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Abstract

Various forms of substitutability are essential for establishing the existence of
equilibria and other useful properties in diverse settings such as matching, auctions,
and exchange economies with indivisible goods. We extend earlier models’ definitions of
substitutability to settings in which each agent can be both a buyer in some transactions
and a seller in others, and show that all these definitions are equivalent. We then
introduce a new class of substitutable preferences that allows us to model intermediaries
with production capacity. We also prove that substitutability is preserved under
economically important transformations such as trade endowments, mergers, and
limited liability.
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1 Introduction

Various forms of substitutability are essential for establishing the existence of equilibria and
other useful properties in diverse settings such as matching, auctions, exchange economies with
indivisible goods, and trading networks (Kelso and Crawford, 1982; Roth, 1984; Bikhchandani
and Mamer, 1997; Gul and Stacchetti, 1999, 2000; Milgrom, 2000; Ausubel and Milgrom, 2006;
Hatfield and Milgrom, 2005; Sun and Yang, 2006, 2009; Ostrovsky, 2008; Hatfield et al., 2013;
Fleiner et al., 2017). Substitutability arises in a number of important applications, including
matching with distributional constraints (Abdulkadiroglu and Sénmez, 2003; Hafalir et al.,
2013; Ehlers et al., 2014; Echenique and Yenmez, 2015), supply chains (Ostrovsky, 2008),
markets with horizontal subcontracting (Hatfield et al., 2013), “swap” deals in exchange
markets (Milgrom, 2009), and combinatorial auctions for bank securities (Klemperer, 2010;
Baldwin and Klemperer, 2018).

The diversity of settings in which substitutability plays a role has led to a variety of
different definitions of substitutability, and a number of restrictions on preferences that appear
in some definitions but not in others.! In this paper, we show how the different definitions of
substitutability are related to each other, while dispensing with some of the restrictions in
the preceding literature.

We consider agents with quasilinear utility who can simultaneously be buyers in some
transactions and sellers in others; this allows us to embed the focal substitutability concepts
from the matching, auctions, and exchange economy literatures.? As our setting is more
general than those used in most of the previous work (which considered two-sided markets),
we generalize the previous substitutability concepts where necessary. Our main result then
shows that all of the generalized substitutability concepts are equivalent;® we call preferences
satisfying these conditions fully substitutable.*

Preferences are fully substitutable if goods or services bought and sold act as substitutes

IFor instance, some definitions assume “free disposal”/“monotonicity,” under which an agent is always
weakly better off with a larger set of goods than with a smaller one, while other definitions do not; some
definitions assume that all bundles of goods are feasible for each agent, while others do not.

2While all of the results in our paper consider the preferences of a single agent, and thus do not depend on
the details of the agent’s setting, for concreteness, notational simplicity, and continuity with prior literature,
we state and prove these results in the general trading network setting of Hatfield et al. (2013).

3Note that the concept of substitutability has also been extended to settings with externalities (see, e.g.,
Pycia and Yenmez (2015) and Rostek and Yoder (2017, 2018)); we do not address such settings in this paper.
Likewise, we do not address various strengthenings or weakenings of the substitutability condition (see, e.g.,
Klaus and Walzl (2009); Hatfield and Kojima (2010); Hatfield and Kominers (2017)), or settings in which
utility is not transferable.

4We use the modifier “fully” to highlight the possibility that under such preferences, an agent can be both
a buyer in some transactions and a seller in others, whereas under the “gross substitutes” preferences of Kelso
and Crawford (1982), an agent can be only a buyer or only a seller.



for each other. That is, whenever an agent is offered a new opportunity as a buyer, he
is neither induced to take any previously-rejected opportunities as a buyer, nor to reject
any previously-taken opportunities as a seller; similarly, whenever an agent is offered a new
opportunity as a seller, he is neither induced to take any previously-rejected opportunities as
a seller, nor to reject any previously-taken opportunities as a buyer.

We introduce a rich new class of fully substitutable preferences that models the preferences
of intermediaries with production capacity; to show that these preferences are fully substi-
tutable, we rely on several properties of fully substitutable preferences that we establish. We
also introduce a novel proof technique that uses “dummy layers,” which simplifies modeling
the preferences of a firm with several alternative production technologies.

We also prove that full substitutability is preserved under several economically important
transformations: trade endowments and obligations, mergers, and limited liability. We
show that full substitutability can be recast in terms of submodularity of the indirect utility
function, the single improvement property, and a condition from discrete convex analysis called
M?-concavity. Finally, we prove that (again, when the utilities of the agents are quasilinear)
full substitutability implies two key monotonicity conditions—the Laws of Aggregate Supply
and Demand—as well as a slightly stronger condition called monotone-substitutability.

All of our results explicitly incorporate economically important features that were not fully
addressed in the earlier literature, such as indifferences, non-monotonicities, and unbounded
utility functions. In particular, unbounded utility functions allow us to model firms with
technological constraints under which some production plans are infeasible (and will therefore
never be undertaken under any vector of prices).

The full substitutability conditions we unify here are exactly the conditions needed for the
existence of competitive equilibria in the trading networks setting we examined in earlier work
(Hatfield et al., 2013). Moreover, under full substitutability, the requirements of competitive
equilibrium are essentially equivalent to those of matching-theoretic stability and chain
stability (Hatfield et al., 2013, 2017). Furthermore, as the Hatfield et al. (2013) trading
network framework generalizes both exchange economy (such as Gul and Stacchetti (1999))
and combinatorial auction settings (such as Ausubel and Milgrom (2002)), our work here

gives a fully unified interpretation of substitutability for those applications as well.

1.1 History and Related Literature

For two-sided settings, Kelso and Crawford (1982) introduced the (demand-theoretic) gross
substitutability condition, under which substitutability is expressed in terms of changes in

an agent’s demand as prices change. In exchange economies with indivisible goods, gross



substitutability guarantees the existence of core allocations and competitive equilibria (Kelso
and Crawford, 1982; Gul and Stacchetti, 1999, 2000). Roth (1984) introduced a related
(choice-theoretic) substitutability concept, which is expressed in terms of how an agent’s
choice responds to changes in the set of available options. In two-sided matching settings,
choice-theoretic substitutability guarantees the existence of stable outcomes (Roth, 1984;
Hatfield and Milgrom, 2005; Hatfield and Kominers, 2013).

In a matching setting, Hatfield and Milgrom (2005, Theorem 2) showed that the choice-
and demand-theoretic substitutability conditions are essentially equivalent. Ausubel and
Milgrom (2002) offered an alternative definition of gross substitutability for an auction setting
with continuous prices, in which demand is not guaranteed to be single-valued, and showed
that gross substitutability is equivalent to submodularity of the indirect utility function. Gul
and Stacchetti (1999) showed in an exchange economy setting that (gross) substitutability is
equivalent to submodularity of the indirect utility function, as well as a single improvement
property and a “no complementarities” condition. The various substitutability conditions for
two-sided settings were subsequently extended and generalized, giving rise to two (mostly)
independent literatures.

Ostrovsky (2008) generalized the choice-theoretic substitutability conditions to the context
of supply chain networks by introducing a pair of related assumptions, same-side substitutabil-
ity and cross-side complementarity, which impose two constraints: First, when an agent’s
opportunity set on one side of the market expands, that agent does not choose any options
previously rejected from that side of the market. Second, when an agent’s opportunity set on
one side of the market expands, that agent does not reject any options previously chosen from
the other side of the market. Ostrovsky (2008) and Hatfield and Kominers (2012) showed that
under same-side substitutability and cross-side complementarity, a stable outcome always
exists if the contractual set has a supply chain structure (see also Fleiner et al. (2017)).

Meanwhile, Sun and Yang (2006) generalized the demand-theoretic substitutability condi-
tions to indivisible objects allocation settings with a certain structured form of complemen-
tarity. More specifically, the Sun and Yang (2006) gross substitutability and complementarity
condition, akin to the combination of same-side substitutability and cross-side complementar-
ity, requires that objects can be divided into two groups such that objects in the same group
are substitutes and objects in different groups are complements; this condition guarantees
the existence of competitive equilibria.

Hatfield, Kominers, and Jagadeesan (2017) showed that same-side substitutability and
cross-side complementarity are together equivalent to the assumption of weak quasisubmodu-

larity of the indirect utility function—an adaptation of submodularity to the setting without



transfers.” Sun and Yang (2009) showed that the gross substitutability and complementarity
condition is equivalent to submodularity of the indirect utility function.

In the present work, we introduce a generalization of the same-side substitutability and
cross-side complementarity conditions of Ostrovsky (2008) to settings with indifferences.
We also extend the gross substitutes and complements condition of Sun and Yang (2006)
to settings with fully general intermediary preferences. Then, using a notation originally
introduced by Hatfield and Kominers (2012), we give a reinterpretation of both the choice- and
demand-theoretic substitutability conditions, in terms of indicator functions that track the
underlying goods in the economy; in the process, we show how to “fold” the general economy
we consider into a Kelso and Crawford (1982) economy in which the underlying goods are
(gross) substitutes.® We show moreover that all of the previously established connections
between gross substitutability and more technical conditions such as submodularity and the
single improvement property extend to full substitutability as well (for suitable generalizations
of the technical conditions).

Subsequent to our work, Baldwin and Klemperer (2018) obtained additional insights on
the underlying mathematical structure of fully substitutable preferences using the techniques
of tropical geometry. Baldwin and Klemperer (2018) studied the set of price vectors for which
the demand correspondence is multi-valued, and associated them with convex-geometric
objects called tropical hypersurfaces. Then, using the normal vectors that determine agents’
tropical hypersurfaces, they distinguish among preferences that are strongly substitutable,
are gross substitutable, or have complementarities. Full substitutability corresponds to the
“strong substitutes demand” condition of Baldwin and Klemperer (2018).7

The discrete mathematics literature has explored several other concepts that are equivalent
to substitutability in certain settings. We connect to that literature in Section 6.4, where we

establish the equivalence of full substitutability and M*-concavity in our setting.®

1.2 Organization of the Paper

Our paper is organized as follows. In Section 2, we present our framework. In Section 3, we

present three definitions of full substitutability and show that they are all equivalent. In

This is a correction of a result of Hatfield and Kominers (2012).

6This transformation, which we also applied in our previous work (Hatfield et al., 2013) generalizes an
idea introduced by Sun and Yang (2006).

"Baldwin and Klemperer (2018) also consider several other economically important classes of preferences
for which the existence of competitive equilibria is guaranteed.

8Candogan et al. (2016) use this equivalence result to recast the problem of finding a competitive equilibrium
in a network economy as a discrete concave optimization problem, which in turn allows them to construct
computationally efficient algorithms for finding an equilibrium. Paes Leme (2017) provides a detailed survey
that covers the discrete-mathematical substitutability concepts and their algorithmic properties.



Section 4, we present and explore several economically important classes of fully substitutable
preferences. In Section 5, we discuss transformations that preserve full substitutability. In
Section 6, we provide several alternative characterizations of full substitutability. In Section 7,
we show that full substitutability implies monotone—substitutability and, thus, the Laws
of Aggregate Supply and Demand. Section 8 concludes the main body of the paper. In
Appendix A, we present six additional equivalent definitions of full substitutability, which

explicitly deal with indifferences in preferences. All proofs are presented in Appendix B.

2 Model

The results we present consider the preferences of an individual agent, and thus do not depend
on the environment in which that agent is located. However, for notational convenience and
for continuity with the related literature, we present these results in the trading network
setting of Hatfield et al. (2013).°

There is an economy with a finite set I of agents and a finite set €2 of trades. Each
trade w € 2 is associated with a buyer b(w) € I and a seller s(w) € I, with b(w) # s(w).
We allow €2 to contain multiple trades associated to the same pair of agents, and allow for
the possibility of trades w € €2 and ¥ € () such that the seller of w is the buyer of ¢, i.e.,
s(w) = b(), and the seller of 1 is the buyer of w, i.e., s(v)) = b(w).

A contract z is a pair (w,p,) € © x R that specifies a trade and an associated price. For
a contract © = (w, p,), we denote by b(x) = b(w) and s(x) = s(w) the buyer and the seller
associated with the trade w of x. The set of possible contracts is X = 2 x R. A set of
contracts Y C X is feasible if it does not contain two or more contracts for the same trade:
formally, Y is feasible if (w, p,), (w, py) € Y implies that p, = p,. We call a feasible set of
contracts an outcome. An outcome specifies a set of trades along with associated prices, but
does not specify prices for trades that are not in that set. An arrangement is a pair [V;p|,
with ¥ C Q and p € R®. Note that an arrangement specifies prices for all the trades in
the economy. For any arrangement [U; p|, we denote by x([V;p]) = Upew{ (¥, py)} C X the
outcome induced by [¥; p).

For a set of contracts Y C X and agent i € I, welet Y.,; = {y € Y :i = b(y)} denote the
set of upstream contracts in Y for i, i.e., the subset of contracts in Y for which ¢ is the buyer.
Similarly, we let Y;, = {y € Y : i = s(y)} denote the set of downstream contracts in Y for

1, i.e., the subset of contracts in Y for which ¢ is the seller; we let Y; = Y_,, UY;_,. We use

9In particular, presenting the results in the framework of Hatfield et al. (2013) allows us to apply the
results of Hatfield et al. (2013) in the proof of Theorem 4 in Section 5.2 (on “mergers” of agents with fully
substitutable preferences). In turn, Theorem 4 allows us to prove the full substitutability of preferences in
the “intermediary with production capacity” preference class that we introduce in Section 4.2.



analogous notation with regard to sets of trades ¥ C ; that is, V_,; = {¢p € ¥ : i = b(¢)},
U, ,={YeW:i=s0)},and ¥; = ¥, UV, ,. For a set of contracts Y C X, we let
T(Y)={weQ: (w,p,) €Y for some p, € R} C 2 denote the set of trades associated with

contracts in Y.

