Paleolithic nutrition improves plasma lipid concentrations of hypercholesterolemic adults to a greater extent than traditional heart-healthy dietary recommendations

Robert L. Pastore, Judith T. Brooks, John W. Carbone

School of Health Sciences, Eastern Michigan University, Ypsilanti, MI

ARTICLE INFO

Article history:
Received 18 March 2015
Revised 6 May 2015
Accepted 8 May 2015

Keywords:
Paleolithic nutrition
Heart-healthy diet
Hyperlipidemia
Cholesterol
Humans

ABSTRACT

Recent research suggests that traditional grain-based heart-healthy diet recommendations, which replace dietary saturated fat with carbohydrate and reduce total fat intake, may result in unfavorable plasma lipid ratios, with reduced high-density lipoprotein (HDL) and an elevation of low-density lipoprotein (LDL) and triacylglycerols (TG). The current study tested the hypothesis that a grain-free Paleolithic diet would induce weight loss and improve plasma total cholesterol, HDL, LDL, and TG concentrations in nondiabetic adults with hyperlipidemia to a greater extent than a grain-based heart-healthy diet, based on the recommendations of the American Heart Association. Twenty volunteers (10 male and 10 female) aged 40 to 62 years were selected based on diagnosis of hypercholesterolemia. Volunteers were not taking any cholesterol-lowering medications and adhered to a traditional heart-healthy diet for 4 months, followed by a Paleolithic diet for 4 months. Regression analysis was used to determine whether change in body weight contributed to observed changes in plasma lipid concentrations. Differences in dietary intakes and plasma lipid measures were assessed using repeated-measures analysis of variance. Four months of Paleolithic nutrition significantly lowered ($P < .001$) mean total cholesterol, LDL, and TG and increased ($P < .001$) HDL, independent of changes in body weight, relative to both baseline and the traditional heart-healthy diet. Paleolithic nutrition offers promising potential for nutritional management of hyperlipidemia in adults whose lipid profiles have not improved after following more traditional heart-healthy dietary recommendations.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Recent estimates suggest that 17% of US adults have hyperlipidemia, and 71 million American adults have high low-density lipoprotein (LDL). The 2010 Dietary Guidelines for Americans and current American Heart Association (AHA) general recommendations for the dietary management of hypercholesterolemia are to limit dietary saturated fat, with most energy intake derived from carbohydrate, in a calorically appropriate diet for the individual. There is evidence, however, that such a
macronutrient shift may result in increased atherosclerotic risk, with reduced high-density lipoprotein (HDL) and an elevation of C-reactive protein, triacylglycerols (TG), very low-density lipoprotein, smaller LDL, and oxidized LDL [6-11].

Paleolithic nutrition, an eating pattern based on meats, fruits, and vegetables and devoid of grains and dairy, has been successfully used to improve biomarkers of cardiovascular disease (CVD) in higher risk groups (eg, type 2 diabetes, obesity, and metabolic syndrome), with significant reductions in body weight, total cholesterol (TC), TG and blood pressure as well as increased HDL and glucose tolerance [12-15]. Similarly, plasma lipid improvements have also been reported in nonobese, sedentary individuals after 10 days of a Paleolithic diet [16]. Hunter-gatherer populations from 5 continents, with dietary practices that are the foundation of Paleolithic nutrition, regularly live well into their 60s with no sign of CVD and mean TC levels of 2.6 to 3.6 mmol/L (100-140 mg/dL) and mean LDL of 1.3 to 1.8 mmol/L (50-70 mg/dL) [17]. Such LDL levels are associated with atheroma regression in CVD patients after aggressive pharmaceutical management [18].

Relative to traditional diabetic and Mediterranean diets, a Paleolithic diet is more satiating per calorie consumed [19,20]. This effect can lead to an overall lower energy intake in the absence of defined energy restrictions [12]. In 14 healthy subjects, 3 weeks of a Paleolithic diet drove mean energy intake down by 36%, relative to baseline [21]. Similarly, energy intake was significantly reduced in patients with ischemic heart disease after a Paleolithic diet, compared with a Mediterranean diet [19].

