insulin dissociates from the PEG chain, it is able to be absorbed into the blood and cleared from the body normally (Figure 1). This modular approach points to a powerful tool utilizing supramolecular affinity to tune pharmacokinetics, making therapeutics more responsive to the needs of different applications.

**EXPERIMENTAL METHODS**

### Synthesis of Cucurbit[7]uril–PEG20k

**Synthesis of PEG Terminated with an Alkyne Group (mPEG–Alkyne).** In a dry round-bottom flask, sodium hydride (0.32 g, 60% dispersion in mineral oil, Beantown Chemical) was slowly added to a solution of methoxypolyethylene glycol (mPEG, Alfa Aesar, M<sub>n</sub> = 20,000, 1 g) in 25 mL of dry tetrahydrofuran. The mixture was stirred for 20 min at room temperature. Then, propargyl bromide (0.88 mL, 80 wt % solution in toluene, Beantown Chemical) was added, and the reaction mixture was stirred for 2 days at room temperature. After quenching with a small volume of water, the reaction mixture was transferred to a 50 mL centrifuge tube. The supernatant was collected using a centrifuge and evaporated under reduced pressure. The residue was dissolved in 100 mL of dichloromethane (DCM) and washed with brine three times (100 mL each). The organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated under reduced pressure to a small volume which was precipitated in cold diethyl ether. The product was obtained as a yellow powder in quantitative yield.1 H NMR (400 MHz Bruker, 25 °C, CDCl<sub>3</sub>): δ (ppm) 4.20 (b, 2H), 3.83–3.45 (m, PEG chain), 3.38 (s, 3H), 2.44 (t, 1H). See the Supporting Information Figure S1 for synthesis scheme and Figure S2 for 1 H NMR of mPEG<sub>20k</sub>–alkyne.

**Synthesis of PEG–CB[7].** CB[7]–N<sub>3</sub> (20 mg) was synthesized according to previously published methods.25 The pure CB[7]–N<sub>3</sub> product was combined along with mPEG–alkyne (300 mg), copper(II) sulfate pentahydrate (CuSO<sub>4</sub>·5H<sub>2</sub>O, 1 mg), and N,N,N′,N′‑pentamethyldiethylenetriamine (PMDETA, 98%, 0.8 µL, Acros) and dissolved in 8 mL of dimethylformamide (DMF)–water (1/1, v/v) in a Schlenk flask. The flask was degassed with three freeze–pump–thaw cycles. In the last cycle, the flask was opened to quickly add sodium ascorbate (5 mg) to the flask before re-capping the flask. The flask was vacuumed and backfilled with N<sub>2</sub> five times before immersion in a 50 °C oil bath to thaw the solution and initiate the “click” reaction. After 2 days, the reaction was quenched by exposure to air. The reaction mixture was then transferred into dialysis tubing (MWCO = 3500, Thermo Scientific) and dialyzed against water for 2 days. The pure product was obtained after lyophilization as yellow solid and was determined to be fully compatible with CB[7].1 H NMR (500 MHz Bruker, 25 °C D<sub>2</sub>O, Figure S3): δ (ppm) 8.04 (s, 1H), 7.49 (s, free probe), 7.47 (s, free probe), 5.14–6.50 (m, 14H), 4.67 (s, 2H), 4.46 (t, 2H), 4.34–4.12 (m, 14H), 4.18 (s, free probe), 3.88 (s, 1H), 3.88 (s, free probe), 3.82–3.52 (m, PEG chain), 3.5 (s, 3H), 2.30 (s, 2H), 2.01 (s, 2H), 1.74 (s, 3H), 1.09 (s, 2H). See the Supporting Information Figure S1 for synthesis scheme and Figure S4 for matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) of mPEG<sub>20k</sub>–alkyne and mPEG<sub>20k</sub>–CB[7].

