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How do children learn the causal structure of the environment? We first sum-
marize a set of theories from the adult literature on causal learning, including
associative models, parameter estimation theories, and causal structure learning
accounts, as applicable to developmental science. We focus on causal graphical mod-
els as a description of children’s causal knowledge, and the implications of this
computational description for children’s causal learning. We then examine the con-
tributions of explanation and exploration to causal learning from a computational
standpoint. Finally, we examine how children might learn causal knowledge from
others and how computational and constructivist accounts of causal learning can be
integrated. © 2014 John Wiley & Sons, Ltd.
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INTRODUCTION

Children are remarkable causal learners. Despite
the fact that traditional cognitive development

research has suggested that young children are
‘precausal’,1 contemporary accounts of cognitive
development have demonstrated that young children
have sophisticated domain-specific causal reasoning
abilities. Infants register particular aspects of physical
causality.2–5 Toddlers recognize various causal rela-
tions in the psychological domain, especially about
others’ desires and intentions.6 Preschoolers under-
stand that biological and psychological events can
rely on nonobvious, hidden causal relations.7,8

More generally, preschoolers also display a
variety of domain-general causal reasoning abil-
ities. Young children recognize the importance
of Hume’s principles—temporal priority, spatial
priority, and contingency—in making judgments
about causal relations.9,10 Preschoolers also possess
predictive,11 explanatory,12,13 and counterfactual
reasoning abilities.14,15 But what explains the process
of causal learning? How do children take the specific
and often sparse data they observe and construct
abstract representations of causal knowledge?
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We will attempt to answer this question in three
ways. The first will be to summarize a set of general
theories of causal learning, which have been developed
in adult cognitive psychology. This section will con-
clude with a discussion of the application of these the-
ories to developmental science. The second will be to
consider a particular set of issues concerning the rela-
tion between the explanations children hear and gen-
erate and their exploration of the environment. This
section will conclude with a set of discussion ques-
tions attempting to integrate how children explore and
explain the environment with descriptions of the way
they may engage in causal learning. Third, we will
examine how children learn causal knowledge from
others, particularly focused on the idea that such a
learning process might be best explained by general
theories of causal learning.

THEORIES OF CAUSAL LEARNING
AND THEIR APPLICATION TO
COGNITIVE DEVELOPMENT
To describe how children engage in causal inference,
we must consider both the existing domain-specific
knowledge they possess about how causal rela-
tions work (called ‘substantive principles’ for causal
learning, see Ref 11) and the more domain-general
mechanisms by which children acquire new causal
knowledge from information in the environment
(‘formal principles’ for causal learning, see Ref 11).
Children’s substantive principles take the form of
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content information that applies to the causal infor-
mation they are learning. Such knowledge could also
be quite general regarding the inferences it licenses
(e.g., a broad piece of substantive knowledge is that
children understand is temporal priority—that causes
precede their effects). Other pieces of substantive
knowledge might specify only certain kind of causal
inferences (e.g., children might know that plants grow
without knowing a more general conceptual struc-
ture about plants, such as that they are alive). This
content knowledge is usually acquired through the
accretion of facts and information, and could differ
across domains and situations (i.e., temporal priority
might be more general than inferences about plant
behavior). Critically, substantive knowledge often
allows children to make better causal inferences when
mechanisms are familiar to them (see e.g., Ref 16).

Describing how children learn causal knowl-
edge (including the substantive principles they pos-
sess for any domain) usually involves describing the
formal principles, or domain-general mechanisms for
causal learning. In the next section, we outline sev-
eral descriptions of such formal mechanisms for causal
learning. Critically, no formal learning mechanism is
independent of the existing knowledge (i.e., the sub-
stantive principles) that the child possesses. Our goal
is to review how such formal mechanisms might inter-
act with children’s existing knowledge to formulate a
description of causal learning.

Theories Based on Associative Strength
and Parameter Estimation
One possible way children engage in causal inference is
to simply associate causes and effects, in the same way
that animals associate conditioned and unconditioned
stimuli in classical conditioning.17,18 On this view,
there is nothing to understanding causality beyond
recognizing associations. These descriptions of causal
learning assume that candidate causes and effects
have been identified (typically based on relatively
low-level substantive information such as temporal
priority), and output the strength of each cause–effect
association.

