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Abstract

The Dynamics of Market Efficiency

This paper studies the dynamics of high-frequency market efficiency measures. We pro-

vide evidence that these measures co-move across stocks and with each other, suggesting

the existence of a systematic market efficiency component. In vector autoregressions, we

show that shocks to funding liquidity (the TED spread), hedge fund assets under man-

agement, and a proxy for algorithmic trading are significantly associated with systematic

market efficiency. Thus, stock market efficiency is prone to systematic fluctuations, and,

consistent with recent theories, events and policies that impact funding liquidity can

affect the aggregate degree of price efficiency.



In a financial market that is relatively free of frictions and of high quality (i.e., one that

is “efficient”), prices accurately reflect fundamentals, and, in doing so, obey the law of

one price that assets with identical cash flows sell for the same price. For most of its

life, the finance profession has treated market efficiency as a static concept. The seminal

taxonomy in Fama (1970) of weak-, semi-, and strong-form efficiency inspires debate on

which of these best describes financial markets, but it does not allow for market efficiency

itself to vary through time, in predictable as well as unexpected ways. And yet, of course,

there are sound reasons to expect such dynamic behavior. Market efficiency is governed

by arbitrage activity and market making capacity, both of which facilitate convergence of

prices to their efficient market benchmarks. In turn, the efficacy of arbitrage and market

making is influenced by financial frictions (such as limited capital, transaction costs,

short-sale constraints, and idiosyncratic volatility)1 whose severity varies considerably

over time.

The finance literature has developed a number of distinct measures to capture the

degree of efficiency. For example, traditional measures that test whether stock prices

follow a random walk (e.g., variance ratios, intraday return predictability) date back

to Fama (1970). Alternative measures are based on predictable intraday patterns in

the cross-section of stock returns (e.g., Heston, Korajczyk, and Sadka, 2010) or directly

measure the pricing error relative to the efficient price (e.g., Hasbrouck, 1993). Yet other

measures assess the extent to which markets obey the law of one price (such as put-call

parity deviations; e.g., Finucane, 1991; Cremers and Weinbaum, 2010).

The above measures of stock price efficiency have largely been investigated separately

in the literature. However, we note that they all are intimately linked to arbitrage and

market making, which are impeded by time-varying financial frictions. And although

1See, for example, Shleifer and Vishny (1997), Mitchell, Pulvino, and Stafford (2002), and D’Avolio
(2002) for theoretical and empirical explorations of how limits to arbitrage can cause market inefficiencies
to persist.
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these frictions differ across individual securities2, they also have a systematic component.3

Thus, there may be a significant systematic component to the time-varying behavior of

market efficiency measures.

Motivated by the above observations, in this paper, we ask the following questions.

To what extent do different market efficiency measures vary over time? Do different

market efficiency measures co-move across stocks as well as with each other? And, if

there is evidence of a systematic market efficiency component across stocks and across

measures, what are the economic forces (such as funding liquidity or other factors that

affect the efficacy of arbitrage) that drive it? These questions are relevant since investors,

exchange officials, and policy-makers should care about whether the efficiency of financial

markets is prone to fluctuation in a systematic way, and about what factors influence such

systematic variation. For example, investors’ allocations to equities may be influenced

by their systematic degree of price efficiency. Moreover, researchers could benefit from a

better understanding of the extent to which the different efficiency measures used in the

literature are related, and of whether they can be used as substitutes.

To address these questions, we first compute daily market efficiency estimates for

individual stocks based on four efficiency measures that are widely used and that can

be computed by stock-day for a large sample of stocks: intraday return predictability

based on past order flow or past returns (Boehmer and Wu, 2007; Andrade, Chang,

and Seasholes, 2008), variance ratios (Lo and MacKinlay, 1989; Bessembinder, 2003),

2See, e.g., Benston and Hagerman (1974) and Nagel (2005) for evidence on cross-sectional variation
in stock-level illiquidity and short-sales constraints, respectively.

3See, e.g., Hasbrouck and Seppi (2000) and Chordia, Roll, and Subrahmanyam (2000) for evidence
on systematic variation in market liquidity across stocks. In addition, time-variation in liquidity depends
on variables that influence market making behavior, such as market volatility and net order imbalances
(Chordia, Roll, and Subrahmanyam, 2002) as well as macroeconomic funding constraints (Brunnermeier
and Pedersen, 2009). Gârleanu and Pedersen (2011) link deviations from the law of one price to variation
in the aggregate shadow cost of capital. Desai, Ramesh, Thiagarajan, and Balachandran (2002), Jones
and Lamont (2002), and Asquith, Pathak, and Ritter (2005) provide evidence of systematic variation in
short-sale constraints.
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intraday Hasbrouck’s (1993) pricing errors, and put-call parity deviations in the corre-

sponding options markets (Finucane, 1991; Cremers and Weinbaum, 2010). We compute

these measures using all NYSE stocks over an extended sample period of fifteen years

(using 14.3 billion transactions). We show that all measures exhibit substantial time-

variation.4 We construct market-wide measures of efficiency from each of the stock-level

measures and estimate the degree of “co-movement in efficiency” as the R2 from re-

gressions of stock-level measures on market-wide measures. These analyses show that

time-variation in efficiency measures has a material common component across stocks,

which indicates that the market efficiency measures are prone to systematic improvement

and deterioration.

We then examine co-movement in aggregate market efficiency across measures by es-

timating correlations across the different monthly, market-wide efficiency measures. In

this analysis, we also include the market-wide cross-sectional return predictability mea-

sure proposed by Heston, Korajczyk, and Sadka (2010). These correlations are mostly

economically substantial and statistically significant, with the notable exception of the

correlations of the variance ratio measure vis-à-vis the other efficiency measures. This

finding indicates that four of the five market-wide efficiency measures share significant

common variation, which suggests the existence of a systematic market efficiency com-

ponent across stocks and measures. We extract the component via principal component

analysis from the monthly time-series of these four market-wide efficiency measures and

show that this first component explains almost 40% of their joint variation.

Our next goal is to analyze the economic forces that drive the dynamics of systematic

market efficiency. An expanding body of theoretical research emphasizes the importance

of funding constraints as a friction that hampers arbitrage (e.g., Shleifer and Vishny, 1997;

4We ensure that our results on (systematic) variation in efficiency are not driven by underlying
(systematic) variation in stock-level (il)liquidity by orthogonalizing our stock-level efficiency measures
with respect to stock-level liquidity before running any further analyses.
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Gromb and Vayanos, 2002; Brunnermeier and Pedersen, 2009; Gârleanu and Pedersen,

2011; Liu and Mello, 2011). Building on these studies, we hypothesize that variation

in funding liquidity and the overall intensity of arbitrage activity affect the different

efficiency measures for many stocks at the same time, and thus the systematic market

efficiency component.

To study the determinants of time-variation in the systematic market efficiency com-

ponent, we use it as the main variable of interest in vector autoregressions (VARs). As

other endogenous variables, we include the TED spread (a common indicator of fund-

ing liquidity), hedge fund assets under management (a proxy for the amount of capital

available for arbitrage activity), and the total number of quote updates divided by ag-

gregate dollar trading volume (a proxy for algorithmic trading, inspired by Boehmer,

Fong, and Wu, 2015). We also include market volatility as another potentially important

determinant of the efficacy of market making and arbitrage.

We find that shocks to funding liquidity and to variables that proxy for the intensity of

arbitrage activity have an economically and statistically significant impact on systematic

market efficiency. In particular, a negative shock to the TED spread and a positive shock

to hedge fund assets under management or to algorithmic trading positively affect the

systematic component of market efficiency, both contemporaneously and in subsequent

months. These results indicate that, consistent with recent theories, funding liquidity

and the intensity of arbitrage activity are important factors that help us understand

the driving forces of systematic variation in stock market efficiency. Furthermore, we

document that the effect of hedge fund assets under management on market efficiency is

greater for high turnover stocks than for low turnover stocks, while the effect of the TED

spread is more pronounced for low turnover stocks.
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To our knowledge, no previous work studies the degree and determinants of system-

atic variation in market efficiency measures for individual stocks. We view our analysis as

relevant for at least two reasons. First, we show that stock market efficiency, rather than

being a static concept, exhibits significant variation over time, and that different efficiency

measures co-move across individual stocks as well as with each other. Second, we note

that while prior work has studied the link between funding liquidity and market liquidity

(e.g., Brunnermeier and Pedersen, 2009; Hameed, Kang, and Viswanathan, 2010), and

between funding liquidity and specific arbitrage strategies in convertible bonds, mergers,

covered interest parity, credit default swaps, and closed-end funds (e.g., Mitchell, Ped-

ersen, and Pulvino, 2007; Gârleanu and Pedersen, 2011; Mancini-Griffoli and Ranaldo,

2011; Mitchell and Pulvino, 2012), our study demonstrates a connection between fund-

ing liquidity and the systematic component of commonly accepted efficiency measures

for equities. Our results suggest that policy attempts to increase funding liquidity may

not only have a direct impact on trading costs, but also on the systematic degree of

stock price efficiency. Further, our results are complementary to Pasquariello’s (2014)

important study of fluctuations in financial market dislocations, which are constructed as

an average of violations of arbitrage parities across stock, foreign exchange, and money

markets. Our analysis instead focuses on individual stocks (and stock options) and in-

dicates that the price efficiency of individual stocks fluctuates over time in a systematic

way.

1. Efficiency measures

Market efficiency is a central concept in finance, and academic research has a longstanding

interest in measuring the extent to which financial markets or individual securities exhibit

efficient price formation. A number of distinct efficiency measures have been developed
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in the literature. Some of these measures are designed to capture the extent to which

stock prices deviate from a random walk (e.g., return predictability, variance ratios),

while others aim to measure pricing errors relative to the efficient market benchmark

(e.g., Hasbrouck, 1993) or violations of the law of one price across different markets (e.g.,

put-call parity deviations). All of these measures have been used in different lines of

research.

Our purpose is to analyze the extent to which these different efficiency measures co-

move over time, both across individual stocks and with each other, and to examine the

determinants of any systematic variation in efficiency across stocks and measures. We

therefore focus on efficiency measures that can be estimated at the stock-level and at

a relatively high frequency. Our search of the literature identifies four different mea-

sures that are widely used and that can be estimated daily for a large cross-section of

stocks based on high-frequency data: intraday return predictability, variance ratios, Has-

brouck’s (1993) pricing errors, and put-call parity deviations. Further, in our analysis

of co-movement across aggregate efficiency measures, we include the market-wide cross-

sectional return predictability measure of Heston, Korajczyk, and Sadka (2010). We now

explain how we estimate these measures (Section 1.1. through Section 1.5) and discuss

the relation between the efficiency measures and market liquidity (Section 1.6).