2.1 Preferences

Each agent ¢ has a valuation (or preferences) w; : ©(€;) — R U {—o0} over the sets of trades
in which he is involved, with u;(@) € R.!° The utility functions we allow here are quite
general: We do not impose any monotonicity /free disposal conditions on agents’ preferences,
and thus trades can represent both “goods” and “bads”. Moreover, we allow the utility of
agent ¢ to equal —oo, formalizing the idea that 4, due to technological constraints, may only
be able to produce or sell certain outputs contingent upon procuring appropriate inputs; e.g.,
if ,w € Q with b(¢)) = s(w) =i and agent ¢ cannot sell w unless he has procured 9, then
u;({w}) = —00.!’ The assumption that u;(&) is finite for each 7 € I implies that no agent is
obligated to engage in market transactions at highly unfavorable prices; he can always choose
a (finite) outside option.

The valuation u; over bundles of trades gives rise to a quasilinear utility function U;
over bundles of trades and associated transfers. Specifically, for any feasible set of contracts

Y C X, we define

(w,pw)€Yin (w,pw)EY i
and, slightly abusing notation, for any arrangement [¥; p|, we define
U[T:p) =wi() + > po— D po.
PYew; PeV_,,;
Note that by construction, U;([¥;p]) = Ui(k([¥;p])).
The choice correspondence of agent ¢ from the set of contracts Y C X is defined by
Ci(Y)= argmax {U;(2)}.
ZCYy; Z is feasible
Note that the choice correspondence can be multi-valued because of indifferences; that is,
it is possible that |C;(Y)| > 1. Moreover, each element of the choice correspondence is a

set of contracts, and so for Y* € C;(Y') we have Y* € p(Y); in particular, we may have

10We assume that trades in  \ €2; do not affect i, and abuse notation slightly by writing u;(¥) = u;(¥;)
for U C Q. We use p(-) to denote the power set.

1Tn the classical exchange economy literature (Bikhchandani and Mamer, 1997; Gul and Stacchetti, 1999),
the valuation of an agent i is defined over bundles of objects Q as u; : p(;) — R, and is normalized such
that u; (@) = 0. While these assumptions are completely innocuous and natural in the context of exchange
economies, they immediately rule out the kinds of technological constraints discussed above.



[Y*| > 1 (even when |C;(Y)| = 1).!? Also, the choice correspondence may be empty-valued
(e.g., if Y is the set of all contracts with prices strictly between 0 and 1 for a particular
trade, i.e., Y = {(w,p,) : po € (0,1)}, and u’({w}) = 1). When the set Y is finite, the choice
correspondence is also guaranteed to contain at least one element.

The demand correspondence of agent 4, given a price vector p € R, is defined by
D;(p) = argmax{U;([¥;p])}.
T,

Like the choice correspondence, the demand correspondence can be multi-valued; that
is, U € D;(p) is an optimal set of trades for agent i given prices p. (Unlike the choice

correspondence, the demand correspondence always contains at least one element.)

3 Substitutability Concepts

We now introduce three substitutability concepts that generalize the existing definitions from
matching, auctions, and exchange economies. In the matching literature, it is standard to
formulate substitutability in terms of choice functions and to consider expansions of the set
of available contracts on one side. In the literature on economies with indivisible goods,
it is standard to formulate substitutability in terms of demand functions and to consider
disadvantageous price changes, i.e., increases in input prices or decreases in output prices.
Finally, in auction theory it is standard to formulate substitutability in terms of demand
functions and to consider an increase (or decrease) of the entire price vector.

In this section, for the of ease the exposition and to allow for a more direct comparison
of the different substitutability concepts, we follow the approach of Ausubel and Milgrom
(2002) and restrict attention to opportunity sets and vectors of prices for which choices and
demands are single-valued. In Appendix A, we introduce additional definitions that explicitly
deal with indifferences and multi-valued correspondences, and prove that those definitions

are equivalent to each other and to the definitions given in this section.

3.1 Choice-Language Full Substitutability

First, we define full substitutability in the language of choices, adapting and merging
the Ostrovsky (2008) same-side substitutability and cross-side complementarity conditions.
Setting conditions on how each agent’s optimal choice changes as that agent’s opportunity set

expands originated in the matching literature, where it is natural to consider an expansion

12Note that this notation is distinct from the standard notation used in settings without transferable
utility, where (as preferences are usually assumed to be strict) C;(-) is defined as a function instead of a
correspondence, and so an element of C;(Y) is a contract in the unique optimal choice from Y.



in the set of available trades and thus an expansion in the set of available contracts (see
Ostrovsky (2008), Westkamp (2010), Hatfield and Kominers (2012), Hatfield et al. (2013),
and Hatfield, Kominers, and Westkamp (2017)). In choice language, we say that a choice
correspondence C; is fully substitutable if, when attention is restricted to sets of contracts
for which C; is single-valued, whenever the set of options available to ¢ on one side expands,
i rejects a larger set of contracts on that side (same-side substitutability) and selects a larger

set of contracts on the other side (cross-side complementarity).
Definition 1. The preferences of agent i are choice-language fully substitutable (CFS) if:

1. for all sets of contracts Y, Z C X such that |C;(Z)| = |C;(Y)| =1, Yy, = Z;,, and
Y., C Z;, for the unique Y* € C;(Y) and Z* € C;(Z), we have Y_,;,~\Y*, C Z_ ;N\ Z*,
and Y*, C Z* ;

i—)

2. for all sets of contracts Y, Z C X such that |C;(Z)| = |Ci(Y)| =1, Y, = Z_,;, and
Y, C Z,;,, for the unique Y* € C;(Y') and Z* € C;(Z), we have Y, ,\Y,*, C Z, ,\ZF,
and Y*, C Z*,..

Note that here we restrict attention to situations in which the choice correspondence
is single-valued. As we describe after Theorem 1, CFS is equivalent to two seemingly
more restrictive definitions that explicitly deal with the multi-valued parts of the choice

correspondence (see Section 3.4 and Appendix A).

3.2 Demand-Language Full Substitutability

Our second definition uses the language of prices and demands, adapting the gross substitutes
and complements condition (GSC) of Sun and Yang (2006).'* We say that a demand
correspondence D; is fully substitutable if, when attention is restricted to prices for which
demands are single-valued, a decrease in the price of some inputs for agent i leads to a
decrease in his demand for other inputs and to an increase in his supply of outputs, and an
increase in the price of some outputs leads to a decrease in his supply of other outputs and

an increase in his demand for inputs.

Definition 2. The preferences of agent i are demand-language fully substitutable (DFS) if:

1. for all price vectors p,p’ € R such that |D;(p)| = |D;(p')| =1, p, = p/, forall w € Q,_,,
and p, > p/, for all w € Q_,;, for the unique ¥ € D;(p) and ¥' € D;(p'), we have
{lweV,, p,=p,} CV,, and ¥, , C WV, _;

i—

13The definition of full substitutability that corresponds directly to GSC is demand-language contraction
full substitutability (Definition A.4); that said, there is a subtlety in interpreting the relationship between
the Sun and Yang (2006) model and ours (see Appendix A.2).



2. for all price vectors p, p’ € R® such that |D;(p)| = |Di(p')| = 1, p, = p, for all w € Q_;,
and p, < p/, for all w € Q,,, for the unique ¥ € D;(p) and ¥’ € D;(p'), we have
{weW, , p,=p,} CV,,and ¥, C U .

3.3 Indicator-Language Full Substitutability

Our third definition is essentially a reformulation of Definition 2, using a convenient vector
notation due to Hatfield and Kominers (2012). For each agent ¢, for any set of trades
U C (, define the (generalized) indicator function e;(V) € {—1,0,1}% to be the vector with
component e; (V) = 1 for each upstream trade w € ¥_,;, ¢;,(¥) = —1 for each downstream
trade w € U, and ¢; (V) = 0 for each trade w ¢ W. The interpretation of e;(¥) is that an
agent buys a strictly positive amount of a good if he is the buyer in a trade in ¥, and “buys’

Y

a strictly negative amount if he is the seller of such a trade.

Definition 3. The preferences of agent i are indicator-language fully substitutable (IFS) if
for all price vectors p,p’ € R® such that |D;(p)| = |Di(p')] = 1 and p < p/, for the unique
U e D;(p) and ¥ € D;(p'), we have e;,(¥) < e;, (V') for each w € Q; such that p, = p/,.

Definition 3 clarifies the reason for the term “full substitutability”—an agent is more
willing to “demand” a trade (i.e., keep an object that he could potentially sell, or buy an

object that he does not initially own) if prices of other trades increase.

3.4 Equivalence of the Definitions

The main result of this section is that the three definitions of full substitutability presented
are all equivalent. Subsequently, we use the term full substitutability to refer to all our

substitutability concepts.

Theorem 1. Choice-language full substitutability (CFS), demand-language full substitutability
(DFS), and indicator-language full substitutability (IFS) are all equivalent.

The intuition behind Theorem 1 is that, under all three substitutability concepts, when
1 receives new options as a buyer, ¢ becomes weakly less interested in other purchase
opportunities and weakly more interested in other sale opportunities. In choice-language
substitutability, this is explicit, as Part 1 of CFS considers expanding the set of available
contracts as a buyer. Meanwhile, in demand-language substitutability, this is implicit, as
Part 1 of DFS considers reducing the prices of trades available to i as a buyer. Similarly,

indicator-language substitutability requires that, when prices for trades for which 7 is a buyer

10



fall, © becomes weakly less interested in any purchase opportunity for which the price does
not fall and weakly more interested in any sale opportunity for which the price does not fall.

Recall that in order to ease the exposition and to allow for an easier and more transparent
comparison of different substitutability notions, throughout this section we restricted attention
to opportunity sets and vectors of prices for which choices and demands are single-valued.
In Appendix A, we introduce additional definitions of full substitutability that explicitly
deal with the multi-valued nature of the choice and demand correspondences. We then
prove that the definitions introduced in Appendix A, as well as CFS, DFS, and IFS, are
all equivalent (Theorem A.1). Theorem 1 thus follows immediately from Theorem A.1l.
Moreover, since Definitions 1-3 are equivalent to the definitions that explicitly consider
the multi-valued nature of the choice and demand correspondences, it is sufficient to work
with the conditions in Definitions 1-3; in particular, requiring that all agents’ preferences
satisfy any of Definitions 1-3 is sufficient to guarantee the existence of stable outcomes and
competitive equilibria (Hatfield et al., 2013).

4 Classes of Fully Substitutable Preferences

Full substitutability is a natural condition, but it does rule out certain classes of preferences.
For instance, full substitutability rules out situations in which an agent would only be
willing to sell multiple units of a good at a particular price, but not one unit (at that same
price). Similarly, situations in which one agent’s multiple inputs are complements are also
precluded. More generally, complementarities in production are ruled out because inputs are
required to be substitutes for each other. Similarly, full substitutability rules out economies
of scale because it requires that outputs cannot complement each other, as they would in the
case when producing more outputs makes it possible to overcome initial fixed costs and/or
adopt more efficient production technology.'* Full substitutability also places more subtle
restrictions: in Section 4.2, we provide an example which shows that the full substitutability
assumption can also rule out the case of preferences representing an agent who is capacity
constrained and requires different types of inputs to produce different types of outputs.'®
At the same time, full substitutability also allows for many rich types of preferences. By
construction, fully substitutable preferences include, as a special case, “one-sided” prefer-

ences that satisfy the gross substitutability condition of Kelso and Crawford (1982). Gross

MFor an extended discussion, see Ostrovsky (2008, Section I.A) and Hatfield et al. (2013, Section I1.B).

15To overcome the modeling difficulties associated with allowing for complementarities, authors have made
various assumptions on functional forms of production, or worked in either large market limit environments
(Azevedo and Hatfield, 2015; Che et al., 2017; Jagadeesan, 2017) or settings in which goods are perfectly
divisible (Hatfield and Kominers, 2015).
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substitutability has been extensively studied in the literatures on matching, competitive
equilibrium, and discrete concave optimization,'® and a variety of examples and classes of
preferences satisfying the gross substitutability condition have been presented.!”

Beyond one-sided preferences, it is easy to see that the full substitutability condition
allows for environments with homogeneous goods in which agents have increasing marginal
costs of production and diminishing marginal utilities of consumption. It also allows for
richer classes of “two-sided” preferences that involve complementarities between the contracts
an agent can execute as a buyer and those that he can execute as a seller; in Sections 4.1 and

4.2, we introduce, formally model, and discuss, two such classes of preferences.

4.1 Preferences of Intermediaries

We start with intermediary preferences, introduced by Hatfield et al. (2013) in the context of
used car dealers, but applicable more generally.!8

The preferences of an intermediary i are represented as follows: Consider an intermediary ¢
who has access to a number of heterogeneous inputs Y_,; (e.g., used cars, raw diamonds,
or temporary workers) and to a set of requests Y;, (e.g., for used cars, for engagement
rings, or for temp services). Each element (¢, p,) € Y_,; specifies the characteristics of the
particular input and the price at which this input is available to intermediary i. Each element
(¢, py) € Yi, specifies the characteristics required by the contract’s customer and the price
that customer is willing to pay. Some inputs ¢ and requests ¢ are compatible with each other,
while others are not.'? For every compatible input-request pair (¢, 1)), there is also a cost
¢, Of preparing the input ¢ for resale to satisfy the compatible request 1.2° Intermediary
1’s objective is to match some of the inputs in Y_,; to some of the requests in Y;_, in a way
that maximizes his profit, >, y)eu(Py — Py — Cpy), Where p denotes the set of compatible

input-request pairs that the intermediary selects.