As such models only output associative informa-
tion, it is hard to determine how they make predictions
about the ways in which people use causal knowledge
or act on the world. Thus, contemporary advocates of
this approach have suggested that causal learning and
inference takes place by translating associative infor-
mation into a measure of causal structure. That mea-
sure of causal strength might then be combined with
substantive information to make causal inferences or
generate new interventions.19,20 For instance, build-
ing on the model described in Ref,18 there are various

accounts of causal learning that calculate the causal
strength of known causal relations from associative
information.21–23 More recently, similar models of
semantic cognition (including causality) have been
proposed based on neural network architectures.24,25

A related approach to causal learning relies on
estimating causal parameters based on the frequency
with which events co-occur. Two prominent proposals
in this category are the ΔP model26–28 and the Power
PC model29 and extensions for interactive causality
(i.e., when two causes must combine to produce an
effect, as opposed to being just additive, see Ref 30).
These models calculate an estimate of the maximal
likelihood value of the strength of a presumed causal
relation given a set of data.31,32a How these presumed
causal relations are determined is typically a function
of prior substantive knowledge (e.g., ‘focal sets’,
see Ref 34).

Are such mechanisms plausible as developmen-
tal accounts? Associative learning mechanisms are
available to children at very early ages in the form
of their statistical learning capacities.35,36 Such sta-
tistical learning is implicated in infants’ processing
of causal data,37 social knowledge,38 and linguistic
information.39,40

Statistical learning capacities, in turn, are related
to infants’ ability to generalize. Eight-month-olds reg-
ister the appropriate generalizations from population
to sample and from samples to populations.41 Such
statistical learning mechanisms can lead to broader
inferences. For instance, nonrandom sampling leads
18–24-month-old infants to infer that the individual
has a subjective preference for those objects.42,43 Sim-
ilarly, by age 2, children can use the regularity in other
people’s choices to generalize their preferences to cat-
egories of objects.44 Although it is possible that causal
knowledge can be learned from registering associa-
tive or frequency information among events, it is
not clear how such statistical knowledge is integrated
with children’s existing substantive knowledge. For
instance, by their first birthday, infants are clearly inte-
grating their existing physical knowledge45 or social
knowledge46,47 into their statistical inferences. Sim-
ilarly, children’s causal inferences are influenced by
their mechanistic understanding of the domain48,49

and their familiarity with that domain.16

Theories Based on Learning Causal
Structure
Children’s ability to integrate their existing substantive
knowledge with formal mechanisms for causal learn-
ing have led many researchers to propose that children
are learning an abstract ‘causal model’31 or ‘causal
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map’.50b Causal graphical models (CGMs)31,44,50,51

can define causal relations over a variety of domains,
such as physics, biology, and psychology, but they
should not be taken as a domain-general represen-
tation of knowledge. An individual causal model is
domain-specific (i.e., an individual model could rep-
resent a particular piece of substantive knowledge).
The framework itself is more general (i.e., it can rep-
resent knowledge across domains). These models have
been posited as a computational description of chil-
dren’s naiuml;ve theories.50,52c Because of the poten-
tial importance of these models, below we briefly
introduce and summarize research using this frame-
work as a description of causal inference and learning.

To begin, a graphical model is a representation
of a joint probability distribution—a list of all possi-
ble combinations of events under consideration and
the probability that each combination occurs. Condi-
tional probability information can be extracted from
this list. In this formalism, events or objects are rep-
resented as nodes, and vertices represent particular
types of dependencies between such objects or events.
Interpreting these models as representations of causal
knowledge involves making three assumptions about
the underlying structure of the connections between
nodes (events or properties/features of objects) and
vertices (dependency relations that indicate causal
structure): Mechanisms, the Markov Assumption, and
Faithfulness.

Assumption 1: Mechanisms
The first assumption is that any vertex represents a
causal relation between the two nodes, specifically in
the form of a mechanism that can be either observed
or unobserved. That is, given a particular relation
X→Y, the arrow indicates that there is some mech-
anism whereby changing the probability of X directly
affects the probability that Y will occur. A causal graph
is consistent with an infinite set of probabilistic mod-
els that specify how the variables are related. A sin-
gle representation of that causal structure is made by
parameterizing the graph: defining the probability dis-
tribution for each variable conditioned on its parents.
Critically, a graph’s parameterization reflects assump-
tions about the nature of the mechanism by which
causes produce effects. For instance, consider the
hypothetical model of the weather shown in Figure 1.
When we draw an arrow from ‘rains yesterday’ to
‘rains today’, we are positing that there is some (hid-
den) mechanism that relates the probability of raining
yesterday to the probability that it rains today. This
mechanism might be remarkably simple or complex,
but critically, we reason as if such a mechanism is

Raining
Yesterday 

Raining
Today

Raining
Tomorrow 

FIGURE 1 | A toy model of the weather.

present (and regardless of the complexity of the mech-
anism, such inferences might be available even to very
young children, see Ref 53). Positing the presence of
such causal mechanisms allows for a ‘calculus of inter-
vention’ (see Ref 44, p. 85, see also Ref 54)—a way of
interpreting how an intervention on one part of the
causal system affects the system as a whole.