1.1 Intraday return predictability

Our first measure is based on the intraday predictability of individual stock returns from

past order flow or past returns. Several papers, including Hasbrouck and Ho (1987),

Chan and Fong (2000), Chordia, Roll, and Subrahmanyam (2005), and Boehmer and

Wu (2007), explore and provide evidence of such return predictability, which we use

as an inverse indicator of market efficiency. Chordia, Roll, and Subrahmanyam (2005)

suggest that such predictability arises from dealers’ risk aversion, which delays the ac-

6



commodation of autocorrelated order imbalances. Their evidence suggests that trading

by astute arbitrageurs removes all return predictability over intervals of five minutes or

more, but some predictability remains at shorter horizons.

In line with these prior studies, we estimate the intraday return predictability of each

individual stock for each day in the sample based on regressions of stock returns over

short intervals within the day on order imbalance (dollar volume of buyer- minus seller-

initiated trades) in the previous interval. Chordia, Roll, and Subrahmanyam (2005) show

that prices cease to be predictable from order flow in 30 minutes or less in 1996, and in

around five minutes in 2002. Since our sample period lasts till 2010, it is judicious to use

intervals shorter than five minutes to still capture meaningful predictability in the later

part of the sample period. In light of this consideration, we estimate predictability based

on intraday returns and order imbalances measured over one-minute intervals (with a

robustness check based on two-minute intervals).

We estimate the extent of short-horizon return predictability from order flow for each

stock i and day d in the sample as the slope coefficient from the following regression,

using intraday data aggregated over one-minute intervals:

Ri,d,t = ai,d + bi,dOIBi,d,t−1 + εi,d,t, (1)

where Ri,d,t is the return of stock i in one-minute interval t on day d based on the mid-

quote associated with the last trade to the mid-quote of the first trade in the interval (we

use mid-quote returns to avoid the bid-ask bounce), and OIBi,d,t−1 is the order imbalance

for the same stock and day in the previous interval t − 1, computed as the difference

between the total dollar volume of trades initiated by buyers and sellers (OIB$). A

smaller slope coefficient b from the regression in Eq. (1) indicates greater efficiency. We

refer to the efficiency measure based on this regression specification as OIB predictability.
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To assess the robustness of our results to changes in the specification of the pre-

dictability regressions, we also estimate four alternative return predictability measures,

each named after the single feature that distinguishes it from the OIB predictability mea-

sure. The allquotes measure is based on returns computed using all quotes within each

interval rather than only using quotes associated with trades; the 2minutes measure is

based on two-minute instead of one-minute intervals; and the oib# measure is based

on order imbalance expressed in number of trades rather than dollars. We also present

and discuss the results using the slope coefficient from regressions of one-minute returns

on their one-minute lagged counterparts, instead of past order flows, and label this the

autocorrelation measure. We discard stock-days with fewer than 20 observations for each

of these measures. In our analyses of co-movement in market efficiency, we use a compre-

hensive Predictability measure that is constructed as the first principal component across

the five alternative return predictability measures (more details are provided below).

1.2 Variance ratios

The second stock-level efficiency measure we consider is a daily variance ratio that ex-

amines how closely the price of individual stocks adheres to a random walk benchmark;

this measure is in line with, among others, Bessembinder (2003). The stock-level Vari-

ance ratio measure is defined as |1 − 30 × V ar(1min)/V ar(30min)|, where V ar(1min)

is the return variance estimated from one-minute mid-quote returns within a day and

V ar(30min) is the return variance estimated from 30-minute mid-quote returns within

a day. Variance ratios are computed from mid-quote returns and do not utilize traded

prices, mitigating the problem of non-synchronous trading. Since estimates of daily vari-

ance ratios of individual stocks can be noisy (Andersen, Bollerslev, and Das, 2001), we

follow Lo and MacKinlay (1989; see their equation (5)) and Charles and Darné (2009)

and estimate daily variance ratios based on overlapping intraday returns. Since expected
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returns over such short intervals are very close to zero, we set expected returns to zero

in the computation of the variances. We discard stock-days with fewer than 20 non-zero

one-minute returns. The Variance ratio measure tends to unity as serial dependence in

asset returns tends to zero; therefore, it measures how closely the price adheres to a

random walk.

1.3 Hasbrouck pricing errors

As a third daily, stock-level efficiency measure, we estimate Hasbrouck’s (1993) pricing

errors based on intraday trades and quotes. Hasbrouck proposes a method to decompose

stock prices into random walk and stationary components. He refers to the stationary

component (the difference between the efficient price and the actual price) as the pricing

error, which he argues is a natural measure for price inefficiency. We follow Hasbrouck

and estimate vector autoregression (VAR) models to estimate these components. As in

Boehmer and Kelley (2009), we estimate a five-lag VAR model based on intraday data for

each stock-day with at least one hundred trades. The endogenous variables of the model

are: (i) the logarithmic price return, from quote midpoints associated with trades,5 (ii)

a trade sign indicator, (iii) the signed volume (that is, the sign of the trade times the

number of shares traded), and (iv) the sign of the trade times the square root of the

number of shares traded. We sign all trades with trade prices above the prevailing quote

midpoint as buyer-initiated, and seller-initiated if they are below the quote midpoint. If

the trade occurred at the prevailing quote midpoint we set the sign of the trade to zero

(following Hasbrouck, 1993). As in Hasbrouck (1993), we set all lagged variables at the

beginning of each day to zero. We obtain the pricing error of each trade in a stock on a

5Using mid-quote returns avoids the bid-ask bounce, but using returns from actual trade prices does
not alter the main results.
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given day from the vector moving average representation of the VAR system (Beveridge

and Nelson, 1981) using Eq. (13) in Hasbrouck (1993).

Prior studies use the standard deviation of the intraday pricing errors as an inverse

measure of informational efficiency. However, for our purpose, we are more interested in

the magnitude of the pricing error rather than in its intraday variation. We thus take

the maximum of the absolute pricing errors of the trades in a stock on a given day as

an inverse measure of the price efficiency for that stock on that day and label it the

Hasbrouck measure. Since daily stock-level estimates of the maximum intraday pricing

error exhibit several large outliers, we use the logarithmic transformation of Hasbrouck

to mitigate their influence.

1.4 Put-call parity deviations

Our fourth daily proxy for the price efficiency of individual stocks is a law of one price

measure derived from options markets. The use of this measure enhances our under-

standing of co-movement in market efficiency by extending the notion of efficiency to

derivatives markets for individual stocks. This Put-call parity measure is estimated using

the OptionMetrics database as the absolute difference between the implied volatilities of

a call and a put option of the same series (i.e., pairs of options on the same underlying

stock with the same strike price and the same expiration date).6 We use end-of-day

quotes from all option series with positive implied volatilities that expire in two weeks to

one year and that have a strike-to-spot ratio between 0.95 and 1.05. This ensures that

our estimates of put-call parity deviations are based on what are typically the most liquid

options (following Pan, 2002). When more than one option pair satisfies these conditions

6This measure is also used in Cremers and Weinbaum (2010). These authors note that while, strictly
speaking, put-call parity does not hold as an equality for the American options on individual stocks, a
lower discrepancy in implied volatilities from binomial models nonetheless is indicative of more efficient
options and stock markets.
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for a given stock-day, we take the average of the absolute differences between the implied

volatilities of the call and the put option across all option pairs.

1.5 Cross-sectional intraday return predictability (HKS)

In our analysis of co-movement in efficiency across measures, we also include a monthly,

market-wide efficiency measure based on Heston, Korajczyk, and Sadka (2010). These

authors document a remarkable pattern of cross-sectional predictability of intraday re-

turns: stocks with a relatively high 30-minute return at a particular time during the

trading day tend to also have a relatively high return at the same time on the next

trading day. They argue that the combination of autocorrelated institutional investment

flows and optimal trading strategies gives rise to predictable patterns in trading that

are not fully anticipated by the market. Following their approach, we divide the 6.5-

hour trading day into thirteen 30-minute intervals and run cross-sectional regressions of

30-minute stock returns on returns over the same interval on the previous day. In line

with Heston, Korajczyk, and Sadka (2010), we take the slope coefficient in these regres-

sions (averaged over all intervals within a month) as a monthly, market-wide measure of

efficiency and refer to it as the HKS measure.

1.6 Relation between efficiency measures and market liquidity

One issue that arises in all analyses of (common) time-variation in the different market

efficiency measures included in this paper is how these measures are related to market liq-

uidity. Characterizing the relation between efficiency and liquidity is not straightforward,

since the causality can run either way, since competing hypotheses predict opposite-sign

relations, and since the relation may depend on the specific efficiency measure used.
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We first note that illiquidity does not necessarily imply return predictability from

order flow or past returns (Predictability and Variance ratio measures) or pricing errors

relative to efficient prices (the Hasbrouck measure). In Glosten and Milgrom (1985) and

Kyle (1985), even though markets are illiquid, price changes are serially uncorrelated

because market makers are risk-neutral. However, there are alternative channels that

could give rise to inefficiencies. To discuss these channels, it may be useful to consider

the following taxonomy of agents: traders who demand immediacy for liquidity or infor-

mational needs, liquidity providers (both designated market makers or specialists and de

facto market makers such as algorithmic traders), and outside arbitrageurs who exploit

deviations from efficient prices.

In inventory-based models such as Stoll (1978), efficiency can be compromised if

market makers have capital constraints or limited risk-bearing capacity, inhibiting their

ability to prevent prices moving away from fundamentals as a result of demand or supply

shocks from liquidity traders. Alternatively, such shocks can also result in inefficiencies

when market makers are risk-neutral but face cognitive limitations and thus might mis-

react to the information content of the order flow (Barberis, Shleifer, and Vishny, 1998).

Inefficiencies resulting from these channels may be reflected in all five efficiency measures

used in this paper. The Predictability and the Variance ratio measures are designed to

pick up return predictability from order flow or return autocorrelations resulting from ei-

ther of these channels. Hasbrouck pricing errors may also stem from the inventory-based

channel, since they can be viewed as the result of, among others, “inventory control” and

“the transient component of the price response to a block trade” (Hasbrouck, 1993, pp.

193-194.) And although Hasbrouck (1983) does not explicitly consider market makers’

potential cognitive limitations, these too could arguably lead to price deviations from the

efficient market benchmark as reflected in the Hasbrouck measure. The Put-call parity

measure may indicate greater deviations from the law of one price when price pressures
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temporarily move prices in either the stock or the options market. Further, HKS effi-

ciency may deteriorate when market makers fail to counteract predictable patterns in

the cross-section of intraday stock returns because of either inventory concerns and/or

cognitive limitations.

In a third channel, efficiency might be challenged as a result of informational differ-

ences when price adjustments to information in asset pairs with common fundamentals

occur asynchronously due to, for example, “lags in the transmission and interpretation of

prices” (Kumar and Seppi, 1994), “poor intermarket information linkages” (Domowitz,

Glen, and Madhavan, 1998), or “stale quotes” (Foucault, Kozhan, and Tham, 2015).