The current study was designed to evaluate the effects of 4 months of Paleolithic nutrition on dietary intake and plasma lipids in hypercholesterolemic adults who had previously adhered to 4 months of AHA heart-healthy dietary recommendations. We hypothesized that the Paleolithic diet would lead to greater weight loss and improve volunteers’ lipid profiles to a larger extent than following a traditional grain-based heart-healthy diet.

Table 1 – Baseline volunteer characteristics

<table>
<thead>
<tr>
<th></th>
<th>Total (n = 20)</th>
<th>Men (n = 10)</th>
<th>Women (n = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>53 ± 7</td>
<td>53 ± 7</td>
<td>52 ± 7</td>
</tr>
<tr>
<td>Height, cm</td>
<td>171 ± 8</td>
<td>176 ± 6</td>
<td>166 ± 6 *</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>85 ± 16</td>
<td>93 ± 11</td>
<td>77 ± 17 *</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>28.8 ± 5.0</td>
<td>30.1 ± 4.5</td>
<td>27.6 ± 5.4</td>
</tr>
<tr>
<td>TC, mmol/L</td>
<td>6.1 ± 0.6</td>
<td>6.0 ± 0.5</td>
<td>6.2 ± 0.7</td>
</tr>
<tr>
<td>LDL cholesterol, mmol/L</td>
<td>4.0 ± 0.6</td>
<td>4.2 ± 0.6</td>
<td>3.8 ± 0.5</td>
</tr>
<tr>
<td>HDL cholesterol, mmol/L</td>
<td>1.37 ± 0.46</td>
<td>1.16 ± 0.33</td>
<td>1.60 ± 0.48 *</td>
</tr>
<tr>
<td>TG, mmol/L</td>
<td>1.6 ± 0.7</td>
<td>1.5 ± 0.6</td>
<td>1.7 ± 0.8</td>
</tr>
</tbody>
</table>

Note: Values are means ± SD. * Different from men, P < .05.

2. Methods and materials

2.1. Participants

After approval by the Eastern Michigan University Human Subjects Review Committee, 46 nondiabetic men and women were screened for participation in this 2-phase (AHA and Paleolithic) diet intervention study. Of those, 10 men (9 White and 1 Hispanic) and 10 women (8 White and 2 Hispanic) met the inclusionary criteria of a diagnosis of hypercholesterolemia within the past 14 months and abstinence from medications known to influence blood lipid concentrations (Table 1). All subjects gave informed consent.

2.2. Experimental design

The study was designed and conducted as a 2-phase diet intervention, with volunteers serving as their own controls. Baseline blood samples were collected and analyzed for TC, LDL, HDL, and TG concentrations to confirm hypercholesterolemia. Volunteers then adhered to AHA heart-healthy dietary guidelines for 4 months (phase 1), followed by 4 months of Paleolithic dietary adherence (phase 2). Blood samples were collected and analyzed at the completion of each phase.

2.3. Dietary interventions

All volunteers received diet education and sample meal plans before each phase of the study. Specific dietary guidelines are included in Table 2. In addition, the AHA guidelines emphasized a diet rich in fruits and vegetables, choosing whole-grain, high-fiber foods, foods prepared with little or no salt, and fish consumption at least twice per week, while minimizing the consumption of foods and beverages with added sugars [4,5]. The Paleolithic diet was based on vegetables, lean animal protein, eggs, nuts, and fruit but excluded all dairy, grains, and legumes [12]. No energy limitations were implemented for the Paleolithic diet phase. Similarly, no limitations were implemented for the AHA diet phase, with the exception of providing a caloric maximum—based on current AHA recommendations for each volunteer’s age, sex, height, and weight [22]—to allow for adherence to AHA dietary recommendations that are expressed relative to total energy intake (eg, <7% daily energy derived from saturated fats). Volunteers did not consume any dietary supplements for the duration of the study, except for vitamin D and calcium. Women and men consumed 800 IU/d vitamin D₃; women also consumed 500 mg/d calcium citrate. Similarly, volunteers were not taking any prescription medications throughout the study, and pharmaceutical use was limited to occasional ibuprofen for headache and skeletalmuscular pain relief.