16See, e.g., Kelso and Crawford (1982), Hatfield and Milgrom (2005), Milgrom (2009), Milgrom and
Strulovici (2009), Ostrovsky and Paes Leme (2015), and Paes Leme (2017).

"For instance, Klemperer (2010) makes use of grossly substitutable preferences in the design of the
“Product-Mix” auction which has been and continues to be used by the Bank of England to allocate funds to
banks via securitized loans. Similarly, preferences in electricity markets can often be expressed substituably
via assignment messages (Milgrom, 2009).

18A closely related class of preferences was introduced by Sun and Yang (2006, Section 4) in the context of
two-sided markets in which agents on one side (firms) have preferences over agents and objects on the other
side (workers and machines) that are determined by the productivity of each worker on each machine (see
discussion at the end of Section 4.2 below for more detail).

19For instance, a given raw diamond can only be turned into a polished diamond of certain grades. Similarly,
a particular temp worker is only qualified to perform certain types of jobs.

20For example, cp,y may be the cost of repairing a car, turning a diamond into an engagement ring, or
training a worker to perform a specific set of tasks. Note that we could formally allow all pairs of inputs and
requests to be compatible, and encode incompatibilities by setting ¢, = oo for some pairs (¢,1)).
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Formally, following Hatfield et al. (2013), define a matching, p, as a set of pairs of trades
(i, 1) such that ¢ is an element of Q_,; (i.e., an input available to intermediary i), ¢ is an
element in ,_, (i.e., a request received by i), ¢ and 1 are compatible, and each trade in €;
belongs to at most one pair in . Slightly abusing notation, let the cost of matching u, ¢(u),
be equal to the sum of the costs of pairs involved in p (i.e., () = X, p)ep Cow)-

For a set of trades = C Q;, let M(Z) denote the set of matchings p of elements of = such
that every element of = belongs to exactly one pair in x.2! Then the valuation of intermediary

1 over sets of trades = C (); is given by:

—mingemzfc(p)} i M(E) # 2
—00 it M(E) =2,

i.e., u;(Z) is equal to the cost of the cheapest way of matching all requests and inputs in = if
such a matching is possible, and is equal to —oo otherwise.?? (Note that u;(&) = 0.) The
utility function of 7 over feasible sets of contracts is induced by valuation u; in the standard

way formalized in Section 2.1.

Proposition 1 (Hatfield et al. (2013, Proposition 1)). Intermediary preferences are fully

substitutable.

Hatfield et al. (2013) present a rather involved proof of Proposition 1. Sun and Yang (2006)
also present an elaborate proof of an analogous result for the two-sided setting (Theorem 4.1
in their paper, with the proof on pages 1397-1401). The results of the current paper allow
us to construct a much simpler and shorter proof, presented in Appendix B. Proposition 1
follows as a special case of Proposition 2, which shows the full substitutability of the new
class of preferences that we introduce in the next section, the class of intermediaries with
production capacity preferences. Proposition 2, in turn, follows directly from our result on

mergers of agents with fully substitutable preferences (Theorem 4 of Section 5.2).

4.2 Preferences of Intermediaries with Production Capacity

For the intermediary preferences considered in Section 4.1, the intermediary either does not
need to use any of his own resources to facilitate the matches between inputs and requests,

or when he does, those resources could be expressed in monetary terms: there was a cost ¢, 4

210f course, M(Z) can be empty; e.g., it is empty if the number of inputs in = is not equal to the number
of requests, or if there are some requests in = that are not compatible with any input in Z.

22Under this valuation function, any set chosen by intermediary i will contain an equal number of offers
and requests. In principle, we could consider a more general (yet still fully substitutable) valuation function
in which an intermediary has utility for an input that he does not resell. In that case, the intermediary may
end up choosing more offers than requests.
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of “preparing” input ¢ for request . In some settings, however, we may want to consider
intermediaries who need to rely on specific physical resources that they have in order to
turn inputs into outputs, and it is more appropriate to think of these resources as fixed.
For example, a manufacturer may have a fixed set of machines, and needs to assign a set of
workers to those machines and at the same time needs to decide which outputs to produce
on the machines. An agricultural firm may have a fixed set of land lots, and needs to hire
workers to work on these lots, and at the same time needs to decide which outputs to produce.
A steel manufacturer has access to a variety of inputs (different sources of iron ore and scrap
metal) and can produce a variety of outputs (different grades and types of steel products),
and needs to assign these inputs and outputs to the fixed number of steel plants that it has.

In general, the preferences of an agent with capacity constraints may not be fully substi-
tutable. For example, consider a firm that has exactly one machine, can hire workers Ann
and Bob, and has requests for outputs v and 5. Suppose Ann can use the machine to produce
output a (but not ), while Bob can use the machine to produce output § (but not a). In
this case, the preferences of the firm are not fully substitutable: reducing a price of an input
(say, Ann) may lead to the firm choosing to drop an output (3), violating Part 1 of demand
language full substitutability (Definition 2). In this section, however, we identify a rich class
of preferences that are fully substitutable despite the presence of capacity constraints.

Specifically, consider an intermediary ¢ who has access to a number of inputs Y_,; and
requests Y;_,. Each element (¢, p,) € Y.,; specifies the characteristics of the particular input
and the price at which this input is available to intermediary i. Each element (¢, py) € Yi_,
specifies the characteristics required by the contract’s customer and the price that customer
is willing to pay. Finally, the intermediary has a set M of machines; each machine m € M
can be used to prepare one input for one output.

For each input ¢ and machine m, there is a cost ¢, ,, € RU {400} of preparing the
input to work with the machine (e.g., the cost of training a particular worker, or the cost of
transporting iron ore from its source). For each machine m and each request 1, there is a cost
Cmp € RU {400} of using this machine to produce the requested output (e.g., the cost of
water required to produce a particular agricultural crop on a particular land lot, or the cost
of transporting a batch of steel to its destination). Note that we allow both costs to take the
value +00, to enable the possibility that a particular input is not compatible with a particular
machine, or a particular machine is not compatible with a particular request. The total cost
of preparing input ¢ for request 1 using machine m is thus cy,, + ¢;. The objective of
intermediary ¢ is to match some of the inputs in Y_,; to some of the requests in Y;_,, via some
of the machines, in a way that maximizes his profit, 3=, ;. y)eu(Py — Py — Com — Cmyu), Where

1 denotes the set of input—-machine-request triples that the intermediary selects.
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Formally, define a matching, i, as a set of triples (¢, m, ) such that
1. ¢ is an element of €2_,;,

2. m is a machine available to intermediary ¢,

3. 1 is an element of €2;_,, and

4. each ¢ belongs to at most one triple in u, each m belongs to at most one triple in p,

and each 1) belongs to at most one triple in pu.

Slightly abusing notation, let the cost of matching p, ¢(u), be equal to the sum of the costs
of triples involved in y, i.e., c() = X (s m.p)en(Com T Cma)-

For a set of trades = C ), let M(Z) denote the set of matchings p of elements of = and
machines available to the intermediary, such that every element of = belongs to exactly one

triple in pu. Then the valuation of intermediary i over sets of trades = C 2; is given by:

—minemz{c(p)}t i M(E) # 2

—00 if M(Z) =2,

i.e., u;(Z) is equal to the cost of the cheapest way of satisfying all requests in = using all
of the inputs in Z and some of the machines, if such a production plan is possible; and is
equal to —oo otherwise. The utility function of intermediary i over feasible sets of contracts

is induced by valuation u; in the usual way.
Proposition 2. Intermediary with production capacity preferences are fully substitutable.

The intuition for the proof of Proposition 2 is as follows. First, if an intermediary ¢ has
only one machine, then his preferences are fully substitutable.?? Next, if the intermediary
has multiple machines (say, a set M of machines), he can be, in essence, viewed as a “merger”
of | M| single-machine agents. However, we can not “merge” the |M| single-machine agents
directly, as we must account for the constraints that a given input can be used by at most
one machine (and, similarly, the constraints that a given request can be satisfied by at most
one machine). To address these issues, we introduce a novel proof strategy: We ensure
that each input and each output is only used at most once by the merged firm by adding a

layer of “input dummy” firms and a layer of “request dummy” firms. Each input dummy

23To see this, suppose that i’s set of options as a buyer expands, i.e., the hypothesis of Condition 1 of
CFS. Since ¢ chooses only one contract as a buyer, individual rationality implies that ¢ must either choose a
new contract or choose the same contract he chose before (in both cases all previously-rejected contracts are
rejected); thus, the first part of Condition 1 of CFS is satisfied. Moreover, since i chooses his output contract
1) so as to maximize py, — ¢y m, ¢’s choice as a seller does not change, and so the second part of Condition 1
of CFS is satisfied. Similar arguments show that Condition 2 of CFS is satisfied.
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firm enforces the constraint that the input corresponding to that dummy firm is used by at
most one machine within the merged firm. Similarly, each request dummy firm enforces the
constraint that the request corresponding to that dummy firm is fulfilled by at most one
machine. The merger operation then combines these dummy firms with the single-machine
firms. By Theorem 4 of Section 5.2, the preferences of this merged firm are fully substitutable,
and it is clear that the preferences of the merged firm reflect the valuation u’.

Note that while we use the “dummy firm layers and mergers” construction for the
specific purpose of proving the full substitutability of intermediary with production capacity
preferences, this technique may be useful more generally for incorporating various restrictions
(say, incompatibility of some input trades) in agents’ preferences while maintaining full

substitutability, both in trading network and two-sided settings.

4.3 Discussion

The classes of preferences discussed in Sections 4.1 and 4.2 follow the tradition of constructing
complex preferences out of elementary “building blocks” by combining and modifying these
blocks using substitutability—preserving operations. This tradition goes back to Shapley (1962),
who established the complementarity and substitutability properties of the optimal assignment
problem, in which each “match” has a very simple payoff structure, but by optimizing over
the space of possible overall assignments we can obtain a rich set of preferences. Sun and
Yang (2006) introduced a closely related class of preferences in two-sided markets in which
agents on one side (firms) have preferences over agents and objects on the other side (workers
and machines) that are determined by the productivity of each worker on each machine; Sun
and Yang (2006) showed that such preferences satisfy the gross substitutes and complements
(GSC) condition, with workers being substitutes for one another, machines being substitutes
for one another, and workers and machines being complements. The constructions of Shapley
(1962) and Sun and Yang (2006) are closely related to our construction of intermediary
preferences in Section 4.1.24

In the standard two-sided matching context, Hatfield and Milgrom (2005) further extended
the construction of substitutable preferences to the class of endowed assignment valuations, by
starting with assignment valuations of Shapley (1962) and applying the endowment operation

to them (i.e., by allowing the optimizing agent to initially own some of the inputs; see

24 An important substantive difference between our intermediary preferences and the classes of preferences
discussed by Shapley (1962) and Sun and Yang (2006) is that we incorporate the possibility that some pairs
of “inputs” and “outputs” are physically incompatible, so that they are never “matched” under any vector of
prices. By contrast, in the settings of Shapley (1962) and Sun and Yang (2006), for any given worker and
machine there exists a vector of prices such under which that worker and machine will be matched.
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Section 5.1 for more detail).?® Ostrovsky and Paes Leme (2015) showed that there exist
substitutable preferences that cannot be represented by endowed assignment valuations, and
introduced the class of matroid-based valuations, which is obtained by iteratively applying
the endowment and merger operations to weighted-matroid valuations. As every weighted-
matroid valuation is substitutable (Murota, 1996; Murota and Shioura, 1999; Fujishige and
Yang, 2003), every matroid-based valuation is also substitutable. It is an open question
whether every substitutable valuation is a matroid-based valuation.

Of course, by applying further transformations that preserve full substitutability, we can
generate even richer classes of fully substitutable preferences than those we discussed in

Sections 4.1 and 4.2. In the next section, we discuss several types of such transformations.

5 Transformations

In this section, we show that fully substitutable preferences can be transformed and combined
in several economically interesting ways that preserve full substitutability. We first consider
the possibility that an agent is endowed with the right to execute any trades in a given set
and the possibility that an agent has an obligation to execute all trades in a given set. We
also examine mergers, where the valuation function of the merged entity is constructed as
the convolution of the valuation functions of the merging parties. Finally, we consider a form
of limited liability, where an agent may back out of some agreed-upon trades in exchange for

paying an exogenously-fixed penalty.

5.1 Trade Endowments and Obligations

Suppose an agent ¢ is endowed with the right (but not the obligation) to execute trades in
the set ® C €); at prices pe. Let

£EE,; EEE

be a valuation over trades in Q \ ®; a,@”p ») represents agent ¢ having a valuation over trades
in 2\ ® consistent with u; while being endowed with the option of executing any trades in

the set ® C €); at prices pg.