These three papers study such inefficiencies in the context of, respectively, index arbi-

trage, cross-listings arbitrage, and triangular arbitrage in foreign exchange markets. The

informational differences channel may thus be most directly relevant for law of one price

deviations, and thus for the Put-call parity measure among the five efficiency measures

considered in this paper.

Based on this taxonomy, we can derive three alternative rationales for the relation

between efficiency and liquidity. The first rationale considers the effect of liquidity on

efficiency. In all three channels through which inefficiencies can arise, outside arbitrageurs

who monitor the market may detect temporary deviations from efficient prices and may

submit arbitrage orders to exploit such inefficiencies. To the extent that they use market

orders (or marketable limit orders) to ensure speedy execution in active markets in which

inefficiencies might be short-lived, they will be discouraged to do so when the bid-ask

spread, a measure of illiquidity, is large (Chordia, Roll, and Subrahmanyam, 2008).

Hence, in line with the limits to arbitrage literature, illiquidity is a potentially important

friction that hampers the ability of arbitrageurs to restore market efficiency. Since each

efficiency measure used in this paper is linked to arbitrage, this hypothesis thus predicts

a positive relation between market liquidity and all five efficiency measures.
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The second rationale considers the relation between efficiency and liquidity in the

inventory-based channel. In this channel, outside arbitrageurs may effectively comple-

ment the capital and/or risk-bearing capacity of the market making sector by acting as

de facto liquidity providers (Holden, 1995; Gromb and Vayanos, 2010; Nagel, 2012), for

example by submitting limit orders. In this case, arbitrage activity enhances efficiency

and liquidity in chorus. Since the inventory-based channel may give rise to inefficiencies

that are reflected in each of the efficiency measures in this paper, this hypothesis also

predicts a positive relation between efficiency and liquidity.

The third rationale considers the relation between efficiency and liquidity in the cog-

nitive limitations and informational differences channels. In these channels, arbitrage

activity may exacerbate the market makers’ adverse selection problem, since arbitrageurs

exploit their cognitive limitations or trade on informational differences across markets.

This rationale thus predicts that arbitrage could decrease market liquidity, suggesting a

negative relation between efficiency and liquidity. As discussed above, the cognitive lim-

itations channel may be relevant for all five efficiency measures, while the informational

differences channel is most pertinent for the Put-call parity measure.

To summarize, while liquidity and efficiency are distinct concepts, there are several

reasons to expect a relation between these concepts, and they may apply to a lesser or

greater degree to the different efficiency measures we consider. In this paper, while we

recognize the link between efficiency and liquidity, we desist from discerning between the

different explanations for this link. But, if our efficiency measures overlap considerably

with illiquidity, our analysis of co-movement in efficiency across stocks might be perceived

as a reiteration of the extensive literature on co-movement in liquidity (e.g., Chordia,

Roll, and Subrahmanyam, 2000; Hasbrouck and Seppi, 2000; Huberman and Halka,

2001). Therefore, we first orthogonalize each of the four daily efficiency measures at the

stock-level with respect to a measure of that stock’s illiquidity.
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What illiquidity measure is most appropriate? The recommended illiquidity proxy

in Hasbrouck (2009) and Goyenko, Holden, and Trzcinka (2009) is the monthly Amihud

(2002) measure. However, we perform analyses at both the daily and monthly frequen-

cies, and the daily Amihud (2002) measure tends to be quite noisy. Thus, for our daily

analyses, we orthogonalize our efficiency measures with respect to the daily proportional

quoted bid-ask spread or PQSPR (computed as the time-weighted average over the trad-

ing day of the bid-ask spread scaled by the quote midpoint). We then run our analyses

of co-movement in efficiency across stocks in Section 3.1 using the orthogonalized daily,

stock-level efficiency measures. We obtain similar results when we orthogonalize with

respect to the daily proportional effective spread or PESPR (computed as the average

across all trades on a day of two times the absolute difference between the transaction

price and the quote midpoint, scaled by the quote midpoint) and slightly stronger results

when we do not orthogonalize at all. We also obtain similar results when we orthogo-

nalize with respect to the daily Amihud (2002) illiquidity proxy (computed as the daily

ratio of the absolute stock return to dollar trading volume, cross-sectionally winsorized

at the 99.5% each day to mitigate the influence of outliers).

For the analyses of time-variation in the monthly, market-wide efficiency measures

in Section 3.2 and Section 4, we orthogonalize the monthly, stock-level Predictability,

Variance ratio, Hasbrouck, and Put-call parity measures with respect to the monthly,

stock-level Amihud measure (computed as the average across all trading days within the

month of the daily ratio of the absolute stock return to dollar trading volume, cross-

sectionally winsorized at the 99.5% level each month) before aggregating the stock-level

efficiency measures to the market-level by value-weighting across stocks. In the same vein,

we orthogonalize the monthly, market-wide HKS measure with respect to the monthly,

market-wide Amihud measure. We choose to report the results based on monthly effi-

ciency measures orthogonalized with respect to the monthly Amihud measure. However,
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our main results are not materially affected when we orthogonalize the monthly efficiency

measures with respect to the monthly PQSPR or PESPR (each computed as the average

across all trading days within the month of the daily PQSPR and PESPR measures).

2. Sample and efficiency estimates

This section discusses the data sources and screens (Section 2.1) and presents the esti-

mates of the daily, stock-level efficiency measures (Section 2.2).

2.1 Data and sample

To estimate the five efficiency measures, we obtain data on all trades and quotes as

well as their respective sizes for individual U.S. stocks from the Thomson Reuters Tick

History (TRTH) database, which contains global tick-by-tick trade and quote data across

asset classes.7 Our data start in March 1996, which is the earliest month available in

the TRTH database. Our sample consists of all NYSE stocks that were traded at any

time during our sample period from March 1996 to December 2010 and that survive our

data screens. We include only NYSE stocks to prevent issues with differences in trading

volume definitions across NYSE and Nasdaq, see, e.g., Gao and Ritter (2010). We use

trades and (national best bid and offer or NBBO) quotes on all U.S. exchanges on which

these NYSE stocks are traded. We apply a variety of filters to the data that are described

in the online appendix.8 Our final sample includes 2,157 NYSE stocks.

To estimate the predictability regressions in Eq. (1), we require at least one signed

trade in both the interval over which we calculate the return as well as the previous

7To verify that our results do not depend on using TRTH instead of NYSE’s Trade and Quote
(TAQ) database, we compare the results based on TRTH to those based on TAQ for all 2,023 NYSE-
listed common stocks that were traded at any time over the period 1996-2000 and find that they are
very similar.

8This appendix also presents results from the robustness checks mentioned within the paper.
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interval. We discard stock-days for which we have fewer than 20 one-minute intervals

with valid data on the stock return within that interval and on the order imbalance or

return in the preceding interval (in total 756,051 stock-day observations), and days for

which TRTH reports a data gap that overlaps with the continuous trading session (in

total 56 days). Our data filters allow us to estimate Eq. (1) for on average around 1,700

days over the period 1996-2010 for around 1,900 stocks in our sample (depending on the

predictability measure). We are able to use 14,253,093,209 transactions, signed by the

Lee and Ready (1991) method, in our analyses.9

Table 1 presents summary statistics of the return and order imbalance variables that

serve as inputs to our predictability regressions. For these variables, the table reports

cross-sectional summary statistics (the mean, standard deviation, as well as the median

and the 25th and 75th percentiles) of the stock-by-stock time-series averages. The average

number of trades per day is around 2,000. The average daily dollar trading volume is

0.025 or US$25m. The median one-minute mid-quote return is equal to −0.001 basis

point, which corresponds to −0.4 basis points per day. The negative median return is

likely driven by the fact that intraday returns tend to be lower than overnight returns

(Berkman, Koch, Tuttle, and Zhang, 2012, report negative mean and median open-to-

close returns for a sample of 3,000 U.S. stocks over 1996-2008). There is a slight positive

average order imbalance over the one-minute intervals in our sample.

2.2 Daily, stock-level efficiency estimates

Panel A of Table 2 presents the results of the daily return predictability regressions

estimated based on intraday data. As described in Section 1.1, the baseline predictability

9The Lee/Ready algorithm classifies a trade as buyer- (seller-)initiated if it is closer to the ask (bid)
of the prevailing quote. If the trade is exactly at the midpoint of the quote, the trade is classified
as buyer- (seller-)initiated if the last price change prior to the trade is positive (negative). Lee and
Radhakrishna (2000) and Odders-White (2000) indicate that the Lee/Ready algorithm is quite accurate
for NYSE stocks, suggesting that assignment errors should have minimal impact on the results.
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measure (OIB predictability) is obtained from regressions of one-minute mid-quote returns

(computed using quotes associated with trades) on lagged dollar order imbalance. For

robustness, we also estimate four alternative predictability measures: allquotes, 2minutes,

oib#, and autocorrelation.

Consistent with prior research, Panel A of Table 2 shows that order imbalance posi-

tively predicts future returns over short intervals. The average coefficient on lagged order

imbalance across the approximately 3.2 million stock-day regressions ranges from 0.947

for the oib# measure to 6.169 for the 2minutes measure. The return autocorrelation

coefficient is also positive at 0.024. The first number below the average coefficient in

each column (“t-stat avg”) is the average t-statistic across all stock-day regressions. Al-

though for all measures except perhaps one (oib#), the simple average t-statistic does

not exceed critical values associated with conventional confidence levels, the t-statistics of

the individual stock-day regressions can be based on as few as 20 intraday observations.

The second number below the average coefficient in each column (“NW t-stat avg”), is

the Newey-West (1994) t-statistic computed based on the time-series of daily coefficient

estimates of individual stocks, which is then averaged across stocks. These statistics

are highly significant for all five predictability regressions reported in Panel A of Table

2 and indicate that intraday returns exhibit significant predictability from lagged order

imbalance or returns.

Panel A of Table 2 also shows that a large fraction (around 60-90%, depending on the

predictability measure) of the coefficients on lagged order imbalance and on lagged returns

in the individual stock-day predictability regressions are positive, and that 30-60% of

these coefficients are significant on an individual basis. The average R2 of the regressions

ranges from 1.7% for allquotes to 3.5% for oib#. Although these R2’s are modest, we
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note that predicting stock returns is challenging and that the results are in line with prior

work on intraday return predictability (e.g., Chordia, Roll, and Subrahmanyam, 2005).10

Overall, Panel A of Table 2 provides evidence of significant intraday return pre-

dictability in our sample of all NYSE stocks over 1996-2010. The results also indicate

that the degree of predictability is robust across various specifications of the predictability

regressions.

Panel B of Table 2 presents cross-sectional summary statistics of the stock-by-stock

time-series averages of the five different return predictability measures as well as the other

three stock-level efficiency measures (Variance ratio, Hasbrouck, and Put-call parity).

