
Lesson 3 - Subroutines/Functions
In this lesson we are going to learn about subroutines. Subroutines or
functions allow us to break our code down into sections. These sections
can then be reused elsewhere in our code and can save us time.

A subroutine starts with def, which stands for define. This tells the program
that we are defining a subroutine. This is followed by the name of the
subroutine, 2 brackets and a colon.

The subroutine above will draw a square. To run the subroutine or “call it”
we simply type the name of the subroutine in our program.

The full program.



Challenge 1
● Run the program and ensure the subroutine works.
● Create a new subroutine to draw a triangle.
● Use both subroutines to draw two squares and two triangles in the

pattern below.
● Use a for loop to draw this pattern

Challenge 2
Now that we have got a basic pattern done, we want to add to this pattern
and create a pattern similar to the picture below.



What do we need?
● Create a subroutine to move the turtle to the top left corner of the

screen.
● Create a subroutine to move to the position of the next shape in the

pattern.
○ We will need to use setheading(), penup(), pendown() and

forward().
● Create a subroutine to move to the next row in the pattern.

○ We will move down the screen and all the way back to the left
of the screen.

● Use a nested for loop to easily draw all the shapes. Below is a
reminder of roughly what a nested for loop should look like.



Random Colours
Now that we have all of our shapes, we are going to look at how to colour
in each of these shapes a random colour.

To this we need to import the random library and use the randint function
from it. There are two different methods of doing this.

In this method we are importing the whole random library and then we
specify that we want to use the function randint from the random library.
Then we put the smallest number we want and the biggest number.

In this method we are only importing the randint function. Therefore our
program only needs the name of the function and the smallest number we
want and the biggest number we want.

Challenge 3
● Use randint(), color(), begin_fill() and end_fill() to color each of the

shapes a different colour.



Passing Arguments
Although we now have subroutines to draw triangles and squares, we still
don’t have any easy way of drawing other shapes, like pentagons and
octagons.

The subroutines that we wrote only do one thing and if we want to change
it, we need to change the code completely.

Last week we learned about variables and how to use them to draw any
regular shape we wanted. The code for this is below. All we needed to do
to change the shape was to change the value of the sides variable.

We are now going to turn this into a subroutine and we will pass in the
argument for the number of sides. The first line of the subroutine is below,
the rest of the subroutine will look similar to the code above.

When we want to call the shape subroutine, we need to give it a number. It
will look like this, shape(5).

Note: You can create subroutines that take more than a single number.



Challenge 4
● Create a subroutine to draw regular shapes of any number of sides.

Make sure that they are all roughly the same size.
● Using the randint function, change your code from the previous part

to draw random shapes in a pattern like below.



Challenge 5
In a new program we are going to create the picture below. We are drawing
the patterned hexagons 6 times and in random places.

Tasks:
● Create a subroutine that will give us a random colour.
● Create a subroutine that will draw a triangle.
● Create a subroutine that will draw the hexagon pattern. You will need

to use the triangle subroutine and it may be helpful to make the
pattern without the subroutine or for loop first.

● Add code to move the turtle to random position after drawing each
pattern.



Challenge 6
In a new program create the pattern below. This will be quite similar to the
triangular pattern made in challenge 1. Reuse code from previous lessons
where appropriate.



Challenge 7

In a new program create a chess board using what you have learned in this
and previous lessons. Reuse code and create subroutines where
applicable.