Intuitions about causal mechanisms, and by
extension, the ‘calculus of intervention’ have been
examined in several psychological studies. Some
researchers have suggested that causal transmission
was inherent in particular perceptual features of a
display.55 Given those features, one could not help to
see particular sequences of events as causal. Moreover,
adults reason about causal relations by virtue of the
‘do’ operator is described in Ref 44 (see also Ref 56);
causal learning from interventions is superior to just
observing the same data.57–59

Children engage in similar inferences. There
have been various replications and extensions of the
Michotte paradigm, suggesting that from very early
ages, infants register certain configurations of percep-
tual features as causal.3,60 Shultz argued that children
understood causal relations in terms of ‘generative
transmission’10 and demonstrated that preschoolers
treated mechanism information as more important for
judging whether a causal relation was present than
correlational information (see also Ref 61). Regarding
interventions, children reason differently about inter-
vening on a causal system than when simply observing
that system.50 Four-year-olds also infer the presence of
hidden causes when shown stochastic data, suggesting
that they interpret probabilistic events as indicating
the presence of hidden mechanisms.62 Although it is
not clear that children (or adults for that matter, see
e.g., Ref 63) can articulate the mechanism underlying
any particular causal relation, it does seem clear that
young children can reason as if such mechanisms are
present.49,64

Assumption 2: The Markov Assumption
The Markov assumption translates conditional proba-
bility information into causal knowledge. It states that
the value of an event (i.e., a node in the graph) is inde-
pendent of all other events except its children (i.e., its
direct effects) conditional on its parents (i.e., its direct
causes). Let’s return to the model of the weather shown
in Figure 1. According to this model, whether it rained
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FIGURE 2 | Various reactions from a child interacting with two ‘Blicket Detectors’ (originally used by Gopnik and Sobel65), from the protocol
described in Legare.66

yesterday and whether it rains today are statistically
related, as is whether it rains today and whether it
will rain tomorrow. Given those dependencies, it is
also true that raining yesterday and raining tomor-
row are dependent. The Markov Assumption states
that raining yesterday and tomorrow are independent
given the knowledge of whether it rains today. The
only influence raining yesterday has on raining tomor-
row is through whether it rains today.

How could we examine whether children are
reasoning about the relations among events using the
Markov assumption? One difficulty in answering this
question is that we need a method that allows us to
test whether children recognize the conditional inde-
pendence relations among events separately from their
prior knowledge about how these events are related.
One such experimental paradigm was developed by
Gopnik and Sobel,65 who introduced children to a
‘blicket detector’ (see Figure 2), a machine that lights
up and plays music when certain objects are placed
upon it. The detector presents a novel, nonobvious
property of each object: its activation potential. (The
machine is controlled through an ‘enabling’ switch.
When the switch is on, any object will activate the
detector. When it is off, no object will activate the
detector). Because the machine is novel, children
have few expectations about what kinds of objects
activate it.

Using this paradigm, researchers have found that
children treat objects that activate the detector by
themselves differently from objects that only activate

the detector dependent on the presence of another
object—that is they examined whether children obey
the Markov assumption. Three- and 4-year-olds were
trained to know that objects that activated the detector
were called ‘blickets’. Then, children observed a set of
trials in which objects either independently activated
the machine, or did so only dependent on the presence
of another object. Specifically, on the one cause trials,
children were shown two objects. One object (A) acti-
vated the detector by itself. The other object (B) did
not. Children then saw objects A and B activate the
detector together (twice). Children labeled only object
A as a blicket. Even though object B activated the
detector 2 out of the 3 times it was placed on it, it only
did so dependent on the presence of object A. If chil-
dren reasoned according to the Markov assumption,
they would not use the positive association between
object B and the machine’s activation to infer the effi-
cacy of object B, but rather recognize that such efficacy
is conditionally dependent on the presence of object
A. Remove object A from the equation, and object B
lacks efficacy. Children reasoned in this manner and
stated that object B was not a blicket. In contrast,
in an analogous two cause condition, in which an
object activated the detector independently two out of
three times, children were likely to label the B object a
blicket. Here, object B activates the machine indepen-
dent from object A, and thus children should use the
associations they observe.11