This panel is based on the sample of stocks for which each efficiency measure could be

estimated for at least 15 days over the sample period.11

To compress the five return predictability measures in Table 2 into a single measure to

be used in the remainder of the paper, for each stock we take the first principal component

of the daily time-series of slope coefficients of the five different predictability regressions in

Panel A and label it the Predictability measure. On average, this first principal component

explains more than 50% of the total variation in the five predictability measures for

individual stocks. The loadings on the first principal component almost always have

the same sign for all five predictability measures, with the exception of 156 stocks (out

of the 1,827 stocks for which we can estimate all five predictability regressions). We

obtain similar results when we drop these 156 stocks from the sample. The average

10We also estimate an intraday predictability measure based on regressions that include lagged order
imbalance in dollars and in trades as well as lagged returns simultaneously, and find considerably stronger
return predictability based on all three variables.

11We note that although the literature on intraday return predictability (e.g., Boehmer and Wu,
2007; Andrade, Chang, and Seasholes, 2008) presents overwhelming evidence that intraday returns are
predicted positively by lagged order flow and lagged returns, and although the vast majority of the
estimated slope coefficients in Panel A of Table 2 are positive, (large) negative slope coefficients in Eq.
(1) for a particular stock-day could arguably also be interpreted as evidence of inefficiency. However,
our main results are not materially affected when we take the absolute slope coefficient from Eq. (1) as
our stock-day return predictability measure or when we set negative stock-day coefficients to zero.
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loadings of the first principal component on the underlying predictability measures are

0.54 for OIB predictability, 0.48 for allquotes, 0.42 for 2minutes, 0.42 for oib#, and 0.14

for autocorrelation, which indicates that the resulting Predictability measure is fairly

representative of the various individual intraday return predictability measures.

The mean and median absolute deviations of the Variance ratio from unity reported in

Panel B of Table 2 are equal to 0.87 and 0.76, respectively. These numbers are somewhat

higher than the mean of 0.53 reported by Boehmer and Kelley (2009, see their Table

1), but that number is based 1-to-20 days variance ratios (instead of 1-to-30 minutes

variance ratios as in our paper) and based on a sample of NYSE stocks that is about half

the size of our sample and likely tilted towards large and liquid stocks that may be more

efficiently priced.

The mean (median) value of the Hasbrouck measure is 39 (24) basis points. These

numbers align well with the mean pricing error of 26 basis points reported by Hasbrouck

(1993) for a representative sample of 175 NYSE stocks in 1989. We would expect pricing

errors to be lower in our more recent sample, but we report the maximum rather than

the mean pricing error.

We are able to estimate the Put-call parity measure for 1,535 of the 2,157 stocks in our

sample, for on average 1,448 days over our sample period 1996-2010. The mean absolute

put-call parity deviation (expressed in terms of implied volatility) across stock-days in the

sample is 2.58%, with an interquartile range of 1.60%. These values closely correspond

to the put-call deviation estimates provided by Cremers and Weinbaum (2010) for a

similarly-sized sample of U.S. stocks over 1996-2005. Panel A of their Table 1 shows an

average put-call parity deviation of −0.978%, but this is an aggregation of positive and

negative deviations. Taking the average of the absolute values of the percentiles of the
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distribution of their put-call parity deviation estimates reported in Panel B of their Table

1 yields an approximate average absolute deviation of 2.3% for their sample.

All of the stock-level efficiency measures in Panel B of Table 2 show large cross-

sectional standard deviations and interquartile ranges, demonstrating that the degree of

price efficiency varies considerably across individual stocks. In addition, there is substan-

tial time-variation in the different stock-level efficiency measures. As an illustration, the

market-wide (equally-weighted average) R2 of the OIB predictability regressions is 6.44%

in 1996 but only 1.29% in 2010. The average across stocks of the stock-by-stock time-

series standard deviation of the Variance ratio, Hasbrouck, and Put-call parity measures

is 1.08, 0.51, and 2.73, respectively (not tabulated to conserve space). These average

standard deviations are all large relative to the average across stocks of the stock-by-

stock time-series averages of these measures of 0.87, 0.39, and 2.58, respectively (from

Panel B of Table 2).

Panel C of Table 2 presents average cross-sectional Spearman rank correlations across

the monthly, stock-level Predictability, Variance ratio, Hasbrouck, and Put-call parity

measures (Pearson correlations are similar). We construct these monthly, stock-level ef-

ficiency measures by averaging the corresponding daily, stock-level measures across days

within the month to mitigate the noise inherent in the individual stock-day efficiency esti-

mates. Most of the correlations are both economically and statistically significant, which

indicates that although the degree of price efficiency varies considerably across stocks,

the different efficiency measures tend to provide a similar indication of the relative degree

of price efficiency of individual stocks. The exception is the cross-sectional correlation

between the Predictability and Variance ratio measures, which is economically small and

statistically indistinguishable from zero.
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3. Co-movement in efficiency measures

We now examine whether there is co-movement in different market efficiency measures

across stocks (Section 3.1) and across measures (Section 3.2).

3.1 Co-movement in efficiency across stocks

To estimate the degree of co-movement in efficiency across stocks, we run time-series

regressions of the efficiency of individual stocks on contemporaneous, lead, and lagged

market-wide efficiency. Specifically, we estimate the degree of co-movement in efficiency

for each stock i over the whole sample period in the following regression:

Effi,d = αi + βiMktEffi,d + γiMktEffi,d−1 + δiMktEffi,d+1 + ηi,d, (2)

where Effi,d is the efficiency of stock i on day d, and MktEffi,d is the market-wide

efficiency (defined as the value-weighted average efficiency across all stocks in our sample

excluding stock i). We estimate Eq. (2) for each stock with at least 15 daily observations

over the whole sample period, based on daily estimates of our four stock-level efficiency

measures: Predictability, Variance ratio, Hasbrouck, and Put-call parity.

As discussed in Section 1.6, our analysis of co-movement in efficiency across stocks is

based on stock-level efficiency measures that have been orthogonalized with respect to

stock-level liquidity. In particular, we run regressions as in Eq. (2) of stock-level efficiency

orthogonalized with respect to liquidity on contemporaneous, lead, and lagged orthogo-

nalized market efficiency (defined as the value-weighted average efficiency, orthogonalized

with respect to liquidity, across all stocks in our sample, excluding stock i). In robust-

ness tests, we also estimate the co-movement regressions in Eq. (2) based on efficiency

changes orthogonalized with respect to liquidity changes rather than based on efficiency

levels orthogonalized with respect to liquidity levels, and based on contemporaneous mar-
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ket efficiency as the only independent variable (that is, no lead and lagged market-wide

efficiency), and obtain similar results. We also obtain similar results when we compute

market-wide efficiency as the equally-weighted (instead of the value-weighted) average

efficiency across all stocks in our sample, excluding stock i.

Table 3 presents the results of our regressions to estimate co-movement in each of

the four efficiency measures across individual stocks. The table reports the average

regression coefficients across all co-movement regressions estimated by stock for each

efficiency measure. The number of stocks for which we can estimate Eq. (2) varies from

1,505 for the Put-call parity measure to 2,041 for the Variance ratio measure.

The table reveals evidence of significant co-movement in efficiency across stocks. The

average coefficient on contemporaneous market-wide efficiency across the regressions es-

timated for individual stock is positive and economically substantial for all efficiency

measures, ranging from 0.483 for the Predictability measure to 1.528 for the Hasbrouck

measure. The average t-statistic of these coefficients (the first number below the average

coefficient on contemporaneous market efficiency in each column) is highly significant, in-

dicating that, on average, the estimated coefficient on contemporaneous market efficiency

is at least four standard errors away from zero.

This conclusion is confirmed by the second number below the average coefficient on

contemporaneous market efficiency in each column, which is the t-statistic computed from

the cross-sectional distribution of estimated coefficients of all stocks (“CS t-stat avg”).

These t-statistics are corrected for cross-correlations in the residuals of the individual

regressions using the method outlined by Chordia, Roll, and Subrahmanyam (2000, 2008).

In line with their recommendation, for each column in Table 3, we compute the average

pairwise correlation (ρ) between the residuals across all N regressions and then multiply

the standard errors by [1 + (N − 1)ρ]1/2. The resulting adjusted t-statistics also indicate
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statistically significant co-movement in efficiency across individual stocks for all four

efficiency measures.

For each of the four efficiency measures, a clear majority (at least 87% and up to 92%)

of the individual coefficients on contemporaneous market-wide efficiency are positive. At

least 66% (Hasbrouck) and up to 72% (Variance ratio) of the coefficients are positive

and significant on an individual basis. There is little evidence that the lead and lagged

market-wide efficiency are important in explaining time-variation in the efficiency of

individual stocks.

In the spirit of Morck, Yeung, and Yu (2000), theR2 from the co-movement regressions

in Eq. (2) can be interpreted as an alternative way to gauge the degree of efficiency co-

movement across stocks. The average (adjusted) R2’s of the co-movement regressions in

Table 3 range from 3.2% (2.3%) for Variance ratio to 8.8% (8.0%) for Put-call parity.

However, the degree of co-movement in efficiency uncovered in Table 3 may be mitigated

because we restrict the coefficients to be the same over the whole sample period. Indeed,

when we estimate Eq. (2) for each stock over each month (instead of over the whole sample

period), we obtain average R2’s of around 20-22%, which are comparable to the R2 of

around 23% reported by Karolyi, Lee, and van Dijk (2012) for similar monthly regressions

to estimate co-movement in liquidity for NYSE stocks over the period 1995-2009. We

also note that considering portfolios of stocks might alleviate estimation noise and expose

a stronger image of co-movement. Accordingly, we revisit the co-movement analysis in

Table 3 by running regressions of the value-weighted average efficiency of the stocks in

each of the five industries defined on the website of Ken French on contemporaneous, lead,

and lagged market-wide efficiency (computed as the value-weighted average efficiency

across the stocks not in the subject industry). In the online appendix, we show that the

industry-level R2’s of the co-movement regressions in Eq. (2) range from 20% to 80%
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and are thus considerably greater than the individual stock-level R2’s reported in Table

3.

Overall, Table 3 presents evidence of economically and statistically significant co-

movement in efficiency across stocks, suggesting that common economic forces may drive

variation in the price efficiency of individual securities.

3.2 Co-movement in efficiency across measures

We now turn to the question whether there is evidence of common variation in aggregate

efficiency across different efficiency measures. As discussed in Section 1.6, we first orthog-

onalize the monthly, stock-level Predictability, Variance ratio, Hasbrouck, and Put-call

parity measures from Panel C of Table 2 with respect to monthly, stock-level liquidity.

Subsequently, we compute the value-weighted average efficiency (orthogonalized with re-

spect to liquidity) across individual stocks each month, separately for each efficiency

measure. This procedure yields four different monthly, market-wide efficiency measures.