25 Alternatively, the construction of Hatfield and Milgrom (2005) can be viewed as starting with elementary
singleton preferences, and iteratively applying the operations of endowment and merger. Hatfield and Milgrom
(2005) showed that the endowment and merger operations preserve substitutability in their context, and thus
showed that all endowed assignment valuation preferences are substitutable.
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Theorem 2. If the initial preferences of agent i are fully substitutable, then the preferences

induced by the valuation function 4{®P%) gre fully substitutable for any ® C Q; and py € R?.

i

Intuitively, when we endow agent ¢ with access to the trades in ® at prices pg, we are
effectively restricting (1) the set of prices that may change and (2) the set of trades that
are required to be substitutes in the demand-theoretic definition of full substitutability
(Definition 2). Naturally, this process cannot create complementarities among trades in 2~ ®,
given that under u; these trades already are substitutes for each other and for the trades in
®. Hence, ﬁl@’p *) induces fully substitutable preferences over trades in €2 ~ .

Apart from endowments, agents may have obligations, that is, an agent 7 may be obliged
to execute trades in some set ® C ; at fixed prices ps. We now show that if an agent’s
preferences are initially fully substitutable, they remain so when an obligation arises to
execute some trades at pre-specified prices. Suppose agent 7 is obliged to execute trades in
¢ C ), at prices pp and that ® is technologically feasible in the sense that u;(®) # —oo. Let

B0 = w(PUe) + Y o= Y b
PED; pED_,;
(®.pe)
i

while being obliged to execute all trades in the set ® C €2, at prices pe.

where @ represents agent ¢ having a valuation over trades in €2 \ ® consistent with wu;

Theorem 3. If the initial preferences of agent i are fully substitutable, then the preferences
induced by the valuation function agq”p@) are fully substitutable for any ® C Q; and py € R®
such that u;(P) # —oo.

The idea of the proof is to note that the demand correspondence of agent ¢ with valuation

(@,
ug Do)

does not depend on prices pg—changing these prices simply leads to a shift in the
agent’s utility function by a fixed amount. Thus, we can assume that the trades that the
agent is obliged to buy have negative and very large (in absolute magnitude) prices, while
the trades that the agent is obliged to sell have positive and very large prices. Under those
assumptions, “obligations” become “endowments” (because the agent would voluntarily want
to execute all of these trades), and thus Theorem 3 follows from Theorem 2.

Combining Theorems 2 and 3, we see that if the preferences of agent i are fully substitutable,
then they remain fully substitutable when i is endowed with some trades and obliged to

execute others (assuming that the obligation is technologically feasible).

5.2 Mergers

The second transformation we consider is the case when several agents merge. Given a set

of agents J, we denote the set of trades that involve only agents in J as Q7 = {w € Q :
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{b(w), s(w)} C J}. We let the convolution of the valuation functions {u;};c; be defined as

oCO’

us (V) = maX{Zuj(\IfU(I))} (1)

for sets of trades ¥ C Q ~\. 27/. The convolution u; represents a “merger” of the agents in .J,

as it treats the agents in J as able to execute any within-J trades costlessly.

Theorem 4. For any set of agents J C I, if the preferences of each j € J are fully
substitutable, then the preferences induced by the convolution uy (defined in (1)) are fully

substitutable.?S

While Theorem 4 is of independent interest, we also use it in the proof of Proposition 2.

Substitutability is not preserved following dissolution/de-mergers. For example, if agents
1 and 7 only trade with each other, then the preferences induced by the convolution valuation
ug; ;) are trivially fully substitutable, even if the preferences of 7 and j are not.

Substitutability is also not preserved when merging trades. To see this, consider a simple
economy with agents ¢ and j and a set of trades €2 consisting of x, ¢, ¥, and w. Agent i is

the buyer in all of the trades, and agent j is the seller. Agent i’s valuation is as follows:
2 Uyl >2
u(U) =141 [¥;| =1
0 otherwise.

The preferences of i are fully substitutable. Now, consider merging the trades y and ¢ into a
single trade €. The resulting valuation function of i over the subsets of Q = (2~ {x, ¢})U{E}
is given by
2 | >2o0rlevw
(V) =41 |¥;|=1and ¢ W
0 otherwise.

Valuation function 4; is not fully substitutable. To see this, note that for price vector
P = (Pe, Pys D) = (1.7,0.8,0.8), the unique optimal demand of agent 7 is {1, w}, but for price
vector p' = (p, py, pl,) = (1.7,1,0.8), the unique optimal demand of agent 7 is {{}. That is,
under price vector p’, agent ¢ no longer demands the trade w, even though its price remains

unchanged while the price of 1) increases and the price of ¢ remains unchanged.

26We provide a direct proof of this result in Appendix B; however, it also follows as a consequence of the
relationship between full substitutability and Mh—concavity (which we describe in Section 6.4) and the fact
that the supremal convolution of two M*-concave functions is M"-concave (Murota, 2003, Theorem 6.13).
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5.3 Limited Liability

The final transformation we consider is “limited liability.” Suppose that after agreeing to a
trade, an agent is allowed to renege on that trade in exchange for paying a fixed penalty. We
show that this transformation preserves substitutability. In addition to being economically
interesting, this result is also useful technically; indeed, it enables us to transform unbounded
utility functions into bounded ones while preserving substitutability, which in turn simplifies
the analysis in a number of settings; see, e.g., the proof of Theorem 1 in Hatfield et al. (2013).

Formally, consider a fully substitutable valuation function u; for agent i. Take an arbitrary
set of trades ® C ;, and for every trade ¢ € ®, pick II, € R—the penalty for reneging on
trade . (For mathematical completeness, we allow II, to be negative.) Define the modified
valuation function u; as

;(V) = max {uz(\I/ NSEDY H@}. (2)

=CUNd it
- pez

That is, under valuation ;, agent ¢ can “buy out” some of the trades to which he has
committed (provided these trades are in the set ® of trades the agent may renege on), and

pay the corresponding penalty for each trade he buys out.

Theorem 5. For any ® C Q; and Ily € R?, if agent i has fully substitutable preferences, then
the valuation function G; with limited liability (as defined in (2)) induces fully substitutable

preferences.

A common assumption in the earlier literature on two-sided matching and exchange
economies (see, e.g., Kelso and Crawford (1982) and Gul and Stacchetti (1999)) is that buyers’
valuation functions are monotonic.?” Intuitively, monotonicity corresponds to the special case
of our setting in which an agent has free disposal, in the sense that he can renege on any
trade as a buyer at no cost. More formally, if u; is fully substitutable, then Theorem 5 implies
that we can obtain a fully substitutable and monotonic valuation function @; by allowing the

agent to renege on any trade in ¢ € ; at a per-trade cost of I, = 0.

6 Properties Equivalent to Full Substitutability

In this section, we discuss several properties of valuation functions that turn out to be

equivalent to full substitutability. While these results are of independent interest, some of

2In the two-sided settings of Kelso and Crawford (1982) and Gul and Stacchetti (1999), buyers’ valuation
functions are required to be weakly increasing with respect to the set of workers/objects obtained; that is,
monotonicity of the valuation function u; requires that, for all Z and ¥ such that = C ¥ C Q_,;, we have
that u; (V) > u;(Z).
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them are also useful in applications. For example: The submodularity equivalence we prove
in Section 6.1 is used in our proof that substitutability is preserved under trade endowments
(Theorem 2). The single-improvement property, introduced in Section 6.2, is useful for
efficiently computing the choices of agents with fully substitutable preferences, as it implies
that local search for an optimal bundle eventually reaches a global optimum (Paes Leme,
2017). The object-language formulation of full substitutability we develop in Section 6.3 is
used in showing that substitutability implies monotone—substitutability, which implies the

Laws of Aggregate Supply and Demand (Theorem 10).

6.1 Submodularity of the Indirect Utility Function

A classical approach (see, e.g., the work of Gul and Stacchetti (1999) and Ausubel and
Milgrom (2002)) relates substitutability of the utility function to submodularity of the
indirect utility function. In particular, every (gross) substitutable utility function corresponds
to a submodular indirect utility function and vice versa; here, we generalize this relationship
to our setting using an argument that avoids the monotonicity conditions that Gul and
Stacchetti (1999) and Sun and Yang (2009) imposed.

For price vectors p,p € R?, let the join of p and p, denoted p V p, be the pointwise

maximum of p and p; let the meet of p and p, denoted p A p, be the pointwise minimum.

Definition 4. The indirect utility function of agent i,
Vilp) = max{Ui([¥;p])},
is submodular if, for all price vectors p,p € R?, we have that
Vilp Ap) + Vilp vV p) < Vi(p) + Vi(p).

Just as in two-sided frameworks, fully substitutability corresponds to submodularity of

the indirect utility function.

Theorem 6. The preferences of an agent are fully substitutable if and only if they induce a

submodular indirect utility function.

6.2 The Single Improvement Property

Gul and Stacchetti (1999) first observed (in the setting of exchange economies) that sub-
stitutability is equivalent to the single improvement property—an agent’s preferences are
substitutable if and only if, when an agent does not have an optimal bundle, he can make

himself better off by adding a single item, dropping a single item, or doing both. Sun and
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Yang (2009) extended this result to their setting. Baldwin and Klemperer (2018) showed
that in their setting the single improvement property is equivalent to requiring that agents

have complete preferences.

Definition 5. The preferences of agent i have the single improvement property if for any
price vector p and set of trades ¥ ¢ D;(p) such that u;(V) # —oo, there exists a set of trades
® such that

2. there exists at most one trade w such that e; (V) < e;,(P), and

3. there exists at most one trade w such that e;,(¥) > e;,(P).?

The single improvement property says that, when an agent holds a suboptimal bundle of

trades W, that agent can be made be better off by

1. obtaining one item not currently held (either by making a new purchase, i.e., adding a

trade in Q_,; \ W, or by canceling a sale, i.e., removing a trade in ¥;_,),

2. relinquishing one item currently held (either by canceling a purchase, i.e., removing a

trade in W_,;, or by making a new sale, i.e., adding a trade in €,;_, \ V), or
3. both obtaining one item not currently held and relinquishing one item currently held.

For instance, an agent may buy one more input and commit to provide one additional output

as a “single improvement.”

Theorem 7. The preferences of an agent are fully substitutable if and only if they have the

single improvement property.

6.3 Object-Language Substitutability

An alternative way of thinking about trades in our setting is to consider each trade as
representing the transfer of an underlying object. Under this interpretation, an agent’s
preferences over trades are fully substitutable if and only if that agent’s preferences over
objects have the standard Kelso and Crawford (1982) property of gross substitutability.
Formally, we consider each trade w € Q as transferring an underlying object from s(w) to
b(w); we denote this underlying object as o(w). We call the set of all underlying objects 2.
Hence, after executing the set of trades W C €2;, agent ¢ is left with both the set of objects

28Recall that the definition of the generalized indicator function e; is given in Section 3.3.
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corresponding to: the trades in ¥ where ¢ is a buyer, and the trades in €2; ~ ¥ where 7 is a

seller. We define the set of objects held by agent i after executing the set of trades ¥ as
0;(V) ={o(w):we V¥ ;}U{o(w):we, NV}

Conversely, we define the trade associated with an object w as t(w); note that t(o(w)) = w.

We also define the set of trades executed by i for a given set of objects ¥ C Q,;, = {w € Q :
i € {b(t(w)), s(t(w))} as
t(P)={weQ,:ow) e P} U{we Qi :0(w) e\ T}
For a partition of objects {®'};c;, the set of trades that implements this partition is given by
(2.
icl

For a set of objects W, we let
wi(¥) = ui(6(¥)) = ui([t:()] - U [ N 6(P)]iss).

Using object language, we can also reformulate indicator-language full substitutability

(Definition 3) to object-language full substitutability.

Definition 6. The preferences of agent i are object-language fully substitutable (OFS) if
for all price vectors p,p’ € R® such that |D;(p)| = |Di(p')] = 1 and p < p/, for the unique
U € Di(p) and V' € D;(p), if w € 0;(¥), then w € 0;(V’) for each w € Q; such that

Dyw) = pi(w) .

Under object-language full substitutability, an increase in the price of object ¥ cannot
decrease the agent’s demand for any object w # 1p. That is, the agent’s preferences over
objects are grossly substitutable, in the sense of Kelso and Crawford (1982).

We can now interpret the indicator vector e; ,,(¥) as encoding whether the object ¥ = o(v))

is transferred under V:
o Ifyp € U_,;, then ¢ € 0,(V) and e; ,(V) = 1, i.e., ¢ obtains the object associated with .

o If p € U,_,, then ¥ ¢ 0,(V) and e; (V) = —1, i.e., ¢ gives up the object associated
with 1.

e Finally, if 0 ¢ W, then e;,(V) = 0, i.e., ¢ neither obtains nor gives up the object

associated with .

Moreover, object-language full substitutability is useful in our proof that fully substitutable
preferences satisfy the Laws of Aggregate Supply and Demand (under quasilinear utility).

We can reformulate the definition of the single improvement property in terms of objects.
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Definition 5’ (Equivalent to Definition 5). The preferences of agent i have the single
improvement property if for any price vector p and set of trades W ¢ D;(p) such that
u;(¥) # —oo, there exists a set of trades @ such that (1) U ([, p]) < U'([®, p]), (2) there
exists at most one object ¢ € 0,(P) N 0;(¥), and (3) there exists at most one object
P € 0;(V) N 0;(D).

Using object language, we get a definition of the single improvement property that exactly
matches the intuition provided on page 22. The single improvement property says that, when
an agent holds a suboptimal bundle of trades ¥, that agent can be made be better off by (1)
obtaining one object ¢ not currently held, i.e., ¢ ¢ 0;(¥), (2) relinquishing one object )
currently held, i.e., ¥ € 0;(¥), or (3) both obtaining one object and relinquishing one object.