Various investigations have extended these
findings to younger children,37 other domains of
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knowledge,67 and other kinds of screening-off infer-
ences (i.e., those involving chains or common causes,
instead of the common effect structure presented
above, see Ref 68). These data all suggest that chil-
dren robustly adhere to the Markov assumption in
their causal inferences. That said, there are a variety
of findings in adult cognition suggesting noninde-
pendence—that adults’ probabilistic inferences are
inconsistent with the Markov assumption.69–72 As
an example, suppose you know that smoking causes
thick blood vessels and smoking increases risks
for cataracts. The Markov assumption states that
the probability that a heavy smoker has a risk for
cataracts is the same regardless of whether he/she
has thick or normal blood vessels. However, if adult
participants are given examples like this, the nonin-
dependence effect is their likelihood to judge that the
probability a heavy smoker has risk for cataracts is
higher if that smoker also has thick blood vessels than
normal blood vessels. Because of these results, some
of the researchers cited above have suggested that this
framework does not describe adults’ causal inference
well (or at the least provides an incomplete account
of causal inference, see also Refs 73 and 74).

One potential explanation for this inconsistency
between the adult and developmental findings is that
the methods used to test adults’ causal reasoning
often contextualize the problem in such a way that
adults’ prior knowledge (i.e., their substantive princi-
ples) might influence the causal model they construct.
Rehder and Burnet71 were sensitive to this issue, and
argued that adults do reason according to the Markov
assumption, but the causal model that they build
when they are asked to make such inferences incor-
porates prior knowledge in the form of mechanism
information. That is, in the smoking example above,
adult participants assume a mechanism through which
smoking causes both increased risk for cataracts and
thick blood vessels. In this way, nonindependence is
nothing more than adults reasoning according to the
Markov assumption, just not representing the simplest
possible causal model.

Some have expanded on this hypothesis, sug-
gesting that in order to describe children’s and
adults’ causal reasoning, one underlying principle
of the CGM framework should be modified, that is
minimality. Under minimality, whenever observed
data posit a causal relation, the standard instantiation
of that relation is a single vertex linking cause to
effect.44 However, one could also specify a distribu-
tion of intermediary causal structures between cause
and effect, with each structure’s prior probability
dependent on its complexity. This modification (called
Edge Replacement) nicely explains the phenomenon

of nonindependence, as it posits various kinds of
mechanism knowledge that potentially influences
causal inferences.53 In addition, it explains several
other novel aspects of children’s causal inference.64,75

Assumption 3: Faithfulness
Faithfulness specifies that the data a learner observes is
actually indicative of the causal structure in the world.
Put simply, the faithfulness assumption is that the data
children observe indicate the actual causal structure
of the world. To illustrate, suppose that children
observe two events X and Y. The actual structure
of the world is that there is a generative relation
between X and Y, such that raising the probability of
X would therefore raise the probability that Y occurs.
However, it is possible that there is another event (call
it Z), which children do not observe, but that also
affects Y. Event Z has a preventative relation with
Y, such that increasing the probability of Z decreases
the probability of Y. Suppose further that the extent
to which X affects Y and Z affects Y are exactly
the same and that they always affect Y in tandem.
Thus, even though raising the probability of X should
raise the probability of Y, X and Y would be seen
as independent from one another. The faithfulness
assumption is that this sequence of coincidental events
never occurs. The causal relations among X, Y, and Z
will never work out such that X and Z cancel each
other’s effects on Y exactly.

To our knowledge, there are no direct psycholog-
ical investigations dedicated primarily to faithfulness.
That said, because it essentially involves positing the
presence of Cartesian demons, we do feel, however,
that it is safe to assume this principle. More psycholog-
ical investigation is warranted, however, to be certain
of this assumption.

Integrating the Two Accounts
At this point in our review, we wish to speculate on a
way of integrating accounts of causal learning based
on recognizing associations among events and those
based on building CGMs. The statistical learning lit-
erature suggests that infants have associative learn-
ing capacities, potentially even from birth.35,36 This
is supported by classic work demonstrating that very
young infants can learn and remember associations
they observe among events (see Ref 76, for a review).
Thus, one possibility is that such a mechanism can
account for both the acquisition of substantive prin-
ciples of causal knowledge and the way in which chil-
dren come to recognize any kind of causal relation.

Yet for the same reason that we lecture our intro-
ductory statistics students that ‘correlation doesn’t
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equal causality’, we believe that such accounts cannot
solely describe the formal principles through which
children learn causal structure. As mentioned in the
section on the Markov Assumption above, any case
in which the dependence relation between two events
(X and Y) switches given the presence or absence
of a third (Z) suggests a causal structure in which
a direct causal relation does not exist between them
(e.g., X→Z→Y). Children must have a mechanism for
recognizing statistical regularities among events, but
also parsing out conditional independence and depen-
dence relations, and making causal inferences based
on observed data. Thus, another possibility is that chil-
dren’s causal reasoning is explained by a formal mech-
anism that is described by the CGM framework. That
is, from birth, the way in which children learn causal
knowledge and make causal inferences is guided by
principles from the CGM framework.