Compliance with dietary guidelines was monitored via biweekly review of daily diet journals and fortified with monthly nutrition

Table 2 – Dietary guidelines for each intervention phase

<table>
<thead>
<tr>
<th>Phase 1: AHA [4,5]</th>
<th>Phase 2: Paleolithic (adapted from [12])</th>
</tr>
</thead>
<tbody>
<tr>
<td>• &lt;7% daily energy derived from saturated fats</td>
<td>• Abstain from all dairy, grains, and legumes</td>
</tr>
<tr>
<td>• &lt;1% daily energy derived from trans fats</td>
<td>• No more than ½ cup of potato per day</td>
</tr>
<tr>
<td>• &lt;300 mg dietary cholesterol per day</td>
<td>• No more than 1 oz of dried fruit per day</td>
</tr>
<tr>
<td>• &lt;2400 mg sodium per day</td>
<td>• No more than 4 oz of wine per day</td>
</tr>
<tr>
<td>Phase 2: Paleolithic (adapted from [12])</td>
<td>• No limit on egg consumption</td>
</tr>
</tbody>
</table>

Please cite this article as: Pastore RL, et al, Paleolithic nutrition improves plasma lipid concentrations of hypercholesterolemic adults to a greater extent than traditional heart-healthy diets, Nutr Res (2015), http://dx.doi.org/10.1016/j.nutres.2015.05.002
counseling sessions. Energy and macronutrient intakes were determined from a series of ten 24-hour diet recalls recorded at baseline and during each diet phase. Volunteers were instructed to maintain baseline physical activity levels throughout the duration of the study, with physical activity monitored via biweekly review of daily activity journals. Energy expenditure via physical activity remained constant, relative to baseline, for all volunteers throughout the duration of the study.

2.4. Measurement of body weight

Body weight was measured after an overnight fast at baseline and every month throughout the study. Wearing similar clothing for all measures, volunteers removed shoes, belts, jewelry, and emptied pockets before mounting a balance-beam scale (2371S; Detecto, Webb City, MO, USA). Weight was recorded to the nearest tenth of a pound. Body weight data are presented as kilograms.

2.5. Assessment of plasma lipids

Plasma lipid concentrations were determined at baseline and subsequent to each 4-month diet intervention phase. After an overnight fast, venous blood was collected and plasma TC, HDL, LDL, and TG concentrations were measured from EDTA- and lithium-heparin–processed plasma samples and standard enzymatic techniques, conducted by Laboratory Corporation of America (Labcorp, New York, NY, USA). Plasma lipid data are presented as mmol/L.

2.6. Statistical analyses

Baseline volunteer characteristics are described using common descriptive statistics. A multivariate analysis of variance was used to determine differences in baseline volunteer characteristics across sex (ie, men vs women). Regression analysis was used to determine whether change in body weight contributed to observed changes in plasma lipid concentrations. Differences in dietary intakes and plasma lipid measures were assessed using repeated-measures analysis of variance with diet (baseline vs AHA vs Paleolithic) as a within-subject factor and sex (men vs women) as a between-subject factor. The level for statistical significance was set at \( P < .05 \). When a significant interaction was observed, pairwise comparisons were made using the Bonferroni correction. Marginal means are reported for all main and interaction effects: diet, sex, or diet by sex. Data were analyzed using IBM SPSS Statistics for Windows (version 22; IBM Corp) and are presented as means ± SD. Effect sizes for observed changes in plasma lipid concentrations were determined using Cohen’s \( d \), with the following thresholds: “small,” \( d = 0.2 \); “medium,” \( d = 0.5 \); “large,” \( d = 0.8 \); and “very large,” \( d = 1.3 \).

3. Results

3.1. Dietary intake

Throughout the study, men consumed significantly more energy and absolute amounts of each macronutrient than women (\( P < .001 \), Table 3). Mean energy intake was significantly lower during the AHA diet phase, relative to baseline, with Paleolithic energy intake significantly lower than both baseline and AHA (\( P < .001 \)). Mean carbohydrate intake was not different between baseline and AHA but was significantly lower during the Paleolithic diet phase (\( P < .001 \)). In contrast, mean protein intake did not differ between baseline and AHA but was significantly higher during the Paleolithic phase (\( P < .001 \)). Mean fat intake was significantly different between each diet phase, with the highest intake at baseline and the lowest during the AHA diet phase (\( P < .001 \)).