When substitutability is expressed in terms of preferences over trades, it is necessary
to treat relationships between “same-side” and “cross-side” contracts differently. Both Sun
and Yang (2006) and Ostrovsky (2008) introduced a concept of cross-side complementarity,
which requires that agents treat buy-side contracts as complementary with sell-side contracts
(as in our Definitions 1 and 2), which might suggest that there is something fundamentally
different between how contracts on one side are interdependent with each other versus how
contracts on different sides are interdependent. The representation of preferences in terms
of object-language substitutability uncovers that cross-side complementarity is not really a
complementarity condition per se: rather, it corresponds to an underlying substitutability
condition over objects, in the sense that trades are cross-side complements if upstream trades
transfer in objects that “substitute” for objects transferred out through downstream trades
(and vice versa).

The formalization of substitutability in terms of preferences over objects (Definition 6)
thus provides a simple and compact interpretation of full substitutability that does not require
treating two sides differently: it simply says that when an agent’s object opportunity set
shrinks, the agent does not reduce demand for any object that remains in his opportunity set.

The preceding observations make the following result immediate.

Theorem 8. The preferences of an agent are fully substitutable if and only if they are
object-language fully substitutable.

6.4 M"-Concavity over Objects

Fujishige and Yang (2003) showed that gross substitutability in the Kelso and Crawford (1982)
model is equivalent to a classical condition from discrete optimization theory, M*-concavity
(Murota (2003); see also Reijnierse et al. (2002)). In our object-language notation, the

condition can be stated as follows.
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Definition 7. The valuation u; is M*-concave over objects if for all ®, ¥ € €, for any
P € ¥, we have

i (W) + u;(®) < max{u;(¥ ~ {9}) + ui(® U {3}),
maz{u; (U U {p} \ {9h}) + ui(@ U {ah} {eh}}-

A valuation function is M*-concave if, for any sets of objects ¥ and ®, the sum of u;(®)
and u;(®) is weakly increased when either we move a given object ¥ from ¥ to ® or we

swap 1 for some other object ¢ € ®.

Theorem 9. The preferences of an agent are fully substitutable if and only if the associated

valuation function is M°-concave over objects.

This equivalence result follows from Theorem 7 of Murota and Tamura (2003), which
shows that Mh—concavity is equivalent to the single improvement property—and which in turn,

by our Theorem 7, implies the equivalence between full substitutability and Mu—concavity.

7 Monotone—Substitutability and the Laws of Aggre-
gate Supply and Demand

Hatfield and Milgrom (2005) showed that in two-sided matching markets with transfers and
quasilinear utility, all fully substitutable preferences satisfy a monotonicity condition called
the Law of Aggregate Demand.?® The analogues of this condition for the current setting are
the Laws of Aggregate Supply and Demand for trading networks (Hatfield and Kominers,
2012).

Definition 8. The preferences of agent 7 satisfy the Law of Aggregate Demand if for all finite
sets of contracts Y, Z C X, such that Y; ., = Z; , and Y_,; C Z_,;, for every Y* € C;(Y'), there
exists Z* € Cy(Z) such that |Z%,;| — |Z,| > |Y5,| — Y5

The preferences of agent ¢ satisfy the Law of Aggregate Supply if for all finite sets of
contracts Y and Z such that Y;, C Z,, and Y_,; = Z_,;, for every Y* € C;(Y), there exists
Z* € Cy(Z) such that |27, — |22, = [Y5,[ — [YZ,].

Intuitively, the choice correspondence C; satisfies the Law of Aggregate Demand if,
whenever the set of options available to ¢ as a buyer expands, the net demand (i.e., the

difference between the number of buy-side contracts chosen and the number of sell-side

29Tn the context of two-sided matching with contracts, the Law of Aggregate Demand is essential for “rural
hospitals” and strategy-proofness results (see Hatfield and Milgrom (2005) and Hatfield and Kominers (2013)).
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contracts chosen) increases. Similarly, the choice correspondence C; satisfies the Law of
Aggregate Supply if, whenever the set of options available to i as a seller expands, the net
supply (i.e., the difference between the number of sell-side contracts chosen and the number
of buy-side contracts chosen) increases. The conditions stated in Definition 8 extend the
Hatfield and Milgrom (2005) Law of Aggregate Demand (see also Alkan and Gale (2003)) to
the current setting, in which each agent can be a buyer in some trades and a seller in others.

One subtle technical issue arises because choice correspondences are not necessarily single-
valued in our setting. Under fully substitutable preferences, for all finite sets of contracts
Y, Z C X;such that Y;, = Z;, and Y_,; C Z_;, if Y* € C;(Y)) then there exists a Z* € C;(Z)
such that (Y, N Y%,) C(Z,; \ Z%,) and Y;*, C Z*, (see Appendix A). Meanwhile, when
the Law of Aggregate Demand is satisfied, for all finite sets of contracts Y, Z C X; such
that Y;, = Z;, and Y.,; C Z_;, if Y* € C;(Y) then there exists a Z* € C;(Z) such that
122 =125 = Y2 = 1Y

*.|. However, in principle, it may be the case that there is no Z*

that simultaneously satisfies the conditions for full substitutability and the Law of Aggregate
Demand. Yet in some applications, it is important to have a single Z* that simultaneously
satisfies both conditions (see, e.g., Hatfield et al. (2017)). Thus we introduce the following

stronger condition, called monotone—substitutability.
Definition 9. The preferences of agent i are monotone—substitutable if:

1. for all finite sets of contracts Y, Z C X, such that Y, , = Z; , and Y_,; C Z_,;, for every
Y* € C;(Y), there exists Z* € C;(Z) such that (Y, \Y?,) C (Z, N Z%,), Y, C Z" .,
and |27, — |Z7, | = [YZ5,] = [Y5];

2. for all finite sets of contracts Y, Z C X; such that Y.,; = Z_,; and Y, C Z,_,, for every
Y* € Ci(Y), there exists Z* € C;(Z) such that (Y;, \Y*,) C(Z,, N Z,), Y5, C Z5,.,
and |Z7,| — |22, = [YVL[ = Y3,

In our setting, full substitutability implies monotone—substitutability, which in turn

implies the Laws of Aggregate Supply and Demand.?°

Theorem 10. If the preferences of agent i are fully substitutable, then they are monotone—

substitutable.

Corollary 1. If the preferences of agent i are fully substitutable, then they satisfy the Laws
of Aggregate Supply and Demand.

Corollary 1 generalizes Theorem 7 of Hatfield and Milgrom (2005) to our setting.

30Note that this result relies on our assumption that preferences are quasilinear; meanwhile, in non-
quasilinear settings, it is easy to construct preferences that are fully substitutable but do not satisfy the Law
of Aggregate Demand (see, e.g., Hatfield and Milgrom (2005, p. 925)).
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8 Conclusion

Various forms of substitutability are essential for establishing the existence of equilibria and
other useful properties in diverse settings such as matching, auctions, and exchange economies
with indivisible goods. We extended earlier models’ canonical definitions of substitutability
to a setting in which an agent can be both a buyer in some transactions and a seller in
others, and showed that all these definitions are equivalent. We introduced a new class of
substitutable preferences that allows us to model intermediaries with production capacity.
We proved that substitutability is preserved under economically important transformations
such as trade endowments and obligations, mergers, and limited liability. We also showed
that substitutability corresponds to submodularity of the indirect utility function, the single
improvement property, gross substitutability under a suitable transformation (object-language
full substitutability), and Mf-concavity. Finally, we showed that substitutability implies
monotone—substitutability, which in turn implies the Laws of Aggregate Supply and Demand.
All of our results explicitly incorporate economically important features such as indifferences,
non-monotonicities, and unbounded utility functions that were not fully addressed in prior
work.

In the current paper, we focused on the full substitutability of the preferences of an
individual agent. In related work, we have explored the properties of economies with
multiple agents whose preferences are fully substitutable. That work shows that when all
agents’ preferences are fully substitutable, outcomes that are stable (in the sense of matching
theory) exist for any underlying network structure (Hatfield et al., 2013, Theorems 1 and 5).
Furthermore, full substitutability of preferences guarantees that the set of stable outcomes is
essentially equivalent to the set of competitive equilibria with personalized prices (Hatfield
et al., 2013, Theorems 5 and 6) and to the set of chain stable outcomes (Hatfield et al., 2017,
Theorem 1 and Corollary 1), and that all stable outcomes are in the core and are efficient
(Hatfield et al., 2013, Theorem 9). Full substitutability also delineates a maximal domain
for the existence of equilibria (Hatfield et al. (2013); see also Gul and Stacchetti (1999) and
Yang (2017)): for any domain of preferences strictly larger than that of full substitutability,

the existence of stable outcomes and competitive equilibria cannot be guaranteed.

A Definitions of Full Substitutability That Consider
Multi-Valued Choices and Demands

In this Appendix, we introduce six alternative definitions of full substitutability: Definitions

A.1 and A.2 are analogues of choice-language full substitutability (Definition 1); Definitions

27



A.3 and A.4 are analogues of demand-language full substitutability (Definition 2); and
Definitions A.5 and A.6 are analogues of indicator-language full substitutability (Definition 3).
In Appendix A.4, we show that Definitions A.1-A.6 are all equivalent to each other and to
CFS, DFS, and IFS.

In contrast to Definitions 1, 2 and 3, which consider single-valued choices and demands,
Definitions A.1-A.6 explicitly consider multi-valued correspondences and deal directly with
indifferences. By explicitly accounting for indifferences and multi-valued correspondences, we
directly generalize the original gross substitutability condition of Kelso and Crawford (1982)
to our setting. Moreover, the conditions that explicitly account for indifferences turn out to

be useful for proving various results on trading networks, as we discuss below.

A.1 Choice-Language Full Substitutability

Our next two definitions are analogues of Definition 1, explicitly considering indifferences in
preferences. The first one states what happens when an agent’s set of options expands, and

the second one states what happens when the set of options shrinks.

Definition A.1. The preferences of agent i are choice-language expansion fully substitutable
(CEFS) if:

1. for all finite sets of contracts Y,Z C X such that Y,, = Z,_, and Y_,; C Z_,,, for
every Y* € Cy(Y), there exists Z* € C;(Z) such that (Y., \Y%,) C (Z5; \ Z7,;) and
Vi, C 21

—)

2. for all finite sets of contracts Y,Z C X such that Y.,; = Z_;, and Y;_, C Z,_,, for
every Y* € C;(Y), there exists Z* € C;(Z) such that (Y;, N Y5) C (Z;, N\ ZF,) and
Y, C 27,

Definition A.2. The preferences of agent 7 are choice-language contraction fully substitutable
(CCFS) if:

1. for all finite sets of contracts Y, Z C X such that Y,, = Z,, and Y.,; C Z_,;, for
every Z* € Ci(Z), there exists Y* € C;(Y) such that (Y., \Y*,) C (Z5; \ Z%,;) and
YL 27

2. for all finite sets of contracts Y,Z C X such that Y.,; = Z_;, and Y;_, C Z,_,, for
every Z* € C;(Z), there exists Y* € C;(Y') such that (Y;, N\ Y5) C (Z;, N ZF,) and
Y, C 2%,
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Note that we use Y as the “starting set” in CEFS and Z as the “starting set” in CCFS to
make the two definitions more easily comparable.

Furthermore, note that in Case 1 of CEFS and CCFS, requiring Y_,; \ Y%, C Z_,;, \ Z*,,
(i.e., that every buy-side contract not chosen when the smaller set Y is available is still not
chosen when the larger Z is available) is equivalent to requiring that Z*NY_,; C Y* (i.e., that
every buy-side contract chosen when the larger set Z is available is still chosen if available
when the smaller set YV is available). Similarly, in Case 2, requiring Y;, \ Y, C Z,, \ ZF,
is equivalent to requiring that Z* NY,, C Y™,

It is immediate that both Definitions A.1 and A.2 imply Definition 1 as they impose
the same conditions when the choice correspondence is univalent. However, as Theorem A.1
demonstrates, imposing the conditions of Definition 1 to cases where the choice correspondence

is univalent is sufficient to recover the stronger definitions discussed here.

A.2 Demand-Language Full Substitutability

Our next two definitions are analogues of Definition 2.

Definition A.3. The preferences of agent i are demand-language expansion fully substitutable
(DEFS) if:

1. for all price vectors p, p’ € R such that p, = p/, for all w € Q,_, and p,, > p/, for all
w € O, for every U € D;(p) there exists W' € D;(p') such that {w e V., : p, =p.,} C
\IJAM' and \Illﬁ g A

1—)

2. for all price vectors p, p’ € R? such that p, = p, for all w € Q_,; and p,, < p/, for all
w € Qi for every ¥ € D;(p) there exists W' € D;(p') such that {w € ¥/, : p, =p.,} C

Definition A.4. The preferences of agent i are demand-language contraction fully substi-
tutable (DCFS) if:

1. for all price vectors p, p’ € R such that p, = p/, for all w € Q,_, and p,, > p/, for all
w € Oy, for every V' € D;(p’) there exists ¥ € D;(p) such that {w e V', :p, =p,} C
\I’*n' and \IIZ*) g A

—)

2. for all price vectors p, p’ € R? such that p, = p, for all w € Q_,; and p,, < p/, for all
w € Q;_,, for every V' € D;(p’) there exists ¥ € D;(p) such that {w € V., :p, =p} C
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Note that we use p as the “starting price vector” in DEFS and p’ as the “starting price
vector” in DCFS. Also, in Case 1 of DEFS and DCFS, requiring {w € V', : p, = p/,} C ¥_;
(i.e., any trade demanded at prices p’ is still demanded when the prices of other trades
rise) is equivalent to requiring that {w € (Q5; N~ ¥) : p, = p,} C Q; N ¥ (ie., any
trade not demanded at prices p is still demanded when the prices of other trades fall).
Similarly, in Case 2, requiring {w € V!, : p, = p/,} C U, is equivalent to requiring that
{fwe (s ~NV):ip, =p} CQ, N V.