One way of integrating these two approaches
comes from refining Piaget’s descriptions of the devel-
opment of causal reasoning.77,78 In the earliest stages
of the sensorimotor stage, Piaget described the infant
as only experiencing causality as a form of associa-
tion of experiences: ‘there is no causality for the child
other than his own actions; the initial universe is not
a web of causal sequences but a mere collection of
events arising in extension of the activity itself’ (see Ref
78, p. 220). As the infant learns to act on the world,
he/she might move beyond such associations to recog-
nize deeper relations among events.

Pearl’s description of CGMs supporting infer-
ences about intervention (see Ref 44, see also Ref 54)
nicely fit with this description. When the child realizes
that objects themselves can have efficacy on the envi-
ronment (roughly consistent with Piaget’s substage 4
of the sensorimotor stage, or around 8 months old),
they might also begin to extract the conditional prob-
ability information inherent in associations among
events.

There are two lines of support for this hypoth-
esis. The first comes from several investigations
generated by Sommerville and colleagues, suggesting
that infants’ emerging actions predict their causal
inferences about others’ intentional actions.79,80

Sommerville et al.,81 in particular demonstrated that
providing infants with the ability to act on the envi-
ronment changed whether they perceived others’
actions as goal-directed.

Second, there are now numerous findings in
the infant literature suggesting that infants are capa-
ble of sophisticated causal inferences.82–85 What is
interesting about these findings is that they all come
from infants in the second half of the first year of
life (usually 8-month-olds or older), and rarely are

developmental differences investigated.d Cohen and
colleagues60,87,88 have suggested that the perception
of simple causal relations develops between approxi-
mately ages 5–10 months. Sobel and Kirkham37 found
that children’s ability to recognize conditional inde-
pendence and dependence in statistical regularity
developed between the ages of 5 and 8 months. Similar
findings in infants’ statistical learning capacities using
a different (but one could argue simpler) paradigm,
show analogous development between 4.5 and 6
months.89 This developmental trajectory is consistent
with the constructivist interpretation outlined above.

Two Caveats About CGMs as a Description
of Children’s Causal Knowledge
Examining how this computational framework
describes children’s causal inference engages a particu-
lar debate within the psychological and computational
literatures concerning the level of representational
breadth. Thinking about CGMs as a description
of children’s causal knowledge contrasts with asso-
ciative accounts of causal reasoning20 or similar
neural network descriptions,24 which suggest that
such a computational description of causal knowl-
edge must be more domain-general. Because causal
knowledge can cross or link domains, however, this
approach should also be treated differently from
modularity or certain starting-state nativist accounts
that propose that there are separate domain-specific
causal structures, which potentially have neural
correlates.86,90,91

Thus, one important caveat to the proceeding
discussion is that CGMs are a way of represent-
ing causal structure, not a specific commitment to
how causal knowledge is learned. Most psychologi-
cal research on learning such causal structures have
relied on algorithms based on Bayesian inference (see
e.g., Refs 49, 92 and 93). That said, other algo-
rithms do exist to describe such structure learning.50,51

Although Bayesian approaches have been instrumen-
tal in facilitating our understanding of causal learning,
they should not be taken as a model for what algo-
rithm or calculations children are computing when
faced with causal learning problems. That is, these
models provide a description of the causal learning
process and have been useful in generating psycholog-
ical theory. They should not be considered algorith-
mic or process accounts of how children are exactly
make causal inferences. For instance, it is possible that
neural network simulations could model many of the
psychological phenomena described in this paper (see
Ref 25 for example). It is also possible that algorithms
that simulate Bayesian updating will provide a good
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algorithmic level description for the same inferences
(see Refs 92 and 94 for example). We are agnostic as
to which modeling architecture will ultimately pro-
vide the best and most descriptive algorithmic-level
approach. Any computational description must suc-
cessfully account for extant data, but also make novel
predictions concerning its psychological implications,
and perhaps the most exciting work in the field comes
from this endeavor.

Second, CGMs have the potential to describe
how children represent their causal knowledge at
multiple levels. One could imagine a CGM model
describing a particular event (e.g., Abe dials a number
on his phone, which causes Bob’s phone to ring). One
could also imagine a CGM describing this kind of
event (phones can cause each other to ring). Such a
distinction between specific theories and framework
theories6 is critical to thinking about the role the
CGM framework plays in describing children’s causal
knowledge.93,95 It is likely that learning about specific
events using an algorithm from the CGM framework
is guided not only by the data that children observe,
but also the knowledge they possess regarding what
kinds of specific causal models can be built (or that
have greater a priori probability).