We include the HKS measure (orthogonalized with respect to the value-weighted average

liquidity across individual stocks) as a fifth monthly, market-wide efficiency measure in

our analyses.12

Figure 1 shows the monthly time-variation in the five market-wide efficiency mea-

sures, each of which represents an inverse measure of informational efficiency, so that

lower values indicate greater efficiency. All measures show considerable time-variation

over our sample period. Visual inspection suggests that there are some clear common

patterns across several of the measures, but also some idiosyncratic fluctuations. For

12Our data are based on all national best bid and offer (NBBO) quotes on all U.S. exchanges, while
the regressions in Heston, Korajczyk, and Sadka (2010) are based on NYSE data only. Also, we use
mid-quote returns (instead of return from trade prices) to avoid bid-ask bounce. Nonetheless, we are
able to closely match their results. In particular, they report an average slope coefficient on 30-minute
returns that are lagged 13 intervals (or one full trading day) of 1.19 (their Table I), while we obtain an
estimate of 1.15 over their sample period 2001-2005.
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example, Predictability, Hasbrouck, and Put-call parity all show a long-run downward

sloping trend, which is particularly pronounced over the period 2000-2008 and indicates

a gradual overall improvement in efficiency over our sample period. Hasbrouck, Put-call

parity, and HKS each indicate a marked deterioration in efficiency following the collapse

of Lehman Brothers in September 2008. Predictability, Hasbrouck, and Put-call parity

show a similar drop in market efficiency around the LTCM crisis in August 1998. On

the other hand, time-variation in HKS and most notably Variance ratio seems largely

independent of time-variation in the other measures.

In Table 4, we assess the extent of co-movement across the five different monthly,

market-wide efficiency measures by presenting Spearman rank correlations across all of

the measures (Pearson correlations are similar). The main takeaway from the table is

that correlations across the efficiency measures tend to be economically substantial and

statistically significant, with the notable exception of those involving the Variance ratio

measure. For example, the Hasbrouck measure has a correlation of 59.75% with Pre-

dictability, 42.07% with Put-call parity, and 14.87% with HKS. The correlation between

Put-call parity and Predictability is 18.83%. All of these correlations are statistically

significant. Correlations between the HKS measure and the Predictability and Put-call

parity measures are weak.13

The results in Table 4 point to significant common variation across four of the five

market-wide efficiency measures. Remarkably, variation in the Variance ratio measure is

negatively correlated with variation in the other efficiency measures, perhaps underlining

the concerns about stock-level variance ratios expressed by Andersen, Bollerslev, and Das

13We note that the correlations in Table 4 may in part be driven by a common time trend. We
acknowledge that correlations based on trending variables could to some degree be spurious. At the
same time, we are interested in the extent to which different efficiency measures reflect any trends
in aggregate efficiency in a similar way. In the same vein, Goyenko, Holden, and Trzcinka (2009) do
not detrend the underlying variables in their analysis of the extent of co-variation across high- and
low-frequency measures of market liquidity.
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(2001). The correlations of Variance ratio with Predictability, Hasbrouck, and Put-call

parity are all around −35% and statistically significant, while the correlation with HKS

is also negative but insignificant.

We conclude that there is an important common component to the variation in various

market-wide efficiency measures, but correlations are less than perfect (most notably for

variance ratios). Given these imperfect correlations, it seems reasonable to rely upon

more than a single measure of market efficiency in empirical research.

4. What drives systematic variation in market effi-

ciency?

Our results in Section 3 indicate that market efficiency measures exhibit significant co-

movement across individual stocks and with each other. These findings suggest that

there is a significant systematic component to these market efficiency measures. We now

turn to an analysis of what economic forces drive time-variation in the systematic market

efficiency component. We first develop hypotheses and discuss the variable definitions

(Section 4.1) and then present our measure of systematic market efficiency (Section 4.2),

our methodology (Section 4.3), and the empirical results (Section 4.4).

4.1 Hypotheses development and variable definitions

Since market efficiency is enforced in part by way of arbitrage, factors that affect the

efficacy of arbitrage could induce systematic variation in efficiency. Recent theoretical

and empirical research suggests that changes in the availability of arbitrage capital are

an important source of variation in arbitrage efficacy. For example, in the theoretical

models of Gromb and Vayanos (2002), Brunnermeier and Pedersen (2009), Gârleanu and

Pedersen (2011), and Liu and Mello (2011), arbitrageurs are capital constrained and, as
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a result, may not be able to eliminate deviations from efficient pricing. In several of

these models, adverse shocks to funding liquidity force arbitrageurs to terminate their

positions, which can lead to greater deviations from efficient pricing and potentially

trigger feedback loops that cause inefficiencies and funding constraints to worsen in lock-

step. Empirical studies by Mitchell, Pedersen, and Pulvino (2007), Mancini-Griffoli and

Ranaldo (2011), and Mitchell and Pulvino (2012) document that funding liquidity is sub-

ject to significant fluctuations, and that improvements in funding liquidity are associated

with increased arbitrage efficacy. We thus hypothesize that improved funding liquidity

enhances systematic market efficiency.

Our key proxy for the overall level of funding liquidity is the TED spread, which is

the difference between the three-month LIBOR and the three-month T-bill rate from the

FRED database of the Federal Reserve Bank of St. Louis and is a widely used indicator of

funding liquidity (Brunnermeier, Nagel, and Pedersen, 2008; Brunnermeier, 2009). The

notion is that the TED spread may proxy for counterparty risk, which, when elevated,

can lead to funding illiquidity. Our first hypothesis (H1) is that a positive shock to the

TED spread is associated with a deterioration in systematic market efficiency.

As a more direct proxy for the availability of arbitrage capital, we include the total

amount of assets under management at hedge funds in US$b. (Hedge fund AUM) in our

analysis.14 We expect greater assets under management at hedge funds to spur arbitrage

activity, thus elevating the degree of systematic efficiency. Our second hypothesis (H2) is

that a positive shock to Hedge fund AUM is associated with an improvement in systematic

market efficiency.

14We thank Matti Suominen and LIPPER-TASS for data on hedge fund AUM. The sample includes
all hedge funds that report their returns in U.S. dollars and have a minimum of 36 monthly return
observations over our sample period. See Jylhä, Rinne, and Suominen (2015).
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Furthermore, we include a proxy for algorithmic trading as a measure of the intensity

of arbitrage and market making activity. Hendershott, Jones, and Menkveld (2011) and

Brogaard, Hendershott, and Riordan (2014) provide evidence that algorithmic trading is

associated with greater liquidity and more efficient pricing, which suggests that algorith-

mic or high-frequency traders play an important role in arbitrage and market making

in today’s markets. Consequently, more algorithmic trading should facilitate arbitrage,

improving systematic efficiency. Inspired by Boehmer, Fong, and Wu (2015), our proxy

for the intensity of algorithmic trading is defined as the total number of quote updates

per month across all the stocks in our sample divided by the aggregate dollar trading vol-

ume for those stocks in the same month (Quotes/Volume). Our third hypothesis (H3) is

that a positive shock to Quotes/Volume is associated with an improvement in systematic

market efficiency.

Since market volatility is another potentially important determinant of the efficacy of

market making and arbitrage, we include Volatility (computed as the value-weighted aver-

age across all stocks’ average daily standard deviation of intraday one-minute mid-quote

returns within the month) as another variable in the VAR, and our fourth hypothesis

(H4) is that a positive shock to Volatility is associated with a deterioration in systematic

market efficiency.

We further hypothesize that shocks to funding liquidity and the intensity of arbitrage

activity may have a differential impact on the market efficiency of different sub-groups of

stocks. In particular, Griffin and Xu (2009) show that hedge funds exhibit a strong pref-

erence for more liquid stocks, as measured by their turnover. Hence, our fifth hypothesis

(H5) is that a positive shock to Hedge fund AUM is associated with a relatively greater

improvement in systematic market efficiency for high turnover stocks.
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4.2 Measuring systematic market efficiency

To test our hypotheses, we are interested in analyzing the relation of the TED spread,

Hedge fund AUM, Quotes/Volume, and Volatility with the degree of systematic market

efficiency. To this end, we extract a single, comprehensive measure of monthly, aggregate

market efficiency via principal component analysis (PCA) of four of the five different

monthly, market-wide efficiency measures: Predictability, Hasbrouck, Put-call parity, and

HKS. We exclude Variance ratio from the principal component analysis because of its

negative correlation with the other measures. However, our results are robust to in-

cluding the Variance ratio measure. We follow Hasbrouck and Seppi (2000) and extract

the principal components based on the correlation matrix. We find that the first prin-

cipal component explains 39% of the total variation in the four market-wide efficiency

measures.

Importantly, the loadings of the four different market-wide efficiency measures on the

first principal component are all of the same sign, otherwise this component could not be

interpreted as representing systematic variation in market efficiency. Since the loadings

on the second principal component are not of the same sign, including this component

in our systematic market efficiency measure would lead to problems in interpreting the

resulting measure as being positively associated with the degree of efficiency as reflected

in each of the four market-wide efficiency measures. Consequently, we use only the first

principal component as representative of systematic market efficiency. The fact that this

component explains almost 40% of the total variation lends credibility to the view that

this component captures the dominant variation in systematic market efficiency. The

loading of the first principal component on the underlying efficiency measures is 0.59 for

Predictability, 0.75 for Hasbrouck, 0.27 for Put-call parity, and 0.11 for HKS. The first
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principal component is thus reasonably representative of all four efficiency measures and

is not dominated by a single one of these measures.

To obtain a time-series of the first principal component, we standardize each of the

four market-wide efficiency measures to have zero mean and unit standard deviation,

and multiply the matrix of standardized measures by the vector of the loadings of each

measure on the component. We refer to the resulting measure as AEFF (aggregate

market efficiency) in the remainder of the paper.

Figure 2 presents a graph of the monthly time-variation in this comprehensive measure

of market efficiency. We note that, just like the four underlying market-wide efficiency

measures, AEFF is inversely related to the degree of informational efficiency. The figure

shows that the degree of aggregate efficiency is considerably greater in some periods than

in others and shares three pervasive features of several of the individual market-wide

efficiency measures in Figure 1: the gradual improvement in efficiency over the period

2000-2008, and the sudden deteriorations in efficiency around the LTCM crisis and the

collapse of Lehman Brothers.