**Synthesis of Azide–PEG20k.** Synthesis of PEG Terminated with Mesylate (mPEG–Mes). In a dry round-bottom flask, mPEG (Alfa Aesar, M<sub>n</sub> = 20,000, 5 g) was dissolved in 25 mL of DCM with triethylamine (0.348 mL). The solution was cooled to 0 °C in an ice bath, and methanesulfonyl chloride (MsCl, 0.194 mL) was added before immersion in a 50 °C oil bath to thaw the solution and initiate the “click” reaction. After 2 days, the reaction was quenched by exposure to air. The reaction mixture was then transferred into dialysis tubing (MWCO = 3500, Thermo Scientific) and dialyzed against water for 2 days. The pure product was obtained after lyophilization as yellow solid and was determined to be fully compatible with CB[7]. 1 H NMR (500 MHz Bruker, 25 °C D<sub>2</sub>O, Figure S3): δ (ppm) 8.04 (s, 1H), 7.49 (s, free probe), 6.58 (s, thread probe), 5.76–5.62 (m, 14H), 5.55–5.40 (m, 12H), 4.67 (s, 2H), 4.46 (t, 2H), 4.34–4.12 (m, 14H), 4.18 (s, free probe), 3.88 (s, thread probe), 3.82–3.52 (m, PEG chain), 3.5 (s, 3H), 2.30 (s, 2H), 2.01 (s, 2H), 1.74 (s, 3H), 1.09 (s, 2H). See the Supporting Information Figure S1 for synthesis scheme and Figure S4 for matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) of mPEG<sub>20k</sub>–alkyne and mPEG<sub>20k</sub>– CB[7].
Synthesis of O-Adamantane–PEG20k. An alkynyl-modified O-linked adamantane (alkyne-O-Ada) was synthesized as previously described. Then, mPEG20k·N3 (300 mg), alkyl-O-Ada (3 mg), copper(II) sulfate pentahydrate (CuSO4·5H2O, 1 mg), and PMDETA (98%, 0.8 μL, Acros) were dissolved in 10 mL of DMF in a Schlenk flask. The flask was degassed with three freeze–pump–thaw cycles. In the last cycle, the flask was opened to quickly add sodium ascorbate (5 mg) before re-capping. The flask was vacuumed and backfilled with N2 five times before immersion in a 50 °C oil bath to thaw the solution and initiate the “click” reaction. After 2 days, the reaction mixture was dialyzed against water for 2 days. Then, the product was obtained by lyophilization as white powder. 1H NMR (500 MHz Bruker, 25 °C, CDCl3, Figure S7): δ (ppm) 7.68 (s, 1H), 4.63 (br s, 2H), 4.31 (t, 2H), 3.88–3.45 (m, PEG chain), 3.38 (s, 3H), 2.21 (br s, 3H), 1.82 (bd, 6H), 1.68 (m, 6H). See the Supporting Information Figure S8 for synthesis scheme.

Synthesis of p-Xylenediamine–PEG20k. An alkynyl-modified p-xylenediamine (alkyne-din-Xyl) was synthesized as previously described. Then, mPEG20k·N3 (300 mg), alkyl-din-Xyl (4.67 mg, copper(II) sulfate pentahydrate (CuSO4·5H2O, 1 mg), and PMDETA (98%, 0.8 μL, Acros) were dissolved in 10 mL of DMF in a Schlenk flask. The flask was degassed with three freeze–pump–thaw cycles. In the last cycle, the flask was opened to quickly add sodium ascorbate (5 mg) before re-capping. The flask was vacuumed and backfilled with N2 five times before immersion in a 50 °C oil bath to thaw the solution and initiate the “click” reaction. After 2 days, the reaction mixture was dialyzed against water for 2 days. Then, the product was obtained by lyophilization as white powder. 1H NMR (500 MHz Bruker, 25 °C, D2O, Figure S9): δ (ppm) 8.16–7.41 (m, 2H), 7.50 (br s, 1H), 7.41–7.11 (m, 2H), 5.28 (br s, 2H), 4.34 (m, 2H), 4.25 (m, 2H), 4.21 (m, 2H), 3.94 (m, 2H), 3.82–3.53 (m, PEG chain), 3.36 (s, 3H). See the Supporting Information Figure S10 for synthesis scheme. See the Supporting Information Figure S11 for MALDI-MS.