3.2. Body weight

Mean body weight was greater for men than women at all measures (\( P < .05 \), Table 4). A diet-by-sex interaction (\( P < .05 \)) was observed for the reduction in body weight over the course of the 2 diet phases. Four months of adhering to AHA heart-healthy dietary recommendations reduced mean body weight by \( 3.3 ± 2.7 \) kg for men, relative to baseline (\( P < .001 \)), with an additional \( 10.4 ± 4.4 \) kg reduction after 4 months of Paleolithic dietary guideline adherence (\( P < .001 \), Table 4). Mean body weight did not significantly change for women after the AHA diet phase, relative to baseline (\( P > .05 \)), although the Paleolithic diet induced a significant \( 8.1 ± 5.9 \) kg weight loss compared with AHA (\( P < .001 \), Table 4).

3.3. Plasma lipid concentrations

Total cholesterol, LDL, and TG concentrations were not significantly different between men and women at any measurement point (\( P > .05 \)). In addition, body weight change across diet phase was not significantly correlated to change in TC, LDL, HDL, or TG (\( P > .05 \)) from baseline to AHA (\( r^2 = 0.001, 0.007, 0.060, \) and 0.018, respectively) nor from AHA to Paleolithic (\( r^2 = 0.032, 0.022, 0.002, \) and 0.002, respectively).

Mean TC experienced a “small” decrease of 3% (\( d = 0.3, P < .001 \)) from baseline to AHA, followed by a “very large” decrease of 20% (\( d = 1.9, P < .001 \)), from AHA to Paleolithic (Table 5). Similarly, mean LDL underwent a “small” decrease of 3% (\( d = 0.2, P < .001 \)) from baseline to AHA, followed by a “very large” decrease of 36% (\( d = 2.1, P < .001 \)) from AHA to Paleolithic (Table 5). Mean TG did not change from baseline to AHA but had a “very large” decrease of 44% (\( d = 1.3, P < .001 \)) from AHA to Paleolithic (Table 5). As expected, mean HDL was higher (\( P < .05 \)) for women than men. Mean HDL concentrations did not significantly change from baseline to AHA but experienced an overall “large” increase of 35% (\( d = 1.2, P < .001 \)) from AHA to Paleolithic (Table 5).

4. Discussion

The primary findings from this 2-phase diet intervention study are significant improvements in plasma TC, LDL, HDL, and TG concentrations of hypercholesterolemic adults, independent of changes in body weight, after 4 months of a Paleolithic diet, relative to 4 months of traditional heart-healthy dietary guidelines. These results confirm the original research hypothesis and are similar to observed improvements in lipid profiles after both 10-day [16] and 3-month [12] Paleolithic diet interventions.
The Paleolithic diet has increased in popularity in recent years, as evidenced by an escalating prevalence of Web sites, blogs, books, celebrity endorsements, and its general adoption by the CrossFit community [23]. The diet has also received criticism, particularly over the potential for increased atherogenic risk due to higher fat and meat intakes [24]. When compared with a typical American/Western diet, however, a Paleolithic diet contains 3-fold more fiber and potassium, 2-fold more polyunsaturated and monounsaturated fats, 4-fold more omega-3 fatty acids, and 4-fold less sodium [25-27]. A Paleolithic diet generally contains 12.5-fold more potassium than sodium and provides sufficient nutrient density to easily exceed current Recommended Dietary Allowances for vitamins A, B1, B2, B3, B6, B9, B12, C, and E as well as phosphorous, magnesium, iron, and zinc [28].

Although the current study did not implement caloric limits as a component of the Paleolithic dietary intervention, volunteers lost significantly more weight during the Paleolithic phase than during the AHA phase. One of the demonstrated effects of consuming a Paleolithic diet is a noted increase in satiety [12,19-21]. We expected that this increased satiety would drive weight loss and contribute to improvements in plasma lipid concentrations. Frassetto et al [16] have previously shown comparable significant correlate for any observed changes in lipid concentrations. We expected that this increased satiety would drive weight loss and contribute to improvements in plasma lipid concentrations, the current findings similarly suggest that the observed lipid profile improvements were the result of more than just weight loss and that the composition of the 2 diets may have exerted a significant influence on these parameters.