To examine whether shocks to funding liquidity and the intensity of arbitrage activity

have a differential impact on the aggregate market efficiency of low and high turnover

stocks, we also estimate separate systematic efficiency components for two sub-groups

of stocks sorted by turnover. At the beginning of each year, we sort stocks with below-

median turnover over the previous year into a low turnover portfolio and stocks with

above-median turnover into a high turnover portfolio. We then obtain a systematic

market efficiency component for the low and high turnover portfolios separately in an

analogous way as AEFF for all stocks. The first principal component explains close to

40% of the total variation in the different portfolio-level efficiency measures for both low

and high turnover stocks.
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4.3 Vector autoregression specification

A vector autoregression (VAR) is a natural way to analyze the dynamics of AEFF in

relation to proxies for funding liquidity and the intensity of arbitrage activity as well as

market volatility, since all of these variables are endogenous and could influence each other

both contemporaneously and with a lag. We thus estimate a VAR with the following five

endogenous variables: TED spread, Hedge fund AUM, Quotes/Volume, Volatility, and

AEFF. We also estimate two additional VARs with the systematic efficiency components

of low and high turnover stocks as key endogenous variables (as described in Section

4.2). For these other VARs, we re-estimate Quotes/Volume and Volatility based on the

subsamples of low and high turnover stocks. Prior to usage as endogenous variables in the

VAR, we detrend all five variables in each of the three VARs with linear and quadratic

trend terms (to preclude spurious results).15

The number of lags in the VARs is determined using the Akaike and Schwarz infor-

mation criteria (AIC and SIC). The AIC indicates 2, 12, and 10 lags for the VARs based

on all stocks, low turnover stocks, and high turnover stocks, respectively, while the SIC

indicates one lag for each of the three VARs. For the sake of parsimony, we choose to

report the results of one-lag VARs (as indicated by the SIC), but VARs using the lag

lengths indicated by the AIC yield similar results. Table 5 presents summary statistics

of the four potential determinants of AEFF.

4.4 Empirical results on economic drivers of systematic effi-
ciency

Table 6 reports contemporaneous correlations between the innovations (residuals) in the

five endogenous variables in each of the three VARs: based on all stocks (Panel A), low

15The Augmented Dickey Fuller test rejects the null-hypothesis of a unit root for all variables included
in the three VARs with p-values below 0.01.
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turnover stocks (Panel B), and high turnover stocks (Panel C). Panel A shows strong

positive contemporaneous correlations between innovations in AEFF and innovations in

the TED spread and Volatility, which suggests that reduced overall funding liquidity and

heightened volatility are associated with a deterioration in aggregate efficiency across all

stocks (consistent with hypotheses H1 and H4). In line with hypothesis H2, innovations in

AEFF are negatively correlated with innovations in Hedge fund AUM. These correlations

are also economically substantial. There is no significant contemporaneous correlation

between innovations in AEFF and innovations in Quotes/Volume.

Panel A of Table 6 also shows that innovations in Volatility are positively and signifi-

cantly correlated with innovations in Quotes/Volume and the TED spread, and negatively

and significantly with innovations in Hedge fund AUM. Somewhat surprisingly, correla-

tions of innovations in Quotes/Volume are significantly negative with innovations in Hedge

fund AUM and significantly positive with innovations in the TED spread, respectively,

suggesting that algorithmic trading activity might intensify in times when hedge fund

assets under management are reduced and funding liquidity deteriorates. The table fur-

ther shows a significantly negative contemporaneous correlation between innovations in

the TED spread and innovations in Hedge fund AUM, which conforms to our intuition

that a reduction in overall funding liquidity is associated with a decline in the amount

of arbitrage capital.

Panels B and C of Table 6 show very similar patterns in the residual correlations of the

five variables included in the VARs based on low and high turnover stocks, respectively.

A minor difference is that the correlation between innovations in AEFF and innovations

in the TED spread is somewhat weaker for high turnover stocks.

Although the residual correlations in Table 6 provide some initial evidence on the

relations between the endogenous variables in the VARs, they do not account for the full
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dynamics of the VAR system, and for the fact that shocks to the different endogenous

variables are correlated. Impulse response functions (IRFs) provide a more complete

picture by tracing the impact of a one time, unit standard deviation, orthogonalized

(using the inverse Cholesky decomposition) shock to one of the endogenous variables on

current and future values of the other endogenous variables.

Computation of Cholesky IRFs involves ordering the variables. In the ordering, the

notion is that variables are affected by contemporaneous shocks to other variables that

are above, but not below, them in the ordered list (see, for example, Bruno and Shin,

2015). Since AEFF is our key variable of interest, we include it as the last variable in

the VAR, so that it can be affected by contemporaneous shocks to all other variables.

The ordering of the other four variables is determined in the following way, based on

the general principle that slow-moving variables should be ordered before fast-moving

variables. Since shocks to the TED spread may be expected to have a contemporaneous

effect on the other two proxies for funding liquidity and arbitrage activity as well as on

market volatility and aggregate market efficiency, it is the first variable in our ordering.

We consider Hedge fund AUM to be a more direct proxy for variation in the amount of

capital that is available to arbitrageurs, and thus include it as the next variable in our

VAR, so that it can be influenced contemporaneously by shocks to the TED spread. As

Quotes/Volume is arguably a proxy for actual arbitrage activity that could be influenced

contemporaneously by variation in the availability of arbitrage capital as picked up by

the TED spread and Hedge fund AUM, we include it after these two variables. Since

market volatility may be directly influenced by the funding liquidity proxies and may in

turn affect aggregate efficiency, we include Volatility as the fourth variable in the VAR

(just before AEFF).16

16We obtain similar results when we include either aggregate market-wide trading volume or market
returns (in excess of the risk-free rate) as additional endogenous variables in the VARs (ordered in front
of Volatility).
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Figure 3 presents IRFs for the VAR estimated with the systematic efficiency compo-

nent across all stocks as key endogenous variable. The IRFs show the response (measured

in standard deviations) of the variable mentioned in the vertical legend to the right of

the figure to a Cholesky one standard deviation shock to the variable mentioned in the

horizontal legend at the top of the figure. Each IRF graph shows the cumulative response

up to three months ahead (solid line labeled “coef”; month 0 on the horizontal axis of the

IRF graphs corresponds to the contemporaneous response), as well as the bootstrapped

90% confidence bands based on 1,000 runs (dashed lines labeled “lower” and “upper”).

The main result in Figure 3 is that shocks to all three proxies for funding liquidity

and the intensity of arbitrage activity have a significant effect on AEFF. First, consistent

with hypothesis H1, the cumulative response of AEFF to a shock to the TED spread

(top right IRF in Figure 3) is positive and significant both contemporaneously and at all

three lags depicted in the graph and is economically meaningful, at 0.2 to 0.4 standard

deviations. Second, the cumulative response of AEFF to a shock to Hedge fund AUM

(fourth IRF on top row) is significantly negative, both contemporaneously and with a

one-month lag. This effect is in line with hypothesis H2 and, at around 0.2 standard

deviations, non-trivial in magnitude. Third, the cumulative response of AEFF to a

shock to Quotes/Volume (third IRF on top row) is significantly negative at all horizons

depicted in the graph and economically large (at more than 0.3 standard deviations),

supportive of hypothesis H3. These results provide broad support for the prediction

of recent theories (e.g., Gromb and Vayanos, 2002; Brunnermeier and Pedersen, 2009;

Gârleanu and Pedersen, 2011; Liu and Mello, 2011) that an improvement in funding

liquidity enhances the overall degree of market efficiency.

In line with H4, we also find a significantly positive response of AEFF to a shock to

Volatility (second IRF in the top row). In the IRFs that depict the response of Volatility

to shocks in the other endogenous variables in the VAR (second row of Figure 3), we

35



observe a significantly positive and large response to a shock to either Quotes/Volume

or to the TED spread, and a significantly negative response to a shock to Hedge fund

AUM, suggesting that algorithmic trading and funding illiquidity exacerbate volatility,

while hedge fund activity tends to moderate volatility. In the third and fourth rows of

Figure 3, we find that a shock to the TED spread has a significantly positive effect on

Quotes/Volume (consistent with Table 6), but a significantly negative effect on Hedge

fund AUM. The latter result indicates that funding illiquidity reduces the amount of

arbitrage capital available to hedge funds.

Table 7 tabulates the cumulative impulse responses in the VAR for all stocks, and

compares them to the impulse responses of the VARs estimated separately based on

low and high turnover stocks. To save space, the table only reports the responses of

AEFF to shocks to the other four endogenous variables. Consistent with hypothesis H5,

the table shows that the negative response of AEFF to a shock to Hedge fund AUM is

considerably stronger (both in economic and statistical terms) for high turnover stocks

than for low turnover stocks. The effect of Hedge fund AUM on the aggregate efficiency of

low turnover stocks is also negative but not statistically significant at any of the horizons

considered. As a more direct test of hypothesis H5 (see the online appendix), we also

estimate a separate VAR with the difference in the aggregate efficiency between high and

low turnover stocks as the efficiency-related endogenous variable, and find that a positive

shock to Hedge fund AUM is associated with a significant improvement in the aggregate

efficiency of high turnover stocks relative to low turnover stocks.

Table 7 also shows that the positive response of AEFF to a Volatility shock is roughly

equally large and long-lasting for low turnover stocks, high turnover stocks, and all stocks.

The negative effect of a shock to Quotes/Volume on AEFF in Figure 3 is only observed for

high turnover stocks, and its economic and statistical significance are slightly larger than

that observed for all stocks. We are not aware of studies that provide direct evidence on
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the preference of algorithmic traders for certain equity segments, but Hendershott, Jones,

and Menkveld (2011) argue that their results on the effect of algorithmic trading on the

liquidity of NYSE stocks over the period 2001-2005 are “consistent with the conventional

wisdom that AT was more prevalent at the time for active, liquid stocks.” (their p.18).

On the other hand, the cumulative response of AEFF to a shock to the TED spread is

stronger for low turnover stocks than for high turnover stocks, both from an economic

and a statistical perspective, which suggests that funding liquidity is more crucial in

enhancing efficiency within low turnover stocks.17

In sum, our VAR results are consistent with our central hypothesis that changes in

funding liquidity and the intensity of arbitrage activity affect systematic variation in

market efficiency. They also provide new empirical support for theoretical models that

propose an important role for funding constraints as a determinant of the efficacy of

arbitrage, and thus of the degree of market efficiency. Furthermore, they suggest that

hedge funds and algorithmic traders tend to enhance market efficiency, especially for high

turnover stocks.

5. Conclusions

Market efficiency remains central to the study of financial markets, but while several

measures of stock price efficiency have been proposed, little is known about how these

17We also estimate four separate VARs with each of the individual efficiency measures underlying
AEFF as key endogenous variable. The online appendix shows that the impulse responses exhibit
largely similar patterns across measures, although we also observe some differences. For example, the
negative effect of Quotes/Volume is most pronounced for the Predictability measure, while the negative
effect of Hedge fund AUM is strongest for Hasbrouck and HKS. These findings could be indicative of
different types of arbitrageurs focusing on different types of deviations from price efficiency. The positive
effect of shocks to the TED spread obtains for three of the four different market-wide efficiency measures,
but, somewhat surprisingly, reverses sign for Predictability. Also, the statistical significance of some of
the individual responses for the different efficiency measures is attenuated relative to the effects observed
for the overall AEFF measure in Figure 3 and Table 7, possibly as a result of the somewhat greater
degree of noise in each of the individual measures.