Insulin–Cucurbit[7]uril Conjugation. CB[7]–N3, prepared as described previously, was used for conjugation to insulin at the B1 position. First, an N-hydroxysuccinimide (NHS)-ester reaction was used to functionalize the insulin with bicyclo[6.1.0]nonyne (BCN), enabling a subsequent azide–BCN copper-free click reaction with CB[7]–N3. An insulin stock solution of 10 mg/mL was prepared by adding 0.1 M aq HCl (conc) to 100 mg (17.2 μmol) of insulin until the dispersed powder was fully dissolved. Bis-tris was added to buffer the solution to pH ~ 6.5, resulting in a temporarily cloudy precipitate that quickly dissipates. 1.2 equiv (20.6 μmol) of BCN–NHS ester was added to insulin from a freshly prepared stock solution. This solution was incubated at room temperature overnight. Buffer conditions (pH ~ 6.5) were used to favor functionalization of the B1 phenylalanine with BCN over the B29 lysine. The B1 position was chosen for the functionalization of the B1 phenylalanine (∼6.5) were used to favor functionalization of the B1 phenylalanine (5 mg) before re-capping. The solution and initiate the “click” reaction. After 2 days, the reaction mixture was dialyzed against water for 2 days. Then, the product was obtained by lyophilization. 1H NMR (500 MHz Bruker, 25 °C, D2O, Figure S17): δ (ppm) 8.16–7.41 (m, 2H), 7.50 (br s, 1H), 7.41–7.11 (m, 2H), 5.28 (br s, 2H), 4.34 (m, 2H), 4.25 (m, 2H), 4.21 (m, 2H), 3.94 (m, 2H), 3.82–3.53 (m, PEG chain), 3.36 (s, 3H). See the Supporting Information Figure S10 for synthesis scheme.

In Vivo Pharmacokinetics and Pharmacodynamics in Diabetic Rats. Diabetic rats were fasted for 4–6 h before injection. For subcutaneous pharmacokinetic and pharmacodynamic experiments, 20 rats were randomly assigned to treatment groups and were injected with one of the following insulin formulations: (i) insulin (2 U/kg), (ii) insulin and CB[7]–PEG20k (10 U/kg), (iii) insulin–CB[7] and Xyl–PEG20k (10 U/kg), (iv) insulin–CB[7] and Ada–PEG20k (10 U/kg), and (v) insulin–PEG20k (10 U/kg). All formulations were prepared in 10 mM phosphate buffer (pH ~ 7.4) with 2.6 wt % glycerol as a tonicity agent and had concentrations of 586 μM insulin (similar to standard 100 U/mL formulation). For non-covalently PEGylated formulations, a 1:1 molar ratio of the PEG conjugate–insulin was added. After injection, rats were provided food ad libitum to prevent hypoglycemia that could result from high insulin doses. After formulation administration, blood glucose measurements were taken using a handheld glucose monitor (Bayer Contour Next) and additional blood was collected (Sarstedt serum tubes) for analysis with ELISA. Time points were taken as 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, 10, 18, and 24 h following administration. Serum insulin concentrations were quantified using an ultra-sensitive human insulin ELISA (Mercodia) or iso-insulin ELISA (Mercodia). A second pharmacokinetic experiment was performed with intravenous injections to determine the elimination half-life of insulin and PEGylated insulin from the blood. In this experiment, 24 rats were randomly assigned to a formulation group. The same formulations as in the subcutaneous experiment were tested with the addition of a sixth formulation (vi) insulin–CB[7], which was added as a control. All formulations were administered at a ~2 U/kg dose. Kinetic analysis curves of rats were excluded from analysis when there was a clear absorption phase present indicative of part of the injection entering subcutaneously rather than intravenously. Insulin–CB[7] was not tested subcutaneously because it was insoluble at the formulation concentrations and when injected in the subcutaneous space (where dilution is minimal), it remained insoluble.
of differential equations, outlined below, as a function of time using the SciPy (version 1.2.1) odeint function in Python (version 3.6.8).28

\[
\frac{dI}{dt} = -k_1 \times I_{\text{inj}}
\]

\[
\frac{dI_{\text{eq}}}{dt} = k_1 \times I_{\text{inj}} - k_2 \times I_{\text{eq}}
\]

\[
\frac{dI_{\text{p}}}{dt} = k_2 \times I_{\text{eq}} - k_3 \times I_{\text{p}}
\]