It is immediate that both Definitions A.3 and A.4 imply Definition 2 as they impose
the same conditions when the demand correspondence is univalent. However, as Theo-
rem A.1 demonstrates, imposing the conditions of Definition 2 to cases where the demand
correspondence is univalent is sufficient to recover the stronger definitions discussed here.

As we mentioned in Footnote 13, DCFS corresponds directly to the gross substitutes and
complements condition (GSC) of Sun and Yang (2006). That said, there is a subtlety in
interpreting the relationship between the Sun and Yang (2006) model and ours. In the Sun
and Yang (2006) model, each agent is treated as buying goods from two separate sets; goods
are substitutes within each set, but complements across the two sets. As each agent in the
Sun and Yang (2006) model is just a buyer, all goods are taken to have positive prices. In our
framework, meanwhile, each agent is treated as the buyer of some trades (upstream) and the
seller of others (downstream); we thus use the convention that prices for trades bought are
positive, while prices for trades sold are negative. As both in our setting and in that of Sun
and Yang (2006) prices themselves are allowed to be either positive or negative, the difference
between the sign convention is immaterial: the trades available for sale and purchase in our
framework correspond to the two sets of goods in the Sun and Yang (2006) model. Even so,
there is a difference in interpretation between the two models: under the convention Sun
and Yang (2006) have chosen, we think of the agents as buying all of the goods, whereas in
our model, we think of agents more akin to intermediaries who convert inputs into outputs.
(For a formal statement of an embedding of the Sun and Yang (2006) model into the trading
network framework, see Hatfield et al. (2013, Section IV.B).)

A.3 Indicator-Language Full Substitutability

Our next two definitions are analogues of Definition 3.

Definition A.5. The preferences of agent i are indicator-language increasing-price fully
substitutable (IIFS) if for all price vectors p,p’ € R such that p < p/, for every ¥ € D;(p)
there exists W' € D;(p'), such that e;,(¥) < e;, (V') for each w € Q; such that p, = p/,.
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Definition A.6. The preferences of agent i are indicator-language decreasing-price fully
substitutable (IDFS) if for all price vectors p,p’ € R such that p < p/, for every ¥’ € D;(p’)
there exists U € D;(p), such that e; (V) < e;, (V') for each w € €; such that p, = p,.

Definition A.5 considers what happens as prices rise from p to p/, requiring that a trade
whose price does not change that is bought/not sold by 4 under p is still bought/not sold by
7 under p’. By contrast, Definition A.6 considers what happens as prices fall from p’ to p,
requiring that a trade whose price does not change that is sold/not bought by ¢ under p’ is
still sold/not bought by ¢ under p.

It is immediate that both Definitions A.5 and A.6 imply Definition 3 as they impose
the same conditions when the demand correspondence is univalent. However, as Theo-
rem A.1 demonstrates, imposing the conditions of Definition 3 to cases where the demand

correspondence is univalent is sufficient to recover the stronger definitions discussed here.

A.4 Equivalence Result

We now present our most general equivalence, showing that our three main substitutability
concepts and the six generalizations introduced in this appendix are all equivalent. In

particular, Theorem A.1 implies Theorem 1.

Theorem A.1. The CFS, DF'S, IFS, CEFS, CCFS, DEFS, DCFS, IIFS, and IDFS conditions

are all equivalent.

Proof. We assume throughout that Q = Q;.3 To prove Theorem A.1, we prove seven lemmata;

we first show that all three demand language concepts of full substitutability are equivalent.

Lemma 1. The DFS, DEFS, and DCFS conditions are all equivalent.

Proof. Tt is immediate that DEFS and DCFS each imply DFS. To complete the proof, we
show that DFS implies DEFS and that DFS implies DCF'S.

DFS = DEFS: We first show that Part 1 of DFS implies Part 1 of DEFS. Consider two
price vectors p,p’ such that p, = p/, for all w € Q,_, and p, > p/, for all w € Q_,;, and let
Q= {w € Q:p, > p.}; note that Q C Q_,;. Fix an arbitrary ¥ € D;(p); we need to show
that there exists a set ¥’ € D;(p) that satisfies the requirements of Part 1 of DEFS.

Let g be given by

po—¢ weWV ,,orwe[QNV],
qQuw =
D, t+ € WE[Q\‘If]ﬁZ’OTwE\I’i%

31This assumption is without loss of generality, as all of the analysis here considers only the sets of trades
demanded by ¢ and, for any price vectors p and p such that po, = pq,, we have that D;(p) = D;(p).
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for some sufficiently small € > 0. Let ¢’ be given by

/- P, we
N G wEQNQ

v, w e
=py—¢ weV ;~Qorwe[Q~T]_, 0
pote wEQNT]NQorwe T, Q.
P, we N
=4p, —¢ weV ;~Qorwe[Q~ V],

p,+e we [Q\\IJ]_M\Qoer\IJH\Q.
and let ¥ € D;(¢'). Let ¢’ be given by

¢,—0 wel orwe[ V],

¢, +0 welQ\V],,orweV

pl,—0 weP,,NQorwe [QNT],NA

Py, +0 weNV],NQorwe ¥ NQ
=6 welV NU;~Qorwe[Q~ (VUD), \Q
o —et s we U V]~ Qorwe [W U, 0

p,+e—9¢ [\If’\\lf]_n\QorwG[\I/\\If]H\Q

Pote+d wel N (VUD) ;N Qorwe VNI, ~Q

for some sufficiently small § < . Finally, let ¢ be given by

P +E+0

@ weQ
qu = ~
7, weN.
D — € we\lgiﬂflorwe[ﬂ\\lf]i%ﬂﬁ
Do+ € wE[Q\\IJ]_”ﬂQoer\DHﬂQ
Po—e—0 weWNU_,~Qorwel[Q~ (VU ~\Q
P —E+ 0O [\P\\If’]ﬁi\ﬂorwe[\ll’\\ll]iﬁ\ﬁ
Pot+E—10 €W U, NQorwe U W],
€

QN (W UD) N Qorwe [T NY], Q.
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G wE\I/_mﬂfloer[Q\\I/]i_,ﬂQ
Gw wE[Q\\II]%ﬂQorwellfHﬂQ
Go— 0 \I/’ﬂ\IJ]_M\Qoer[Q\(\II’U\IJ)]H\Q
\If’\qf]ﬁi\ﬁorwe[\lf\qf’]iﬁ\ﬁ

QN (VUD)~Qorwe WU, Q.

Qw_5

w e |

o+ wel UV ~Qorwe VU, \Q
w e |
w e |

G+ 0
We first show five intermediate results on the effects of our price perturbations.
Fact 1: D;(q) = {V}. We have, for any ® # U, that>?

Ui(¥;q) — Ui(®;q) = Ui(¥;p) — Ui(@;p) + |V © @le > |V © Dl > 0.

where the equality follows from the definition of ¢, the first inequality follows from the fact
that W is optimal at p, i.e., ¥ € D;(p), and the last inequality follows as & # W. Thus

Di(q) = {V}.
Fact 2: D;(q) = {V}. Consider an arbitrary ® € D;(q) and an arbitrary = ¢ D;(q). We
have that

Ui([®:q) — Ui([E;d]) = Us([®; 4]) — Ui([=s54]) — [ ©E]0 > 0,

where the first inequality follows from the definition of ¢ and the second inequality follows as
® is optimal at ¢, = is not optimal at ¢, and ¢ is sufficiently small. Thus, = ¢ D;(g) and so
D;(q) € D;(q). Combining this observation with Fact 1 yields D;(q) = {V}.
Fact 3: D;(¢') C D;(p'). Consider an arbitrary ® € D;(p') and an arbitrary = ¢ D;(p’). We
have that

Ui([®;¢]) — Ui([E5 ¢']) = Ui([®59]) = Ui([Z;9]) — [@ © Ele > 0,

where the first inequality follows from the definition of ¢’ and the second inequality follows
as ® is optimal at p/, = is not optimal at p’, and ¢ is sufficiently small. Thus, = ¢ D;(¢’) and
so Di(q') € Di(p')-
Fact 4: D;(q') C D;(¢'). Consider an arbitrary ® € D;(¢') and an arbitrary = ¢ D;(q’). We
have that

Ui([®;7]) — Ui([E; 7]) = Ui([®5¢']) — Ui([E; ¢']) — [® © E[0 > 0,

where the first inequality follows from the definition of ¢’ and the second inequality follows as

® is optimal at ¢/, = is not optimal at ¢/, and § is sufficiently small. Thus, D;(¢') C D;(¢).

32Here, we use © to denote the symmetric difference between two sets, i.e., U o & = (U \ @) U (& \ V).
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Fact 5: D;(¢') = {¥'}. We have that, for any ®' # ¥’
U(¥5q) — U2 q) = Usi(V's¢') — Ui(®:¢) + [¥' © @0 = [P © ¢']6 > 0.

where the equality follows from the definition of ¢, the first inequality follows from the fact
that W' is optimal at ¢/, i.e., ¥ € D;(¢’), and the last inequality follows as ®" # W’'. Thus

Di(q') = {V'}.

By Part 1 of DFS, since D;(q) = {¥} by Fact 2 and D;(¢') = {V’'} by Fact 5, we have that
{lweV, p,=p,} SV, and ¥, , C V... Thus, as V' € D;(p’) by Facts 3-5, we have
that U’ satisfies the requirements of Part 1 of DEFS.

The proof that Part 2 of DFS implies Part 2 of DEFS is analogous.

DFS = DCFS: We first show that Part 1 of DFS implies Part 1 of DCFS. Consider two
price vectors p,p’ such that p, = p/, for all w € Q,_, and p, > p/, for all w € Q_,;, and let
0= {w € Q:p, > p,}; note that Q C Q_,;. Fix an arbitrary ¥’ € D;(p'); we need to show
that there exists a set U € D;(p) that satisfies the requirements of Part 1 of DCFS.

Let ¢’ be given by

/- p,—e welW  orwe[Q\V],
p,+e welQNV],orwe W,

for some small € > 0. Let ¢ be given by

Py weEQ
qdw = ~
¢, weQ\Q

Pw WGQ
=47, —¢c wel ~Qorwe[Q~\V]_,\Q
pl,+e wG[Q\\If’]_n\Qoer\I/;_)\Q_
Pw UJEQ

=po—c weV ~Qorwe[QV],

Pote wWEQNV],NQorwe VW Q.
and let U € D;(q). Let ¢ be given by
Go—0 weV,,orwe[Q\V],

qu =
Go+0 WEQNVY];orweV,,.
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pw_5 WE\I/_H;OQOI'CUG[Q\\I/L;_)QQ

P + 0 wG[Q\\If]ﬂﬁQorwe\DHﬂQ
pe—e—0 €W NI NQorwe [~ (TUD),
- P —E+0 [\I!’\\Il]ﬁi\ﬁorwe[\ll\llf’]i_}\ﬁ

Pote—0 we NV ;N Qorwe VT,

Pote+d wel N (WUD),NQorwe [V NI, Q.

Finally, let ¢’ be given by

7 - q, we
N G wEQNQ.

pl,—¢€ weW NQorwe [QNV], N0
pl,+e wG[Q\\If]mﬂQorwe\If%ﬂQ
Po—e—0 we N, \Qorwe [~ (TUD),~Q

pl,—e+d VNV~ Qorwe [T T]_,\Q

el
€l

p,+e—9 we[\If\\If]ﬂ\Qorwe[\If’\\Il]H\Q
we |

pl,+e+d QN (P UD)],iNQorwe [WNT), Q.
q, weV, ,NQorwe QN V], NAQ
q, wE[Q\\I/]_nﬂQoer\I/;_}ﬂQ
a0 welV NU);~Qorwe [~ (VUT),_, O
g4 we WU Qorwe [T i, O
q,—9 wE[\IJ\\I/]%Z\Qorwe[\If’\\IJ]Z-_,\Q
[

,+0 weld~ (VUD)_;~Qorwe PN, Q.
We first show five intermediate results on the effects of our price perturbations.
Fact 1: D;(¢') = {¥'}. We have, for any &' # V', that

U(¥'q) — Ui(25q) = Ui(W'; p) — Ui(@'sp') + [V © @'|e > [V © @'|e > 0.

where the equality follows from the definition of ¢/, the first inequality follows from the fact
that W' is optimal at p/, i.e., ¥/ € D;(p'), and the last inequality follows as ®" £ W’'. Thus

Di(q) = {v'}.
Fact 2: D;(¢) = {V'}. Consider an arbitrary ® € D;(¢’) and an arbitrary = ¢ D;(q’). For §
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small enough, we have that,
Ui([9; 1) — Ui([E; 7]) = Ui([®:4]) — Ui([E;¢]) — [ © E[]6 > 0,

where the first inequality follows from the definition of ¢’ and the second inequality follows
as ® is optimal at ¢’, = is not optimal at ¢/, and 0 is sufficiently small. Thus, = ¢ D;(¢’) and
so D;(¢') € D;(¢'). Combining this observation with Fact 1 yields D;(¢") = {¥'}.

Fact 3: D;(q) C D;(p). Consider an arbitrary ® € D;(p) and an arbitrary = ¢ D;(p). We
have that

Ui([®;q]) — Ui([E:q]) = Us([®;p]) — Ui([E;p)) — [ @ © Ele > 0,

where the first inequality follows from the definition of ¢ and the second inequality follows as
® is optimal at p, = is not optimal at p, and ¢ is sufficiently small. Thus, = ¢ D;(¢) and so
Di(q) € Di(p).