Intake patterns of present-day hunter-gatherer societies, with dietary practices similar to those incorporated into the Paleolithic diet, reveal dietary macronutrient ratios that differ markedly from traditional dietary recommendations for CVD prevention and treatment [30]. The foundation of the 2010 Dietary Guidelines for Americans and the AHA’s heart-healthy guidelines is grains (preferably as whole grains), fruits, vegetables, and low-fat or fat-free dairy products [3,4]. In contrast, hunter-gatherer societies consume most energy (45%-65%) from animal foods, providing a significant fraction of energy intake from protein (19%-35%), balanced by energy from plant carbohydrates (22%-40%) [30]. Fat intake on a Paleolithic diet typically exceeds 30% of total energy [17] as was the case in the current study.

Diets centered on lean protein and fish rich in long-chain omega-3 polyunsaturated fatty acids have the potential to alter serum lipids in a manner thought to be protective against atherosclerosis [7,31,32]. In contrast, hunter-gatherers who transition to grain-based agricultural diets begin to exhibit CVD risk factors, including abnormal lipid profiles, in as little as 3 months [33-35]. In the present study, moving from a grain-based heart-healthy diet to a grain-free Paleolithic diet significantly improved TC, LDL, HDL, and TG, likely indicating decreased CVD risk. Such improvements are most commonly associated with pharmaceutical intervention, with statins as the leading class of pharmaceuticals prescribed for abnormal lipid profiles [36]. In one large retrospective cohort study, however, statins were discontinued, at least temporarily, in as little as 3 months [36]. In the present study, moving from a grain-based heart-healthy diet to a grain-free Paleolithic diet significantly improved TC, LDL, HDL, and TG, likely indicating decreased CVD risk. Such improvements are most commonly associated with pharmaceutical intervention, with statins as the leading class of pharmaceuticals prescribed for abnormal lipid profiles [36]. In one large retrospective cohort study, however, statins were discontinued, at least temporarily, in as little as 3 months [36]. In the present study, moving from a grain-based heart-healthy diet to a grain-free Paleolithic diet significantly improved TC, LDL, HDL, and TG, likely indicating decreased CVD risk. Such improvements are most commonly associated with pharmaceutical intervention, with statins as the leading class of pharmaceuticals prescribed for abnormal lipid profiles [36]. In one large retrospective cohort study, however, statins were discontinued, at least temporarily, in as little as 3 months [36]. In the present study, moving from a grain-based heart-healthy diet to a grain-free Paleolithic diet significantly improved TC, LDL, HDL, and TG, likely indicating decreased CVD risk. Such improvements are most commonly associated with pharmaceutical intervention, with statins as the leading class of pharmaceuticals prescribed for abnormal lipid profiles [36]. In one large retrospective cohort study, however, statins were discontinued, at least temporarily, in as little as 3 months [36]. In the present study, moving from a grain-based heart-healthy diet to a grain-free Paleolithic diet significantly improved TC, LDL, HDL, and TG, likely indicating decreased CVD risk. Such improvements are most commonly associated with pharmaceutical intervention, with statins as the leading class of pharmaceuticals prescribed for abnormal lipid profiles [36]. In one large retrospective cohort study, however, statins were discontinued, at least temporarily, in as little as 3 months [36]. In the present study, moving from a grain-based heart-healthy diet to a grain-free Paleolithic diet significantly improved TC, LDL, HDL, and TG, likely indicating decreased CVD risk. Such improvements are most commonly associated with pharmaceutical intervention, with statins as the leading class of pharmaceuticals prescribed for abnormal lipid profiles [36]. In one large retrospective cohort study, however, statins were discontinued, at least temporarily, in as little as 3 months [36]. In the present study, moving from a grain-based heart-healthy diet to a grain-free Paleolithic diet significantly improved TC, LDL, HDL, and TG, likely indicating decreased CVD risk. Such improvements are most commonly associated with pharmaceutical intervention, with statins as the leading class of pharmaceuticals prescribed for abnormal lipid profiles [36]. In one large retrospective cohort study, however, statins were discontinued, at least temporarily, in as little as 3 months [36]. In the present study, moving from a grain-based heart-healthy diet to a grain-free Paleolithic diet significantly improved TC, LDL, HDL, and TG, likely indicating decreased CVD risk. Such improvements are most commonly associated with pharmaceutical intervention, with statins as the leading class of pharmaceuticals prescribed for abnormal lipid profiles [36]. In one large retrospective cohort study, however, statins were discontinued, at least temporarily, in as little as 3 months [36]. In the present study, moving from a grain-based heart-healthy diet to a grain-free Paleolithic diet significantly improved TC, LDL, HDL, and TG, likely indicating decreased CVD risk. Such improvements are most commonly associated with pharmaceutical intervention, with statins as the leading class of pharmaceuticals prescribed for abnormal lipid profiles [36]. In one large retrospective cohort study, however, statins were discontinued, at least temporarily, in as little as 3 months [36]. In the present study, moving from a grain-based heart-healthy diet to a grain-free Paleolithic diet significantly improved TC, LDL, HDL, and TG, likely indicating decreased CVD risk. Such improvements are most commonly associated with pharmaceutical intervention, with statins as the leading class of pharmaceuticals prescribed for abnormal lipid profiles [36]. In one large retrospective cohort study, however, statins were discontinued, at least temporarily, in as little as 3 months [36]. In the present study, moving from a grain-based heart-healthy diet to a grain-free Paleolithic diet significantly improved TC, LDL, HDL, and TG, likely indicating decreased CVD risk. Such improvements are most commonly associated with pharmaceutical intervention, with statins as the leading class of pharmaceuticals prescribed for abnormal lipid profiles [36]. In one large retrospective cohort study, however, statins were discontinued, at least temporarily, in as little as 3 months [36]. In the present study, moving from a grain-based heart-healthy diet to a grain-free Paleolithic diet significantly improved TC, LDL, HDL, and TG, likely indicating decreased CVD risk. Such improvements are most commonly associated with pharmaceutical intervention, with statins as the leading class of pharmaceuticals prescribed for abnormal lipid profiles [36]. In one large retrospective cohort study, however, statins were discontinued, at least temporarily, in as little as 3 months [36]. In the present study, moving from a grain-based heart-healthy diet to a grain-free Paleolithic diet significantly improved TC, LDL, HDL, and TG, likely indicating decreased CVD risk. Such improvements are most commonly associated with pharmaceutical intervention, with statins as the leading class of pharmaceuticals prescribed for abnormal lipid profiles [36]. In one large retrospective cohort study, however, statins were discontinued, at least temporarily, in as little as 3 months [36].
understanding of potential findings. Similarly, although the current study implemented a longer Paleolithic diet intervention than some previous reports, an even longer study duration would allow for a better understanding of whether these observed changes can be maintained over time. Findings from a 2-year Paleolithic intervention showed an abrogation of 6-month improvements at 24 months [40].