Concentrations were initialized such that at \( t = 0 \), all insulin was present as \( I_{\text{inj}} \). Kinetic rate constants were fit in the normalized rat pharmacokinetic curves by minimizing the sum of squared errors (SSE) between the generated, normalized insulin plasma concentrations derived from the model at the experimental time points from 0 to 48 h and the normalized plasma insulin concentrations for each insulin formulation. We assume this based on the intravenous pharmacokinetic data that confirm that there is no difference in plasma elimination half-life between non-covalently PEGylated and unmodified insulin formulations. Thus, \( k_1 \) can be calculated from the average of the observed elimination half-life of four formulations. Because insulin and insulin–CB[7] are similar in size, we assume that once free from the PEG chain, insulins will be absorbed from the subcutaneous space similarly, so \( k_2 \) was constrained to be constant for all groups. This leaves \( k_3 \) as the only formulation-dependent parameter. The SSE was minimized by first employing a grid search using SciPy’s minimize function and subsequently refining the rate constants by employing SciPy’s optimize minimize function using the L-BFGS-B method.

**Statistics.** All data are reported as mean ± standard error mean (SEM) unless specified. GraphPad Prism 8 was used to fit one-phase exponential decay non-linear regression to the intravenous pharmacokinetic data and to perform one-way analysis of variance with the Tukey–Kramer post hoc test for multiple comparisons to compare the elimination half-lives between groups.

### RESULTS & DISCUSSION

**Design of the Supramolecular PEGylation System.** Previous work demonstrated supramolecular PEGylation via interaction between a PEG-linked CB[7] macrocycle and the N-terminal B1 phenylalanine of insulin, with increasing PEG length serving to extend the duration of insulin action.11 In this study, we hypothesized that modulating the binding affinity of PEG-appending host–guest interactions could be used to further control insulin pharmacokinetics. CB[7] is an ideal host molecule for these studies as it has a broad range of binding affinities for different guest molecules,12–16 including the N-terminal phenylalanine on insulin.20 In this work, PEG chain length (20 kDa) was kept constant to mirror the PEG length used in peglispro and limit absorption of PEGylated insulin directly into blood following subcutaneous administration. Then, by altering the CB[7]–guest affinity motif used to append the PEG chain, we could assess how changes in

---

Figure 2. Schematic of PEGylated insulin formulations. To assess the effect of host–guest binding affinity on the pharmacokinetics of dynamically PEGylated insulin, two non-covalently PEGylated insulin systems were tested. (A) N-terminal B1 phenylalanine of insulin can bind to cucurbit[7]uril (CB[7]) with a \( K_{\text{eq}} \sim 10^6 \text{M}^{-1} \). PEG\(_{20}\text{kDa–CB[7]} \) can thus be used to non-covalently PEGylate the phenylalanine on insulin. (B) To test host–guest motifs with higher binding affinity, a covalent insulin–CB[7] conjugate was combined with a guest-linked PEG\(_{20}\text{kDa–CB[7]} \). To depict the conjugation between CB[7] and insulin, the chemical structures of CB[7], BCN, and the PEG linker used are shown (left). PEG\(_{20}\text{kDa–Xyl} \) (\( K_{\text{eq}} \sim 10^9 \text{M}^{-1} \)) or PEG\(_{20}\text{kDa–O-Ada} \) (\( K_{\text{eq}} \sim 10^{10} \text{M}^{-1} \)) was selected as guests. Bond lifetime \( (\tau) \) is inversely related to the dissociation rate \( k_{\text{off}} \) and was calculated based on the following relationships and assumptions: \( K_{\text{eq}} = k_{\text{on}}/k_{\text{off}}, \) \( k_{\text{on}} \sim 10^7 \text{M}^{-1}\text{s}^{-1}, \) and \( \tau = 1/k_{\text{off}} \). See Table S1 for a complete list of values.

---

[https://doi.org/10.1021/acs.biomac.1c00648](https://doi.org/10.1021/acs.biomac.1c00648)
binding affinity, and by extension binding dynamics (e.g., the binding lifetime, \(\tau\), which is inversely related to \(k_{\text{off}}\)), affect insulin pharmacokinetics. Three different guests for CB\(7\) were chosen with \(K_{\text{eq}}\) values ranging from \(10^6\) to \(10^{10}\) M\(^{-1}\).
These guests were (i) N-terminal phenylalanine ($K_{eq} \sim 10^6$ M$^{-1}$) on the insulin B chain interacting with CB[7]$\cdot$PEG$_{20k}$, (ii) $p$-Xyl ($K_{eq} \sim 10^9$ M$^{-1}$), and (iii) O-Ada ($K_{eq} \sim 10^{10}$ M$^{-1}$), bound to PEG$_{20k}$ and interacting with CB[7]$\cdot$modified insulin. As controls, unmodified recombinant human insulin and insulin covalently modified with PEG$_{20k}$ were used.