37



measures vary over time, whether they co-move across stocks and with each other, and

what economic forces drive time-variation in systematic market efficiency. We address

this gap in the literature by considering how different high-frequency market efficiency

measures co-move across individual stocks and with each other, and by analyzing the

determinants of the systematic market efficiency component across stocks and measures.

We show that four daily, stock-level market efficiency measures (intraday return pre-

dictability, variance ratios, Hasbrouck’s (1993) pricing errors, and put-call parity devi-

ations) demonstrate considerable cross-sectional and time-series variation and exhibit

significant co-movement across stocks. Moreover, we find that correlations among four

monthly, market-wide efficiency measures built up from these daily, stock-level measures

as well as a fifth market-wide measure based on Heston, Korajczyk, and Sadka (2010)

are mostly economically and statistically significant. These findings suggest that time-

variation in these different market efficiency measures is characterized by a significant

systematic component.

Motivated by recent theoretical and empirical research, we hypothesize that funding

liquidity and the intensity of arbitrage activity are important economic forces driving

the degree of systematic market efficiency. To test this hypothesis, we perform a vector

autoregression which includes proxies for funding liquidity and arbitrage activity, market

volatility, and the first principal component extracted from four monthly, market-wide

efficiency measures. We show that shocks to funding liquidity (the TED spread) and

to variables that more directly measure the intensity of arbitrage activity (hedge fund

assets under management and a proxy for algorithmic trading) have a significant impact

on the degree of systematic market efficiency. Overall, our results point to a significant,

systematic, time-varying component in different price efficiency measures for individual

stocks, and to a material role of funding liquidity and the intensity of arbitrage activity

in driving fluctuations in this component.
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Recognizing that market efficiency is dynamic and has a systematic component opens

new vistas for research. First, it would be worth exploring whether there is global co-

movement in market efficiency across stock markets in different countries. This would

allow us to ascertain the extent to which the quality of price formation in markets across

the world has a systematic component, and whether fluctuations in global funding liq-

uidity affect the degree of global systematic efficiency. Second, it would be worth inves-

tigating whether systematic variation in market efficiency extends to other asset classes

such as fixed income securities, foreign exchange, and derivatives. These and other issues

are left for future research.
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Table 1 – Summary statistics of input variables for intraday return predictability regressions

This table reports the cross-sectional (across the 2,157 NYSE stocks in the sample) mean, standard devi-
ation (“SD”), first quartile (“25%”), median, and third quartile (“75%”) of the time-series average by stock of
the daily number of trades (#trades), daily trading volume in US$ billions (dollar volume), average one-minute
mid-quote returns within the day in basis points (1-min mid-quote return), average difference between the total
number of trades initated by buyers and sellers (order imbalance in number of trades) over one-minute intervals
(1-min oib#), and the average difference between the total dollar volume of trades initiated by buyers and
sellers (order imbalance in US$) over one-minute intervals (1-min oib$). The first column indicates the number
of stocks over which the summary statistics are computed. The sample includes all 2,157 NYSE-listed common
stocks from 1996 to 2010 that survive our data screens (described in the online appendix). Data to compute all
variables are from TRTH.

#Stocks Mean SD 25% Median 75%

#trades 2,157 2,015 4,798 79 432 1,797

dollar volume 2,157 0.025 0.062 0.001 0.006 0.021

1-min mid-quote return 2,157 -0.007 0.255 -0.023 -0.001 0.011

1-min oib# 2,157 0.067 0.138 0.001 0.023 0.094

1-min oib$ 2,157 3,052 7,077 4 520 2,616
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Table 2 – Intraday return predictability regressions and summary statistics of stock-level efficiency
measures

Panel A of this table reports the average results of the return predictability regressions from Eq. (1), es-
timated daily based on intraday data for each of the NYSE stocks in the sample. Each of the five columns
presents the results of a different way to estimate the predictability of one-minute (or two-minute) returns
from lagged order imbalance (OIB) or lagged returns: OIB predictability, allquotes, 2minutes, oib#, and
autocorrelation. Section 1.1 discusses all five return predictability measures in detail. The first number in each
column is the average slope coefficient across all stock-day predictability regressions. The OIB coefficient is
scaled by 109 for the OIB predictability, allquotes, and 2minutes regressions and by 104 for the oib# regressions.
The average t-statistics (“t-stat avg”) and the average Newey-West (1994) t-statistics (“NW t-stat avg”) are
reported below the coefficients. “% positive” is the percentage of positive coefficients, and “% + significant”
is the percentage with t-statistics greater than 1.645 (the 5% critical level in a one-tailed test). Intercepts
have been suppressed to conserve space. The last three rows report the average R2 and adjusted R2 across all
regressions and the number of stock-day predictability regressions.

Panel B reports the cross-sectional mean, standard deviation (“SD”), first quartile (“25%”), median, and third
quartile (“75%”) of the time-series average by stock of the five different return predictability measures from Panel
A as well as the other three daily, stock-level efficiency measures (Variance ratio, Hasbrouck, and Put-call parity).
Variance ratio is the daily, absolute difference between one and 30 times the ratio of the variance estimated
from one-minute mid-quote returns to the variance estimated from 30-minute mid-quote returns. Hasbrouck is
the daily maximum of the absolute intraday pricing errors extracted from a decomposition of observed prices
into efficient prices and a stationary component (Hasbrouck, 1993). Put-call parity is the end-of-day absolute
difference between the implied volatilities of near-the-money call and put options of the same series (i.e., pairs
of options on the same underlying stock with the same strike price and the same expiration date). Section 1
discusses all stock-level efficiency measures in detail. The first column indicates the number of stocks over which
the summary statistics are computed.

Panel C reports average cross-sectional Spearman rank correlations (in %) across the monthly, stock-level
Predictability, Variance ratio, Hasbrouck, and Put-call parity measures. Predictability is the common factor
extracted via principal component analysis by stock of the five intraday return predictability measures from
Panel A. The monthly, stock-level efficiency measures are constructed from the corresponding daily, stock-level
measures by averaging across days within the month. Panel C reports p-values, based on Newey-West (1994)
standard errors with automatic lag selection, in parentheses below the correlations. Significance at the 1%, 5%,
and 10% level is indicated by ***, **, and *, respectively.

The full sample includes all 2,157 NYSE-listed common stocks from 1996 to 2010 that survive our data screens
(described in the online appendix). Data are from TRTH. Data to compute Put-call parity are from OptionMetrics.

Panel A: Intraday return predictability regressions (with dependent variable Returnt)

Predictability measure: OIB predictability allquotes 2minutes oib# autocorrelation

OIBt−1 4.380 3.792 6.169 0.947

Returnt−1 0.024

t-stat avg 1.254 0.779 0.863 1.852 0.370

NW t-stat avg 8.385 7.042 7.800 10.657 3.614

% positive 81.61 72.03 74.62 88.71 58.00

% + significant 45.75 31.85 35.10 61.67 28.82

R2 (in %) 2.55 1.72 2.57 3.47 1.83

adj. R2 (in %) 1.60 0.75 1.45 2.51 0.79

# regressions 3,175,645 3,263,908 3,391,138 3,271,527 3,097,085
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Table 2 – continued

Panel B: Summary statistics of daily, stock-level efficiency measures

#Stocks Mean SD 25% Median 75%

OIB predictability 1,924 13.324 34.030 1.183 3.258 9.518

allquotes 1,924 8.714 24.971 0.598 1.538 5.263

2minutes 1,956 12.602 29.267 1.062 3.140 9.466

oib# 1,919 1.652 2.090 0.675 0.973 1.710

autocorrelation 1,837 0.023 0.033 0.003 0.023 0.044

Variance ratio 2,130 0.867 0.378 0.632 0.762 0.971

Hasbrouck 1,769 0.394 0.443 0.153 0.245 0.458

Put-call parity 1,535 2.581 2.043 1.467 2.091 3.073

Panel C: Cross-sectional correlations across monthly, stock-level efficiency measures

Predictability Variance ratio Hasbrouck Put-call parity

Predictability 100.00

Variance ratio 3.22 100.00
(0.26)

Hasbrouck 35.95*** 21.91*** 100.00
(0.00) (0.00)

Put-call parity 25.63*** 22.43*** 52.69*** 100.00
(0.00) (0.00) (0.00)
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Table 3 – Co-movement regressions of daily, stock-level efficiency on market efficiency

This table reports the average results of the efficiency co-movement regressions from Eq. (2), estimated
for each NYSE stock in the sample based on daily data over the whole sample period. The dependent variable
Effi,d is the efficiency of stock i on day d, orthogonalized with respect to stock i’s proportional quoted
spread (PQSPR) on day d. The independent variable MktEffd is the (orthogonalized) market-wide efficiency
on day d, computed as the value-weighted average efficiency (orthogonalized with respect to PQSPR) of all
individual stocks on day d, excluding stock i. Each co-movement regression also includes a one-day lead and
lag of (orthogonalized) market-wide efficiency. Each of the four columns in the table presents the results of
the co-movement regressions based on a different stock-level efficiency measure: Predictability, Variance ratio,
Hasbrouck, and Put-call parity. Predictability is the common factor extracted via principal component analysis
by stock of the five intraday return predictability measures from Panel A of Table 2. We refer to Table 2 for
a description of these predictability measures as well as the other three stock-level efficiency measures. Each
column presents the average slope coefficients across all co-movement regressions estimated by stock. The average
t-statistics (“t-stat avg”) and the cross-sectional t-statistics (“CS t-stat”) are reported below the coefficients.
“% positive” is the percentage of positive coefficients, and “% + significant” is the percentage with t-statistics
greater than 1.645 (the 5% critical level in a one-tailed test). Intercepts have been suppressed to conserve space.
The last three rows report the average R2 and adjusted R2 across all regressions, and the number of stocks for
which the co-movement regressions were estimated. The full sample includes all 2,157 NYSE-listed common
stocks from 1996 to 2010 that survive our data screens (described in the online appendix). Data are from TRTH.
Data to compute Put-call parity are from OptionMetrics.

