Estimating Hourly Energy Generation of Distributed Photovoltaic Arrays: A Comparison of Two Methods

Nicholas A. Engerer

Associate Lecturer
Fenner School of Environment and Society1
The Australian National University2
NICTA, Machine Learning Research Group3

Based on the conference paper authored by:
Junyan Tan2, Nicholas A. Engerer1,2,3, and Franklin P. Mills1,2
Let’s Ask A Question...

- How much electricity is being generated by distributed PV systems in a given region in Australia right now?
• How much electricity is being generated in Canberra, Australia right now?
• How much electricity is being generated in Canberra, Australia right now?
This is not an easy question to answer!

- Distributed PV systems are (mostly) not actively monitored
- They are highly nuanced
- Their exact locations are hard to access
- Clouds have widely varying characteristics
- Solar radiation – a rapidly changing variable
How can we begin to answer this question?
Comparing Two Methods

• **Method 1**

• **Method 2**

Method 1: Pyranometer

DISC Model

Reindl Model

Sandia Performance Models

Estimated Energy
Method 2: PV System

- Esra Clear-Sky
- Reindl Transposition
- Sandia Performance Models

\[K_{PV_1} \]

\[K_{PV} \text{ Calculation} \]

\[K_{PV_1} * PV_{CLR_2} \]

Estimated Energy at Site 2
Data: Pyranometers and PV Systems

- 29 Rooftop PV Systems
- 4 Pyranometer Sites
- 3 Sites with PV and Pyranometer Co-located

Special Acknowledgements to:
- The CSIRO Weather and Energy Research Unit (Alberto Troccoli)
- ACT Solar Schools Program
Methodology:

Estimate the hourly energy generation at each site using both methods.
Method 1

Pyranometer hourly analysis using site 641

Estimated kWh/kWp

RMSE = 0.159
MAPE = 75.0%
MBE = 0.7%

Method 2

KPV hourly analysis using site 641

Estimated kWh/kWp

RMSE = 0.188
MAPE = 64.4%
MBE = 6.5%
Pyranometers know best?

Calibration error?
Conclusion

- **Method 1** performs *slightly* better

- **Unless** the sites are “close enough”
 - ~5km or less and **Method 2** performs best

- PV system data appears to be approximately as good as pyranometer data for energy output estimates