Two strategies were used for supramolecular PEGylation with CB[7]$\cdot$guest motifs of three different affinities (Figure 2). The first took advantage of the native B1 phenylalanine on insulin as the guest moiety, combined with a CB[7]$\cdot$PEG$_{20k}$ conjugate as the host (Figures 2A and S1–S4). This system uses the same topology for supramolecular PEGylation described in previous work. To access the guests with higher affinity, $p$-Xyl, and O-Ada and limit the number of additional conjugation steps, the topology of the host–guest system was reversed. In the reversed system, CB[7] was conjugated to insulin while the two guests were coupled to PEG$_{20k}$ (Figures 2B and S5–S11). CB[7] was conjugated to insulin at the B1 terminal amine using an NHS-ester reaction to first functionalize the insulin with BCN, followed by the azide–BCN copper-free click reaction (Figure 3A), using a previously reported azide-modified CB[7]. Buffer conditions (pH 6.5) were used to promote selective NHS-ester modification of the B1 phenylalanine over the B29 lysine. The B1 position was chosen for the conjugation to block the native CB[7]-binding phenylalanine guest to both prevent the formation of insulin polymer species and to keep the site of PEGylation consistent for the two supramolecular topologies. The “clicked” CB[7]$\cdot$BCN conjugate was confirmed using LC–MS (Figure S12), MALDI-MS (Figure 3B), and $^1$H NMR (Figures S13–S16). Insulin–BCN was purified using semipreparative HPLC (Figure S17). Formation of insulin–CB[7] was confirmed using MALDI-MS (Figure 3B), and the secondary structure of the conjugate was confirmed by circular dichroism (Figure S18). For the covalent insulin–PEG$_{20k}$ control, azide–PEG$_{20k}$ was conjugated to the same insulin–BCN intermediate via a copper-free click reaction (Figure 3A), which was confirmed using MALDI-MS (Figure S19).

**Pharmacokinetics in Diabetic Rats.** Having confirmed conjugation of insulin–CB[7], formulations were prepared for in vivo testing in diabetic rats. Unmodified insulin and covalently PEGylated insulin–PEG$_{20k}$ were used as short-acting and long-acting controls, respectively. These were compared to supramolecular PEGylation of insulin using formulations of (i) insulin and CB[7]$\cdot$PEG$_{20k}$, (ii) insulin–CB[7] and $p$-Xyl–PEG$_{20k}$, and (iii) insulin–CB[7] and O-Ada–PEG$_{20k}$. The insulin–CB[7] conjugate alone was not used as a control for subcutaneous administration because it was not sufficiently soluble at formulation concentrations (all insulin–CB[7] and guest–PEG formulations were soluble). All formulations had concentrations of 586 μM insulin (comparable to a standard 100 U/mL insulin formulation), and for host–guest PEGylated formulations, a 1:1 molar ratio of PEG conjugate to insulin was used. We hypothesized that a greater binding affinity, and thus longer bond lifetime, between the PEG and insulin would result in increased residence time of insulin in the subcutaneous depot and translate to an extended duration of insulin exposure. Here, duration of exposure is defined as peak width at 25% peak height [(time to 25% peak down) − (time to 25% peak up)] of the individually normalized curves. After subcutaneous administration of insulin formulations in diabetic rats, we observed that while all host–guest PEGylated formulations had a similar time to peak (~1 h), the duration of exposure increased with increasing binding affinity of the host–guest interaction (duration: Phe = 2.2 ± 0.3 h, Xyl = 5.5 ± 0.7 h, and O-Ada = 12.4 ± 0.9 h) (Figure 4). Covalent insulin–PEG$_{20k}$ exhibited a longer time to peak (7 ± 1 h) and the longest duration of exposure (28 ± 8 h).
consistent with the behavior expected for covalently PEGylated insulin. The larger hydrodynamic radius introduced using the covalent PEG chain limits direct absorption into the blood, instead requiring more prolonged absorption through the lymphatic system and extending the time to peak.\(^3\) Similarly, the prolonged duration of exposure observed for insulin–PEG\(_{20k}\) is characteristic of the extension in circulation time afforded by covalent PEGylation (Figure 4).