EXPLANATION AND EXPLORATION IN
CHILDREN’S CAUSAL LEARNING
Having presented a basic description of computational
models of causal learning, we now turn to several pro-
grammatic lines of constructivist research examining
the relation between explanation, exploration, and the
development of causal learning.

Explanation
The search for explanations motivates the causal
learning process.96,97 The tendency to seek and gen-
erate explanations is so pervasive and compelling that
some psychologists have posited a ‘drive to explain’.98

At very early ages, children generate appropriate
domain-specific explanations 13,15,81 and use ques-
tions effectively to elicit explanations from others as a
means of acquiring new knowledge.99–101 Given that
young children generate and seek out explanations,
how might explanations benefit causal learning?

A growing body of research confirms that the
process of generating explanations, for others or
for oneself, has educational benefits.102–106 This
‘self-explanation effect’ has been documented in
a variety of learning contexts, ranging from the
acquisition of scientific content knowledge107,108

to conceptual transitions in early childhood.109,110

Given the intimate relation between explanation and
conceptual representation,111–113 generalization,114

and learning,102,115 an understanding of explanation
is foundational for causal learning (see also Ref 116).

Even though there are many documented effects
of explanation,103–105,117–119 the process by which
explanations benefit learning is underspecified.12,115

If explanation is a mechanism for learning, children
should benefit from providing explanations for events
that afford new learning opportunities. Events that are
inconsistent with prior knowledge provide just such
an opportunity. The ability to explain such events
could aid in learning by focusing children on cur-
rent causal knowledge and provoke causal reasoning.
For instance, Legare12,66,120 examined the triggers that
motivate children to construct explanations. Legare
and her colleagues found that preschoolers generated
more explanations when faced with outcomes that
were inconsistent with their prior knowledge. More-
over, these explanations tended to refer to unobserved
causal mechanisms and internal causal properties, and
not external perceptual appearances. This provides
promising evidence that explanation provides chil-
dren the opportunity to articulate new hypotheses for
events that, at first, disconfirm their current knowl-
edge. These data are consistent with the proposal that
children’s explanations play an active role in the learn-
ing process and provide an empirical basis for inves-
tigating the mechanisms by which children’s explana-
tions function in the service of discovery.e

Despite this evidence, merely attending to incon-
sistency does not always lead to belief revision and
theory change.122–128 Explaining inconsistency may
serve as a critical mechanism for integrating and rec-
onciling discordant information with existing theories
and reduce engagement in theory-preserving strategies
like rejection and postponement. But how might the
process of explaining inconsistency generate amended
beliefs?

One possibility we endorse is that explaining
inconsistency triggers a process of hypothesis gen-
eration that encourages learners to formulate and
entertain hypotheses they would not have sponta-
neously considered otherwise. Generating hypotheses
in the service of explanation may influence the kinds
of hypotheses formulated. Both children and adults
have strong intuitions about what makes something
a good explanation,129,130 and explanation-triggered
hypothesis generation may promote the production of
hypotheses that make for informative explanations.

In this way, there might be some deep, but as of
yet unexplored connections between explanations and
how children represent their causal knowledge (based
on the CGM framework described above). These two
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areas of causal learning are not seen as connected; as
Wellman and Liu point out, ‘causal Bayes nets seem
silent on how to characterize explanations and on
what role explanations might play in causal learning’
(Ref 119, p. 261). Although it is not clear how children
generate explanations from the way they represent
their causal knowledge, one way of interpreting the
self-explanation effect is that the child treats the act of
explaining in the same manner as observing analogous
data. That is, children who generate an explanation
might treat that explanation as data, which might
affect the existing model of causal structure they
possess (i.e., strengthening it if they believe their
explanation is good, or weakening it if they believe
their explanation is weak or uncertain, see Ref 131,
for a version of this argument).

Exploration
We have proposed that the act of explaining serves
as data for causal learning or conceptual change.
We view the child as an active participant in the
construction of causal knowledge, and not a passive
viewer of information. Casting the child in this light is
a hallmark of many constructive accounts.50,52 It sug-
gests that children also seek out data when faced with
ambiguity or uncertainty, and such exploration can
inform the ways in which children learn new causal
structure. That is, the weaker the representation of
children’s causal knowledge, the more likely they will
explore their environment (presumably to strengthen
that representation).