Fact 4: D;(q) C D;(q). Consider an arbitrary ® € D;(¢q) and an arbitrary = ¢ D;(q). We
have that

Ui([®;q) — Ui([Z;q]) > Ui([®;q]) — Ui([Z54]) — |2 © E[6 > 0,

where the first inequality follows from the definition of ¢ and the second inequality follows as

® is optimal at ¢, = is not optimal at ¢, and ¢ is sufficiently small. Thus, D;(q) C D;(q).
Fact 5: D;(q) = {V}. We have that, for any ® # ¥,

Ui(¥;q) — Us(®;q) = Ui(V5q) = Ui(D59) + [T © |6 = [V © |6 > 0.

where the equality follows from the definition of ¢, the first inequality follows from the fact
that W is optimal at ¢, i.e., ¥ € D;(q), and the last inequality follows as ® # W. Thus

Di(@) = {\I’}

By Part 1 of DFS, since {¥'} = D;(¢') by Fact 2 and D;(q) = {¥} by Fact 5, we have that
{lweV, :p,=p,} SV, and ¥, ., C ¥, .. Thus, as ¥ € D;(p) by Facts 3-5, we have that
U satisfies the requirements of Part 1 of DCFS.

The proof that Part 2 of DFS implies Part 2 of DCF'S is analogous.
This completes the proof of Lemma 1. n

We now complete the proof of Theorem A.1 by proving that DFS implies CEFS (Lemma 2),
DFS implies CCFS (Lemma 3), DFS implies IIFS (Lemma 5), DFS implies IDFS (Lemma 6),
CFS implies DFS (Lemma 4), and IFS implies DFS (Lemma 7), as exemplified in Figure 1.

Lemma 2. If the preferences of agent i satisfy DFS, then they satisfy CEFS.
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CEFS IIFS

/ emma 2 Le% \

CFS Lemma 4 DFS Lemma 7 _[FS
\ emma 3 Lk /
CCFS IDFS

Figure 1: Proof strategy for Theorem A.1. Any unlabeled implication is immediate.

Proof. Consider two finite sets of contracts Y, Z such that Y, , = Z; ., and Y.,; C Z_,;. Let
Y* € C;(Y). We will show that there exists a Z* € C;(Z) such that (Y., \Y%,) C (Z:\2Z%,,)
and Y;*, C Z' .
Let
YV =YU{(wMeX:weQ,}U{(w,-M)eX weQ,}
Z=720{wMeX:weQ,}U{(w,-M)eX weQ._}
where M is sufficiently large so that ¢ would never choose (w, M) if w € Q_,; or (w, —M)

if we Q.3 It is immediate that Y, = Z;_, and Y.,; C Z_,;. It is also immediate that

; min{p, € R:Iw,p,) €Y} weQ,

%
q, = -
max{p, € R:I(w,p,) €Y} we,
P min{p, € R: Iw,p,) € Z} weN,
QUJ -

max{p, € R: Iw,p.) € Z} we Qi

note that qY and qZ are well-defined as, for every w € €, there exists a contract (w,p,) €

Y CZ by construction. Moreover, since Y. =2, and Y.,; C Z_”-, we have that q};/ = qf
for all w € Q;_, and ¢& > ¢Z for all w € Q_,;.
Let ¥ = 7(Y*); we have that ¥ € D;(¢¥). Part 1 of DEFS then implies that there exists

a U’ € D;(q?) such that

{wevl,: qf = quZ;} C V., (3)
let Z* = k[W'; ¢Z]; note that Z* € Ci(Z) = C;(Z) as ¥ is optimal at ¢Z and ¢Z is the best
price for w available to 7 from Z. Thus, we can rewrite (3) as

(wer(Z5iq) =¢Z} CT(Y*) o (4)

331t is always possible to find M large enough as utility is bounded from above and u;(2) € R.
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T(Y")ies CT(Z2%)is;
If (w,pw) € [Y N\ Y7, then either:

o w Y*) = ¥ and so either w & 7(Z*) or q? qZ by (4). In the former case,
¢ 7( o 7 G by

it is immediate that (w,p,) ¢ Z%,;; in the later case, since ¢° > ¢Z, we must have

—m

that qw > qw and so there exists a (w,p,) € Z such that p, < p,, and therefore

(W,pw) ¢ Z

e w e 7(Y*) but there exists (w, p,) € Y such that p, < p,. In this case, (w,p,) € Z as
Y C Z, and therefore (w,p,) ¢ Z*,

Thus, [Y NY*]; C[Z N 2%
If (w, p,) € Y

11—

then w € 7(Z*) by (4). Moreover, if (w,p,) € Y;*, then p, is the maximal

price in Y for w and so, as Y;*, = Z*

¥, we have that p, is the maximal price in Z for w.

Combining these last two observations implies that (w,p,) € Z;,, and so Y;*, C Z; ..
Thus, Z* satisfies all the requirements of Part 1 of CEFS.

The proof that DFS implies Part 2 of CEF'S is analogous. n
Lemma 3. If the preferences of agent i satisfy DFS, then they satisfy CCFS.
Proof. The proof proceeds analogously to the proof of Lemma 2. O
Lemma 4. If the preferences of agent i satisfy CFS, then they satisfy DFS.

Proof. We first show that Part 1 of CFS implies Part 1 of DFS. For any agent ¢ and price
vector p € RY, let

Xz<p) = {(w7ﬁw) NS Q—)z‘ and ﬁw Z pw} U {(Waﬁw) HONS Qi—> and ﬁw S pw};

that is, X;(p) effectively denotes the set of contracts available to agent 7 under prices p.!
Let the price vectors p,p’ € R® be such that |D;(p)| = |D;(p')| = 1, p, = p., for all
w € Qi, and p/, < p, for all w € Q_;; let {¥} = D;(p) and {¥'} = D;(p'). Let Y = X;(p)
and Z = X;(p'). Clearly, Y;, = Z;, and Y_,; C Z_,;. Furthermore, it is immediate that
{k([¥;p])} = C;(Y), and similarly, {x([¥;p'])} = Ci(Z). Thus, Part 1 of CFS implies that

Yoi N [6(1%5pD]wi © Zoi  [R([1V5 0] ()

[£([%; p]))ims € [R5 p])]iss- (6)

From (5), we see that, if w € T([K([\I’/,p])] i), e, ifwe \If’ﬂ, and p/, = p,, then (w,p)) €
[k([¥; p])] =4, and so w € ¥_,;—in other words, {w SR = p,} C V_,;. Furthermore, as

34By this, we mean that, in principle, an agent pay more for an upstream trade and receive less for a
downstream trade.
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[K([¥;p))]is C [R([Y;P'])]ies by (6) and p,, = p., for each w € Q;_,, we have that ¥, , C ¥,_,.
Thus, ¥’ satisfies the requirements of Part 1 of DFS.
The proof that Part 2 of CFS implies Part 2 of DFS is analogous. m

Lemma 5. If the preferences of agent i satisfy DFS, then they satisfy IIFS.

Proof. Tt is enough to show that DEFS and DCFS jointly imply IIFS, as DFS implies both
DEFS and DCFS by Lemma 1. Take two price vectors p,p’ € R such that p < p’, and let
U € D;(p) be arbitrary. We will show that there exists a set of trades W' € D;(p’) such that
eiw(V) < e (V) for all w € Q; such that p, = p/,. We let

o= piu w €
* =
Do wE Qi

thus, pf, = p, for all w € Q;_, and p}, > p, for all w € Q_,;. Part 1 of DCFS then implies that
there exists a ¥* € D;(p*) such that

lweV., p,=p,} SV~ (7)

Now, note that p}, = p/, for all w € Q_,; and p; < p/, for all w € Q,_,. Part 2 of DEFS then
implies that there exists a ¥ € D;(p’) such that

{we Wi, pl=p} SV, (8)
Combining (7) and (8) yields
{weV,ip,=pL} CU, CVU,
{we Vi, 1 p,=p,} SV, CTysy
Recalling the definition of p*, we obtain
{w eV, py :P;} - \Iﬂm
{we P, po=p,} C Vi
this implies €;, (V) < e;,(¥') for all w € Q; such that p, = pl,. O
Lemma 6. If the preferences of agent i satisfy DFS, then they satisfy ICFS.

Proof. Tt is enough to show that DEFS and DCFS jointly imply IDFS, as DFS implies both
DEFS and DCFS by Lemma 1. Take two price vectors p,p’ € R such that p < p’, and let
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U’ € D;(p') be arbitrary. We will show that there exists a set of trades ¥ € D;(p) such that
iw(V) < e (V) for all w € Q; such that p, = p/,. Let

* piu WS Q*H,'
P, =
Do WwE Qz—n

thus, pf, = p., for all w € Q_,; and p, < p/ for all w € Q;_,. Part 2 of DCFS then implies that
there exists a U* € D;(p*) such that
{w S \Il;a :p:; = pc,.u} C \Ij:a (9)
v, v,
Now, note that pf, = p, for all w € Q,_, and p}, > p,, for all w € Q_,;. Part 1 of DEFS then
implies that there exists a ¥ € D;(p) such that
{we V., p, =p,} CU%, (10)
Combining (9) and (10) yields
{we Vi, ipl,=p,} S CVy,
{weV, p,=p.p SV, CU,
Recalling the definition of p*, we obtain
{w € ‘P;a ‘ Pw :p:.;} C¥,,
{OJ € \I/—n' ‘Puw = pw} - \Ij;i;
this implies e; , (V) < e;,(¥') for all w € €; such that p, = pl,. O

Lemma 7. If the preferences of agent i satisfy IFS, then they satisfy DFS.

Proof. Let the price vectors p,p’ € R® be such that |D;(p)| = |D;(p')| = 1, p, = p/, for all
we Qi and pl, <p, forallw € Q_;; let {U} = D;(p) and {¥'} = D;(p’). As the preferences
of i satisfy the IF'S condition, we have that e; ., (V) < e;,(¥) for allw € Q_,; such that p,, = p..
Thus, if p, = p/, and w € ¥’ then w € ¥ and so we have that {w € V., : p/, =p,} C V_,,.
Moreover, as the preferences of i satisfy the IFS condition, we have that e; (V') < e; (V) for
all w € Q,_, such that p, = p/,. Thus, if p, = p/, and w € ¥ then w € V' and so, as p, = p.,
for all p,, = p/, for all w € ,_,, we have that ¥_,; C ¥’ ..

The proof that Part 2 of IF'S implies Part 2 of DFS is analogous. m

This concludes the proof of Theorem A.1. O]
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B Proofs of the Results Presented in Sections 4—7

Proof of Proposition 1

Consider the intermediary . Let ® (with a typical element ¢) denote the set of potential
inputs this intermediary faces, and let ¥ (with a typical element 1)) denote the set of potential
requests. The cost of using input ¢ to satisfy request v is given by ¢, . For convenience,
when ¢ and v are incompatible, we simply say that ¢, = +00.

Let us now construct a “synthetic” agent 7 whose preferences will be identical to those
of agent 7, yet will be represented in the form of “intermediary with production capacity”
preferences as defined in Section 4.2. The full substitutability of the preferences of intermediary
1 will then follow immediately from Proposition 2.

Agent 7 faces the same sets of inputs, ®, and requests, ¥, as agent 7. Agent 7 also has
|®| x |¥| machines, indexed by pairs of inputs and requests: machine m,, “corresponds” to
an input-request pair (¢, ). The costs of intermediary 7 are as follows (to avoid confusion,

WA

we will denote various costs of agent 7 by “¢” with various subindices, while the costs of agent

[k

i are denoted by “c” with various subindices):

e For input ¢ and machine m,, “corresponding” to input ¢ and some request v, the
cost Cym,,, of using input ¢ in machine m,, is equal to ¢, —the cost of using input

© to satisfy request 1) under the original cost structure of agent 7.
e For any input ¢’ # ¢ and any request v, the cost ¢y, , is equal to +o0.

e For request 1 and any machine m,, , “corresponding” to request ¢ and some input ¢,

the cost ¢, , 4 of using machine m,, y to satisfy request 1 is equal to 0.
e For any request ¢’ # ¢ and any machine m 4, the cost ¢, , 4 is equal to +oo.

With this construction, the preferences of agents ¢ and 7 over sets of inputs and requests
are identical. Moreover, the preferences of agent 7 are those of “intermediary with production
?

capacity” and are thus fully substitutable (by Proposition 2). Therefore, the “intermediary’

preferences of agent i are also fully substitutable.

Proof of Proposition 2

Consider first an “intermediary with production capacity” who has exactly one machine at his
disposal. It is immediate that the preferences of such an intermediary are fully substitutable.
Next, consider a general “intermediary with production capacity”, i, who has a set of

machines M (with a typical element m) at his disposal and faces the set of inputs ® (with
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a typical element ) and the set of potential requests ¥ (with a typical element 1), with
costs as described in Section 4.2. We will show that the preferences of intermediary ¢ can
be represented as a “merger” of several (specifically, |M| + |®| 4+ |¥|) agents with fully
substitutable preferences, which by Theorem 4 will imply that the preferences of intermediary
1 are fully substitutable.

Specifically, consider the following set of artificial agents. First, there are |®| “input
dummies”, with a typical element ¢ for a dummy that corresponds to input ¢. Second, there
are |M| “machine dummies”, with a typical element 7 for a dummy that corresponds to
machine m. Finally, there are |¥| “request dummies”, with a typical element zﬁ for a dummy
that corresponds to request .