The affinity regime explored for these guests is below what would be expected to readily form complexes under dilution in the body.\(^3\)\(^2\) As such, the elevated concentration when confined within the subcutaneous depot is a likely key to the observed affinity-dependent differences in duration of insulin exposure, rather than supramolecular PEGylation serving to directly increase circulation time in the blood. To test this hypothesis of a subcutaneous depot effect, we administered each formulation intravenously to determine insulin elimination half-life. Insulin–CB[7] alone (with no PEG–guest) was also tested to verify that functionalization with CB[7] did not alter circulation time. As expected, there was no difference between the half-lives of host–guest PEGylated insulin formulations, insulin–CB[7], and insulin alone, suggesting that dissociation of the host–guest interaction happens rapidly under dilution and does not measurably affect circulation time. In contrast, covalent insulin–PEG\(_{20k}\) demonstrated an extended half-life of 37 min compared to the ∼4–8 min range observed for the other formulations (\(p < 0.001\)) (Figure S20).

**Pharmacokinetic Modeling.** To further understand the impact of the host–guest affinity linking insulin and PEG on duration of exposure, we used a first-order three-compartment model to fit the pharmacokinetic data for the three host–guest PEGylated insulin formulations (Figure 5A). The model assumes complete complex formation between insulin and PEG at the time of injection. Although re-association of the host–guest interaction will occur due to the relatively high concentrations of both the host and guest species in the depot, combined with the steric hindrance to absorption provided by the PEG chain, ultimately some insulin will become free and available for absorption into the blood stream. Although this equilibrium between PEG-bound and unbound insulin is complex, for the purposes of modeling the system, we have approximated the transition of insulin from PEGylated to available for absorption with a first-order rate constant (\(k_5\)). The absorption of insulin into the blood and its elimination from the blood are also modeled by first-order rate constants. The rate constant for elimination (\(k_5\)) can be calculated using the elimination half-life from intravenous administration of the formulations. Because the elimination half-life was consistent for all host–guest PEGylated formulations and unmodified insulin, \(k_5\) can be estimated from the average of these four elimination half-lives (\(k_5 = 7.44 \text{ h}^{-1}\)). Furthermore, if we assume that only the free insulin is absorbed, then the absorption rate of insulin from the subcutaneous depot into the blood is similar for all formulations; thus, we can constrain the elimination rate from the subcutaneous space (\(k_5\)) to be constant for all formulations. This leaves \(k_6\), the rate constant representing the transition from the bound PEG–insulin complex to free insulin (or free insulin–CB[7]), as the only parameter that will differ between formulations (Table S2). The resulting predicted curves show excellent alignment with the experimental data (Figure 5B), corroborating our hypothesis that the pharmacokinetic differences observed between formulations are dependent on a subcutaneous depot effect modulated by the host–guest binding affinity. We likewise observed a clear relationship between \(k_6\) and the predicted dissociation rate (\(k_{\text{off}}\)) of the specific host–guest interaction (Figure 5C). The binding affinity used for supramolecular PEGylation, which dictates the complex lifetime (\(\tau\)), therefore directly controls the rate of absorption and subsequent activity of insulin following subcutaneous administration.