Building on classic research on children’s
play,132,133 there is converging evidence that
inconsistent or problematic events also trigger
exploration.134,135 Children’s exploratory play is
affected by the quality of the evidence that they
observe. When multiple candidate causes are available
for the same outcome and underlying causal struc-
ture is ambiguous, children preferentially explore
confounded (as opposed to unconfounded) causal
relations, show more variable play behavior when
presented with probabilistic (as opposed to deter-
ministic) information,136 and can spontaneously
disambiguate confounded variables.135 Moreover,
they recognize when it is necessary to explore the
environment as opposed to seek help from a more
knowledgeable source.137

Despite the evidence that anomalous or incon-
sistent information motivates both explanation and
exploration, the way in which the two processes may
jointly facilitate or drive causal knowledge acquisi-
tion has remains underdetermined. Does the process
of constructing a causal explanation for inconsistent

outcomes inform and constrain children’s exploratory
behavior? Do causal explanation and exploratory
behavior operate in tandem as hypothesis-generating
and hypothesis-testing mechanisms? Is this process
associated with tangible learning outcomes?

Bonawitz and colleagues138 examined this inter-
action between explanation and exploration. They
first assessed children’s understanding of balance
events (i.e., do children know that center of mass indi-
cates balance). Next they presented children with a
free play environment that provided evidence either
for a geometric center-based or center of mass-based
account of balance (by, following Ref 139), using stim-
uli that appeared to support one kind of balance rela-
tion, but by virtue of their mass, actually supported
a counterintuitive relation). They then assessed how
children learned from their explanations and explo-
ration of these objects. They found that older chil-
dren (6–7-year-olds) could revise their beliefs in light
of theory-inconsistent evidence, but also that children
would discount such evidence if they explain these
events in terms of potential auxiliary hypotheses to
their existing theory. Preschoolers, in contrast, strug-
gled to revise their beliefs given this evidence.

Preschoolers, however, do trade-off exploration
and explanation in certain ways. When children lack
explanatory information, they can learn causal struc-
tures from exploration,140 and this learning is facil-
itated when their exploration uncovers new knowl-
edge as opposed to confirming information they
have already observed.66,141 Moreover, young children
explore novel toys more when given ambiguous data
about how the toy works135 and explore environments
in systematic ways to resolve that ambiguity.142

Critically, however, explanations and explo-
ration interact when learning.143 Bonawitz and
colleagues144 demonstrated that children who heard a
particular set of instructions regarding a novel object’s
function were less likely to explore the object (and
discover novel functions) than children who heard
incomplete explanations. They suggest that children’s
exploration was affected by their understanding of
the pedagogical intent of the individual who gener-
ated the explanations (i.e., someone who was more
knowledgeable about the object than they were). Such
effects of pedagogy—taking a teacher’s intentions
into account to determine why they are presenting
the information they are—are detectable in adults145

as well as toddlers146,147 and are potentially part of a
natural human communicative process.148

Given the trade-off between explanations
heard from others and exploration of the environ-
ment demonstrated in these experiments, there are
a number of compelling reasons to examine the
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interaction between explanation and exploration for
learning, particularly when faced with the problem
of inconsistency. Encouraging children to explain
inconsistency confronts children with the inconsistent
evidence most likely to foster theory revision, guides
the hypothesis-testing process, and promotes learning.
These explanatory intuitions may constrain learners
to focus on some aspects of what they are trying
to explain over others. In particular, explanation
may focus learners on causal mechanisms66,106 and
on abstraction.115,130 Generating hypotheses in the
service of explanation may influence the kinds of
hypotheses formulated, as well as their impact on
cognition.

That said, how might the process of explaining
inconsistency with prior knowledge inform children’s
exploratory, hypothesis-testing behavior? Legare66

demonstrated that children’s explanations and subse-
quent exploratory behavior following events that are
consistent with their existing knowledge differ from
those following inconsistent events. When children
observed inconsistent events, the kind of explanation
children provided differentially predicted the kind of
exploratory behavior they engaged in. The kind of
explanations children provided also influence rates of
spontaneous, hypothesis-testing exploratory behavior
and the tendency to modify existing explanatory
hypotheses in the face of disconfirming evidence. For
example, children who provided explanations that
referred to problems with causal function engaged
in more extended and more variable exploratory
behavior than children who provided different kinds
of explanations (e.g., explanations referring to cate-
gory membership). Encouraging children to explain
inconsistency confronts children with the inconsis-
tent evidence most likely to foster theory revision,
guides the hypothesis-testing process, and promotes
exploration.143

CAUSAL LEARNING FROM OTHERS
Much of the constructivist research we have described
so far focuses on the problem of causal learning as
being directed by the child. When children encounter
novel data or events from which they learn, they do
so by integrating that information with their existing
knowledge to make novel inferences, generate novel
explanations, or engage in specific actions. Such a
description might be correct, but it assumes that all the
data children use to learn causal structure is directly
observable. This is obviously not the case, and the
fact that children learn from explanations (both their
own and others) provides evidence for the power of
learning through testimony from others.