In addition, the current study design does allow for the opportunity for order bias to influence results, with all volunteers cycling through the traditional heart-healthy diet before the Paleolithic intervention. Although the uniformity of the SEM for all dependent variables suggests that diet order had a minimal effect upon internal validity, the study could be improved by using a crossover design with a washout period between diet treatments. Finally, because obesity and CVD have been associated with chronic inflammation [41], it would be beneficial to include assessment of inflammatory markers (e.g., interleukin 6, tumor necrosis factor alpha, and high sensitivity C-reactive protein) in future evaluations of the effects of Paleolithic nutrition on factors related to cardiovascular health in obese individuals.

In summary, adherence to a Paleolithic diet for 4 months significantly decreased TC, LDL, and TG, although increasing HDL, independent of changes in body weight, relative to a diet based on traditional heart-healthy recommendations. These findings suggest the potential for Paleolithic dietary recommendations to mediate cardioprotective benefits in those with established hypercholesterolemia.

Acknowledgment

The authors thank Stefan M Pasiakos and Heather L Hutchins-Wiese for their critical reviews in support of the development of this manuscript.

REFERENCES


[22] American Heart Association (Internet). My fats translator; (cited 2014 July 29); (2 screens). http://www.heart.org/HEARTORG/GettingHealthy/FatsAndOils/Fats101/My-Fats-Translator_UCM_428869_Article.jsp.