**CONCLUSIONS**

Impactful therapeutics for a number of diseases come from protein and peptide drugs, although formulation and drug delivery challenges remain. One such challenge arises in ensuring tunable and application-specific duration of action. Although covalent PEGylation is an established approach to increase circulation time of protein therapeutics, these benefits often come at the cost of reduced activity and immunogenicity. Here, we demonstrate a route for host–guest PEGylation of insulin wherein varying the binding affinity and concomitant dynamics of the interaction enables direct modulation of pharmacokinetics. When administered subcutaneously, higher binding affinities corresponded to slower absorption from the subcutaneous depot, thereby extending the duration of insulin exposure in the blood. Intravenous administration of these host–guest PEGylated formulations showed no change in the circulation time of insulin, suggesting that the insulin rapidly dissociates from the PEG chain upon dilution in the blood. These results indicate that the increased duration of insulin exposure observed after subcutaneous administration is a result of a depot effect, wherein high local concentrations allow for dynamic re-association of insulin and PEG through host–guest interactions. Pharmacokinetic modeling further supports affinity-dependent differences, manifesting in modulation of the dissociation rate (\(k_{\text{off}}\)) for each complex, as the key to realizing these differences in insulin absorption. Combined with previously demonstrated control of function through the selection of PEG chain length, modulating host–guest binding affinity offers another useful tool to tune protein pharmacokinetics through supramolecular PEGylation. As the host–guest interactions investigated in this work still have relatively short bond lifetimes (∼1000 s for O-Ada), future work to investigate ultra-high affinity host–guest interactions may be interesting to uncover the limits of affinity required to approach covalent-like PEGylation over timescales relevant in the body. Supramolecular PEGylation to extend duration of action by exploiting host–guest binding affinity, and the associated differences in dynamics, thus offers an exciting avenue to increase the exposure time to biopharmaceutics without the risks entailed in covalent modification to alter function or clearance.

**ASSOCIATED CONTENT**

- **Supporting Information**
  The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.biomac.1c00648.

  Experimental methods; schematic of insulin absorption and PEGylated insulin formulations; synthesis of insulin conjugates; pharmacokinetics and pharmacodynamics in diabetic rats; and pharmacokinetics and pharmacodynamics in diabetic rats (PDF)
**AUTHOR INFORMATION**

Corresponding Authors
Matthew J. Webber – Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States; orcid.org/0000-0003-3111-6228; Email: mwebber@nd.edu

Eric A. Appel – Department of Bioengineering, Department of Materials Science and Engineering, Department of Endocrinology (Pediatrics), and CheM-H Institute, Stanford University, Stanford, California 94305, United States; orcid.org/0000-0002-2301-7126; Email: eappel@stanford.edu

**Authors**

Caitlin L. Maikawa – Department of Bioengineering, Stanford University, Stanford, California 94305, United States

Andrea I. d’Aquino – Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States

Eric T. Vuong – Department of Bioengineering, Stanford University, Stanford, California 94305, United States

Bo Su – Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States

Lei Zou – Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States

Peyton C. Chen – Department of Bioengineering, Stanford University, Stanford, California 94305, United States

Leslee T. Nguyen – Department of Biochemistry, Stanford University, Stanford, California 94305, United States

Anton A. A. Autzen – Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States; Department of Science and Technology, Aarhus University, Aarhus 8000, Denmark; Present Address: Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

Joseph L. Mann – Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.biomac.1c00648

**Author Contributions**


**Notes**

The authors declare no competing financial interest. Data availability: all data supporting the results in this study are available within the article and its Supporting Information. Raw data files are available from the corresponding author upon reasonable request.

**ACKNOWLEDGMENTS**

This work was funded in part by NIDDK R01 (NIH grant #R01DK119254) and a Pilot and Feasibility funding from the Stanford Diabetes Research Center (NIH grant #P30DK116074) as well as the American Diabetes Association Grant (1-18-JDF-011) and a Research Starter Grant from the PhRMA. Support was also provided by the Stanford Maternal and Child Health Research Institute through the SPARK Translational Research Program. M.J.W. acknowledges funding support from the American Diabetes Association Pathway Award (1-19-ACE-31), The Leona M. and Harry B. Helmsley Charitable Trust (2019PG-T1D016), and the Juvenile Diabetes Research Foundation (5-CDA-2020-947-A-N). C.L.M. was supported by the NSERC Postgraduate Scholarship and the Stanford BioX Bowes Graduate Student Fellowship. A.I.D. was supported by the Schmidt Science Fellows Award. J.L.M. was supported by the Department of Defense NDSEG Fellowship and by a Stanford Graduate Fellowship. A.A.A.A. was funded by grant NN1F18OC0030896 from the Novo Nordisk Foundation and the Stanford Bio-X Program. The authors thank the Veterinary Service Centre staff for their technical assistance.

**ABBREVIATIONS**

CB[7], cucurbit[7]uril; PEG, poly(ethylene glycol); Xyl, p-xylenediamine; O-Ada, O-linked adamantane; Phe, phenylalanine

**REFERENCES**