Furthermore, children make inferences about
unobservable biological events,149 psychological
events,119 and even supernatural events.150 Children
also appeal to and easily learn culturally constructed
explanations151 and social conventions.152,153 All
of these events are not directly observable and
could not be learned just from interacting with the
environment.f In order to learn all of this informa-
tion, children must rely on information generated
from others. How do children learn causal knowledge
from others? Do the same processes we have described
in learning from observation and interaction with the
world apply to learning from others?

A significant number of studies now show that
children are not simply credulous of others’ infor-
mation (for reviews, see Refs 154–158). Children
as young as 2 years are capable of judiciously using
different sources by tracking informants’ history of
past accuracy.159–162 Children’s rapid cultural learning
potentially emanates from their ability to learn selec-
tively from others (see e.g., Ref 163).

We propose that how children learn from oth-
ers is as rational as how children learn from inte-
grating their own knowledge with observed data.158

Preschoolers’ beliefs about whom to trust are influ-
enced by their existing knowledge about people (e.g.,
adults are more knowledgeable than children164),
kinds (e.g., speakers knowledgeable about objects’
labels should also be knowledgeable about those
objects’ functions, 161), and expertise (e.g., speak-
ers with a certain specific knowledge base might
not be more knowledgeable overall, just about that
base165,166). These findings all suggest that young chil-
dren can integrate what they know about the world
with the data they receive about the world from others.

Indeed, consistent with this rational account,
some have suggested different computational
accounts of the way in which children update their
beliefs—including their causal knowledge—given
information generated from others.167–169 Many
of these accounts use CGMs as a representation of
children’s existing causal knowledge, and promote
different kinds of rational learning algorithms on this
representation to explain how children’s knowledge
changes. As with our discussion of the CGM frame-
work, such computational accounts should not be
considered process models, but rather descriptions of
how children might learn from others, which in turn
could inform new psychological investigations.

CONCLUSION
To answer the question of how children construct
abstract representations of causal knowledge from the
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data they observe, we have appealed to computational
(i.e., CGMs), constructivist, and social learning frame-
works to describe the process of causal learning. Our
objective is to illustrate the striking sophistication of
young children’s causal learning capacities, as well
as demonstrating how useful computational modeling
can be for making predictions about those capacities.
There are many outstanding open questions, such as
how to translate between a causal graphical model and
a verbal explanation provided by a child, or the role
of children’s developing cognitive capacities, such as
attention or memory, in the process of such learning.
The present review, however, suggests an important
conclusion, that very much emanates from construc-
tivist theories of cognitive development: The child is an
active seeker of information—regardless of what kind
of knowledge they are acquiring. Regarding causal
knowledge, children begin to generate ‘why’ ques-
tions around the time they themselves offer causal
explanations.101,119,170 But, similar behavior is also
seen for children in the naming spurt—the acquisition
of many labels often coincides with children generat-
ing a lexical item soliciting an object’s name.171 Such
active learning allows children to recognize and fill the
gaps in their knowledge and construct new represen-
tations of the causal structure of the world.

NOTES
a Descriptions of causal learning based on calculating
causal strength from associative information typically
estimate these asymptotic parameters. For example,
the results of the Rescorla-Wagner equation can con-
verge to ΔP given infinitely many randomly inter-
mixed trials.33

b We prefer the ‘causal map’ designation, as it does not
suggest that children’s causal knowledge is represented
by a graphical model explicitly. Instead, it suggests
that the features of such a computational account
describe that representation.
c Interestingly, there are several domains of knowl-
edge like number, language, or spatial relations in
which causal maps potentially have little applicabil-
ity because those domains typically do not represent
knowledge in terms of causal relations. For example,
the development of numerical knowledge (such as
knowledge of the mapping between the natural num-
bers and numerals) is not represented in terms of
causal relations. How the CGM framework poten-
tially relates to the representation of this knowledge
is beyond the scope of this article.
d Two points should be made about these findings.
First, they are usually interpreted as evidence for
causality being part of ‘core knowledge’ or causal rea-
soning as an innately specified capacity (see e.g., Ref
86). Second, to our knowledge, all of these findings are
consistent with the CGM framework described above,
although they are usually not described in that way.
e It is also interesting to consider cases in which chil-
dren learn from explaining information they already
know, particularly when teaching another person.
There are many demonstrations of preschoolers
being able to make sophisticated inferences about
teaching,121 but only few demonstrations that chil-
dren’s actual teaching affects their learning. We believe
that this is an important line of research for future
investigation.
f Critically, children also learn language, which, while
not causal in nature, does involve understanding a
set of culturally constructed, but arbitrary mappings
between phonology and meaning.154
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