Dependent variable: Effi,d

Efficiency measure: Predictability Variance ratio Hasbrouck Put-call parity

MktEffd 0.483 0.699 1.528 1.064

t-stat avg 5.981 5.482 4.646 4.835

CS t-stat 5.151 4.665 2.068 2.880

% positive 87.58 92.21 88.54 90.23

% + significant 69.30 72.46 66.00 68.44

MktEffd−1 0.033 0.080 0.147 0.176

t-stat avg 0.534 0.123 0.309 0.844

CS t-stat 0.428 0.825 0.361 0.631

% positive 57.35 51.40 56.86 61.20

% + significant 27.71 11.66 18.53 28.37

MktEffd+1 0.033 0.098 -0.061 0.180

t-stat avg 0.712 0.064 0.313 0.834

CS t-stat 0.507 1.019 -0.106 0.560

% positive 58.76 50.81 59.30 62.06

% + significant 30.70 10.44 19.10 28.64

R2 (in %) 6.47 3.23 6.73 8.81

adj R2 (in %) 5.21 2.31 4.94 7.96

# regressions 1,707 2,041 1,597 1,505
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Table 4 – Time-series correlations across monthly, market-wide efficiency measures

This table reports Spearman rank correlations (in %) across five monthly, market-wide efficiency mea-
sures: Predictability, Variance ratio, Hasbrouck, Put-call parity, and HKS. The first four of these measures are
aggregated from daily, stock-level efficiency measures by averaging the daily, stock-level efficiency measures
across days within the month to construct monthly, stock-level efficiency measures, and then computing the
value-weighted average efficiency across individual stocks each month, separately for each efficiency measure.
The HKS measure is obtained from regressing 30-minute stock returns on returns over the same interval on the
previous day (averaged over all 30-minute intervals within a month). The table reports p-values in parentheses
below the correlations. The full sample includes all 2,157 NYSE-listed common stocks from 1996 to 2010 that
survive our data screens (described in the online appendix). Data are from TRTH. Data to compute Put-call
parity are from OptionMetrics. Significance at the 1%, 5%, and 10% level is indicated by ***, **, and *,
respectively.

Predictability Variance ratio Hasbrouck Put-call parity HKS

Predictability 100.00

Variance ratio -36.64*** 100.00
(0.00)

Hasbrouck 59.75*** -35.78*** 100.00
(0.00) (0.00)

Put-call parity 18.83** -37.10*** 42.07*** 100.00
(0.01) (0.00) (0.00)

HKS -3.49 -3.58 14.87** -3.66 100.00
(0.64) (0.64) (0.05) (0.63)
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Table 5 – Summary statistics of potential determinants of systematic variation in efficiency

This table reports the number of monthly observations and the time-series mean, standard deviation
(“SD”), first quartile (“25%”), median, and third quartile (“75%”) of four potential determinants of monthly
variation in the systematic component of market efficiency. TED spread is the monthly difference between the
three-month LIBOR and the three-month T-bill rate (in %), obtained from the FRED database of the Federal
Reserve Bank of St. Louis (FRED ID: USD3MTD156N minus TB3MS). Hedge fund AUM is the total amount
of assets under management at hedge funds in US$b., obtained from Matti Suominen and LIPPER-TASS
(see Jylhä, Rinne, and Suominen, 2015). Quotes/Volume is the total number of quote updates per month
across all the NYSE stocks in our sample divided by the aggregate dollar trading volume for those stocks in
the same month. This variable is scaled by 102. Volatility is a measure of the overall volatility of the stock
market, computed as the value-weighted average across all stocks’ average daily standard deviation of intraday
one-minute mid-quote returns within the month. Data to compute Quotes/Volume and Volatility are from
TRTH. The full sample includes all 2,157 NYSE-listed common stocks from 1996 to 2010 that survive our data
screens (described in the online appendix).

# Obs. Mean SD 25% Median 75%

TED spread 177 0.576 0.443 0.241 0.484 0.729

Hedge fund AUM 177 905.76 525.86 443.39 740.74 1414.80

Quotes/Volume 177 0.02 0.02 0.00 0.01 0.03

Volatility 177 31.47 10.76 24.75 28.61 35.98
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Table 6 – Vector autoregressions of systematic market efficiency (AEFF): Residual correlations

This table reports the contemporaneous correlations (in %) between the innovations (residuals) in the
following five endogenous variables included in three separate vector autoregressions (VARs) based on all NYSE
stocks in the sample (Panel A), based on low turnover stocks only (Panel B), and based on high turnover stocks
only (Panel C): the TED spread (TED spread), hedge funds assets under management (Hedge fund AUM), the
total number of quote updates scaled by aggregate dollar trading volume (Quotes/Volume), market volatility
(Volatility), and the systematic market efficiency component or “aggregate market efficiency” (AEFF ). We
refer to Table 5 and Figure 2 for a description of these variables. The aggregate market efficiency measures
(AEFF ) based on low and high turnover stocks separately are constructed in an analogous way as AEFF for all
stocks. For the VARs in Panels B and C, we also re-estimate Quotes/Volume and Volatility based on low and
high turnover stocks only. The classification of all NYSE stocks into low and high turnover stocks is based on
the median turnover over the previous year. We estimate all three VARs with one lag, following the Schwarz
information criterion (SIC). All variables in the VARs have been detrended using a linear and a quadratic time
trend. The table reports p-values in parentheses below the correlations. Significance at the 1%, 5%, and 10%
level is indicated by ***, **, and *, respectively.

Panel A: All stocks

AEFF Volatility Quotes
V olume Hedge fund AUM TED spread

AEFF 100.00

Volatility 44.85*** 100.00
(0.00)

Quotes/Volume -2.51 59.07*** 100.00
(0.74) (0.00)

Hedge fund AUM -25.59*** -42.89*** -22.35*** 100.00
(0.00) (0.00) (0.00)

TED spread 23.02*** 52.71*** 41.09*** -27.82*** 100.00
(0.00) (0.00) (0.00) (0.00)
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Table 6 – continued

Panel B: Low turnover stocks

AEFF Volatility Quotes
V olume Hedge fund AUM TED spread

AEFF 100.00

Volatility 52.01*** 100.00
(0.00)

Quotes/Volume 7.55 47.91*** 100.00
(0.32) (0.00)

Hedge fund AUM -20.78*** -40.27*** -16.50** 100.00
(0.01) (0.00) (0.03)

TED spread 31.02*** 52.08*** 26.65*** -27.21*** 100.00
(0.00) (0.00) (0.00) (0.00)

Panel C: High turnover stocks

AEFF Volatility Quotes
V olume Hedge fund AUM TED spread

AEFF 100.00

Volatility 50.98*** 100.00
(0.00)

Quotes/Volume -6.78 46.38*** 100.00
(0.37) (0.00)

Hedge fund AUM -34.92*** -45.26*** -20.63*** 100.00
(0.00) (0.00) (0.01)

TED spread 14.49* 50.95*** 46.28*** -28.55*** 100.00
(0.05) (0.00) (0.00) (0.00)
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Table 7 – VARs of systematic market efficiency (AEFF): Impulse response functions

This table reports the impulse response functions (IRFs) for three separate vector autoregressions (VARs) with
one lag based on all NYSE stocks in the sample (Panel A), based on low turnover stocks only (Panel B), and
based on high turnover stocks only (Panel C), with the following endogenous variables (in this order): TED
spread, Hedge fund AUM, Quotes/Volume, Volatility, and the systematic component of market efficiency AEFF
(see variable descriptions in Tables 5-6 and Figure 2). The endogenous variables AEFF, Quotes/Volume, and
Volatility are each constructed separately for each Panel based on the relevant sample of stocks. Each Panel
shows the cumulative response of AEFF to a Cholesky one standard deviation shock to the variable in each
row. To save space, the table does not report the impulse responses of the other four endogenous variables in
each VAR. Responses, shown from month 0 (contemporaneous) up to 3 months after the shock, are measured in
standard deviations. The impulse responses in Panel A are the same as those in the top row of IRFs of Figure
3. Significance at the 5% and 10% level is indicated by ** and *, respectively.

AEFF across: Panel A: All stocks Panel B: Low turnover
stocks

Panel C: High turnover
stocks

AEFFm 0.610** 0.685** 0.546**

AEFFm−1 0.979** 1.009** 0.929**

AEFFm−2 1.204** 1.171** 1.204**

AEFFm−3 1.344** 1.259** 1.402**

Volatilitym 0.349** 0.369** 0.344**

Volatilitym−1 0.616** 0.534** 0.589**

Volatilitym−2 0.809** 0.623** 0.759**

Volatilitym−3 0.943** 0.683** 0.874**

Quotes/Volumem -0.118** -0.017 -0.127**

Quotes/Volumem−1 -0.211** 0.017 -0.268**

Quotes/Volumem−2 -0.289* 0.065 -0.402**

Quotes/Volumem−3 -0.355* 0.110 -0.519**

Hedge fund AUMm -0.150* -0.106 -0.226**

Hedge fund AUMm−1 -0.235* -0.148 -0.380**

Hedge fund AUMm−2 -0.278 -0.161 -0.485**

Hedge fund AUMm−3 -0.291 -0.157 -0.554**

Ted spreadm 0.172** 0.256** 0.102*

Ted spreadm−1 0.283** 0.450** 0.186*

Ted spreadm−2 0.358* 0.600** 0.247*

Ted spreadm−3 0.406* 0.642** 0.285
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Figure 1 – Monthly variation in individual market-wide efficiency measures

This figure shows monthly variation in five different market-wide efficiency measures: Predictability, Variance
ratio, Hasbrouck, Put-call parity, and HKS. We refer to Table 4 for a description of these measures. Each measure
is an inverse indicator of the degree of market efficiency. The full sample includes all 2,157 NYSE-listed common
stocks from 1996 to 2010 that survive our data screens (described in the online appendix). Data are from TRTH.
Data to compute Put-call parity are from OptionMetrics.
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Figure 2 – Monthly variation in systematic market efficiency (AEFF)

This figure shows monthly variation in the systematic component of market efficiency across stocks and measures,
or “aggregate market efficiency” (AEFF ). AEFF is the common factor extracted via principal component analysis
based on four of the five monthly, market-wide efficiency measures in Figure 1: Predictability, Hasbrouck, Put-call
parity, and HKS. We refer to Table 4 for a description of these measures. AEFF is an inverse indicator of the
degree of aggregate market efficiency. The full sample includes all 2,157 NYSE-listed common stocks from 1996
to 2010 that survive our data screens (described in the online appendix). Data are from TRTH. Data to compute
Put-call parity are from OptionMetrics.
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Figure 3 – VAR of systematic market efficiency (AEFF): Impulse response functions

This figure shows impulse response functions (IRFs) for a vector autoregression (VAR) with one lag based
on all NYSE stocks, with the following endogenous variables (in this order): TED spread, Hedge fund AUM,
Quotes/Volume, Volatility, and the systematic component of market efficiency AEFF (see variable descriptions
in Table 5 and Figure 2). Each IRF shows the cumulative response (“coef”) of the variable in the vertical legend
to the right of the figure to a Cholesky one standard deviation shock to the variable in the horizontal legend at
the top of the figure, and bootstrapped 90% confidence bands (“lower” and “upper”). Responses (measured in
standard deviations) are shown from month 0 (contemporaneous) up to 3 months after the shock.
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