Each input dummy ¢ can only buy one trade: input ¢. He can also form |M| trades as
a seller: one trade with every machine dummy m. We denote the trade between an input
dummy ¢ (as the seller) and a machine dummy 7 (as the buyer) by w, .. Likewise, each
request dummy @Z can only sell one trade: request ¥. He can also form |M| trades as a buyer:
one trade with every machine dummy . We denote the trade between a machine dummy m
(as the seller) and a request dummy " (as the buyer) by wy, . Each machine dummy can
thus form |®| trades as the buyer (one with each input dummy) and || trades as the seller
(one with each request dummy).

The preferences of the agents are as follows. Each input dummy and each request dummy
has valuation 0 if the number of trades he forms as the seller is equal to the number of trades
he forms as the buyer (this number can thus be equal to either 0 or 1), and —oo if these
numbers are not equal. It is immediate that the preferences of input and request dummies
are fully substitutable.

The preferences of each machine dummy m are as follows. If it buys no trades and sells
no trades, its valuation is 0. If it buys exactly one trade, say w, , for some ¢, and sells
exactly one trade, say wy,  for some 1, then its valuation is —(cy, ., + ¢,y )—the total cost
of preparing input ¢ for request ¥ using machine m in the original construction of the utility
function of agent 7. In all other cases (i.e., when the machine dummy buys or sells more than
two trades, or when the number of trades it buys is not equal to the number of trades it
sells), the valuation of the machine dummy is —oco. Note that the preferences of the machine
dummy are also fully substitutable.

Consider now the “synthetic” agent 7 obtained as the merger of the |®| input dummies,
| M| machine dummies, and || request dummies (see Section 5.2 for the details of the “merger”
operation). By Theorem 4, the preferences of agent 7 are fully substitutable. Moreover, the
valuation of agent 7 over any bundle of inputs and requests is identical to the valuation of

agent ¢ over that bundle. Thus, the preferences of agent i are fully substitutable.
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Proof of Theorem 2

’\(q)vp‘I’)

The indirect utility function for a, is given by
(D, _ —
V;( pq))(pg\q>): max {ryax{ui(\PU:)—o— E Pe — E pg}—l— g Pe — E pg}
VCOND | ZCP p— =
SO £e2,; Yev_y; Pew _;

= max {rélgg{ui(\IJUE)—i- oom— Y, p,\}}

C
reine ACE_,UT_,; ACE,; L UT,_,
= max} w;(A) + g Dy — E D ¢
ACO
AEA_; AEA;

Hence, ‘z(q)’pd’)(pg\q,) = Vi(pa-a, ps). Now, V;(p) is submodular over R® by Theorem 6. As a

Jhi:)(pg\q))
is submodular over R2~®. Hence, by Theorem 6, we see that a\%?*) is fully substitutable.

submodular function restricted to a subspace of its domain is still submodular, f/i(q)

Proof of Theorem 3

Fix a set of trades ® C 2; such that u;(®) # —oo and a vector of prices Py for trades in ®.
Let D; be the demand function for trades in Q ~ @ induced by ﬂ?’%. Fix two price vectors
p € RM® and p' € R such that |D;(p)| = |Di(p)] = 1, pw = pl, for all w € Q;, \ ®, and
po >, for all w € Q_,; . ®. Let ¥ € D;(p) be the unique demanded set from ; \ ® at p
and ¥’ € D;(p’) be the unique demanded set from €; \ ® at p’. Note that since u;(®) # —oo,
there exists a vector of prices pj}, for trades in ® such that, for all = € D;((p, ps))UD; (Y, p%)),
we have ® C Z. Fix an arbitrary = € Dy((p,p})) and let ¥ = Z ~ ®.

Claim 1. We must have U = 0.

Proof. Suppose the contrary. Since U U® == € D;((p, p%)), we must have

wE) =w(PU®)+ Y pp— > pet Y pi— Y D

ISR pel_y; LIS TN ped_,;
>u(PUR)+ D py— D pet D pp— D Dy (11)
vev; Ppel_,,; D, peD_,;

The inequality (11) is equivalent to

w(PU®) + > py— D pet 2 Po— 2. D,

e, Ppel_y; pED; peED,;

>u(VUP)+ > py— > ppt+ D Pp— D Py (12)

Yev; Yev_,,; D, peED_,;

However, the inequality (12) implies that U e D, (p); this contradicts the assumption that
D;i(p) = {¥} given that ¥ # . O
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The preceding claim implies that we must have D;((p,p%)) = {2} = {P U &} = {T U ®}.
A similar argument shows that D;((p/,p%)) = {¥' U ®}. The full substitutability of u; then
implies that {¢) € V',; : py =pj} € V¥,; and ¥;, C W] ,.

Proof of Theorem 4

We suppose, by way of contradiction, that u; does not induce fully substitutable preferences
over trades in Q \. Q. By Corollary 1 of Hatfield et al. (2013), there exist fully substitutable
preferences w; for the agents ¢ € I ~. J such that no competitive equilibrium exists for the
modified economy with set of agents (I \ J) U {J}, set of trades Q \ Q7, and valuation
function for agent J given by wu ;.3

Now, we consider the original economy with set of agents I, set of trades {2, valuations
for i € I \ J given by 4;, and valuations for j € J given by u;. Let [¥;p] be a competitive

equilibrium of this economy; such an equilibrium exists by Theorem 1 of Hatfield et al. (2013).
Claim 2. [U \ Q7:pg o] is a competitive equilibrium of the modified economy.

Proof. Tt is immediate that [U ~\ Q7]; € D;(pq_qs) for all i € I . J. Moreover, since ¥ is

individually-optimal for each j € J in the original economy (at prices p),
wi(O)+ > pe— D pe2u(®)+ Y pe— D Do (13)
Yev;_, Yev_,; peD; pedP_,;
for every @ C Q. Summing (13) over all 7 € J and observing that when doing so the prices
paid and received by agents in J for the trades Q7 among themselves cancel out, we obtain
2w+ Y pe— > ez w(®+ > pe— > py O
jelJ SN AN RN PEMUNQT] jelJ pe[@~Q7]s PE[PNQT] Ly

The preceding claim shows that [¥ \ Q7:pg._qs] is a competitive equilibrium of the
modified economy, contradicting the earlier conclusion that no competitive equilibrium exists

in the modified economy. Hence, we see that u; must be fully substitutable.

Proof of Theorem 5

The proof of this result is very close to Step 1 of the proof of Theorem 1 of Hatfield et al.
(2013). The only differences are that in the Hatfield et al. (2013) results, all trades could be

bought out, and the price for buying them out was set to a single large number that was

35To apply Corollary 1 of Hatfield et al. (2013), we must have that for every pair (i, 5) of distinct agents in I,
there exists a trade w such that b(w) = 7 and s(w) = j. For any pair (i, j) of distinct agents in I such that no
such trade w exists, we augment the economy by adding a trade w and, if i € J, letting u;(¥ U {w}) = u*(¥)
(and similarly for 7). It is immediate that @; is substitutable if and only if u; is substitutable.
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the same for all trades. By contrast, in Theorem 5 of the current paper we allow for the
possibility that only a subset of trades can be bought out, and that the prices at which these
trades can be bought out can be different, and need not be large. For completeness, we adapt
Step 1 of the proof of Theorem 1 of Hatfield et al. (2013) to the current more general setting.

Consider the fully substitutable valuation function u;, and take any trade ¢ € ;. N .

Consider a modified valuation function w;:

uf () = mac{u; (¥), u, (¥  {}) - IL}.

1

That is, the valuation u (V) allows (but does not require) agent ¢ to pay IL, instead of

executing one particular trade, .
Claim 3. The valuation function uf is fully substitutable.

Proof. Consider utility U7 and demand DY corresponding to valuation u{. We show that DY
satisfies the IF'S condition (Definition 3). Fix two price vectors p and p’ such that p < p’ and
|D?(p)| = | DY (p')| = 1. Take the unique ¥ € D7 (p) and ¥ € D7 (p’). We need to show that

eiw(V) < e, (V) for all w € Q; such that p, = p,. (14)

Let price vector ¢ coincide with p on all trades other than ¢, and set ¢, = min{p,,, IL,}.
Note that if p, < IL,, then p = ¢ and D (p) = D;(p). If p, > II,, then under utility U/,
agent i always wants to execute trade ¢ at price p,, and the only decision is whether to
“buy it out” or not at the cost Il,; i.e., the agent’s effective demand is the same as under
price vector ¢. Thus, DY (p) = {EU{¢}: = € D;(¢)}. Finally, if p, = II,, then p = ¢ and
Df(p) = Di(p) U{EU{¢} : = € D;(p)}. We construct price vector ¢’ corresponding to p’
analogously.

Now, if p, < pi, <Il,, then Df(p) = D;(p), Df(p') = Di(p'), and thus e; (V) < e;, (V')
follows directly from IF'S for demand D;.

If II, < p, < pfp, then (since we assumed that DY was single-valued at p and p') it has to
be the case that D; is single-valued at the corresponding price vectors g and ¢'. Let = € D;(q)
and Z' € D;(¢'). Then ¥ == U {¢p}, ¥ == U {p}, and statement (14) follows from the IFS
condition for demand D;, because q < ¢'.

Finally, if p, < II, < p,, then p = ¢, ¥ is the unique element in D;(p), and ¥’ is equal to
=" U {p}, where =’ is the unique element in D;(¢’). Then for w # ¢, statement (14) follows
from TF'S for demand D;, because p < ¢'. For w = ¢, statement (14) does not need to be
checked, because p, < pl,.

Thus, when ¢ € Q,_,, the valuation function v} is fully substitutable. The proof for the

case when ¢ € Q)_,; is completely analogous. O]
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To complete the proof, note that the valuation @;(V) = maXEg\mq,{ui(\Il NE) = Xoes H¢}
can be obtained from the original valuation u; by allowing agent ¢ to “buy out” all of the
trades in set ®, one by one, and since the preceding claim shows that each such transformation

preserves substitutability (and €; is finite), the valuation function 1; is substitutable as well.

Proof of Theorem 6

We first show that if the preferences of an agent ¢ are fully substitutable, then those preferences

induce a submodular indirect utility function. It is enough to show that for any two trades

@, € €; and any prices p € R?, plie" > p,, and pzlfgh > py we have that?®
high igh _high
VilPagouy Per Do) — VilDagouy PR 2y =)

> V;'(pﬂ\{go,w}aptpapw) - ‘/i(pQ\{@,lb}apgighapw)- (15)

Suppose that ¢, € Q_,;.37 There are three cases to consider:

Case 1: Suppose that ¢ ¢ ® for any ® € D;(po-{e,4}, Py, Py)- Then, by individual rationality,
@ ¢ @ for all ® € D;(pa-qypu}, Pt py). Hence,

‘/i(pﬂ\{tpﬂ/)}apgmpd)) - W(pQ\{@,w}apgighapw) =0
and so equation (15) is satisfied, as the left side of (15) must be non-negative.

high ,high

Case 2: Suppose ¢ € ® for all ® € D;(pa.(,4), Py Py ). Then, by individual rationality,

pePforall e Di<pg\{%¢},p<p,pl$gh). Hence,

high

_ high __
® p ©

b ) = —(p ) =Pl —p,

high

‘/i(pﬂ\{go,w}apwapz/;g ) - W(pﬂ\{@ﬂ/)}?pgp 7p¢
and so equation (15) is satisfied, as the right side of (15) is (weakly) bounded from above
by p};igh — pp (with equality in the case that ¢ is demanded at both (po-fw1, Py, py) and

(pQ\{ga,d)}a pl;gh’ pw))

Case 3: Suppose that ¢ € @ for some ® € D;(pofpu},Pp,Py) and ¢ ¢ @ for some

® € D;(pa w1} p};gh, pzfgh). In this case, as the preferences of i are fully substitutable, there

exists a unique price pjp such that there exists ®, ® € D;(pa-ip0} pL, pzigh) such that ¢ € ®

and ¢ ¢ ®; note that p, < pl, < pl". Similarly, let p}, be the unique price at which there
high

. sog )
By the definition of the utility function, ¢ € ® for all & € Di(pﬂ\{ga,w},ﬁ@,pzlgh) for all

exists ®, D € Di(pg\{%w},pi,,pd,) such that ¢ € ® and ¢ ¢ ®; note that Py < p}p <p

Py < pl, and ¢ ¢ @ for all & € Di(pg\{%w},ﬁw,pzigh) for all p, > pl; similarly, ¢ € ® for

36The definition of submodularity given in Definition 4 is equivalent to the pointwise definition given here;
see, e.g., Schrijver (2002).
37The other three cases (¢ € Q_,; and ¢ € Q;_,; ¢ € Q_,; and ¥ € Q;_,; and ,9 € Q;_,) are analogous.
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all ® € D;(po- (e}, Py, Py) for all p, < pi, and ¢ ¢ @ for all & € D;(po-1pu}: Dy, Py) for all
Do > DY
Since the preferences of ¢ are fully substitutable, p}o < pg. Hence,

high i high
Vi(pagewt Por P ) — Vilafowys Do pp")
high high>

= Vi(patowy Por P 5) — Vi(Pa (o PL Do) + Vilbaqowp ph 202 = Vi(Pagpuy P2 D))
= —py+p,—0

> —p,+p5—0

= Vi(Po-(o01: Do Do) = VilPa (o1 P Do) + Vi(Pa(o01: D Do) — ViPo (o1 D= Do)

= Vi(Pa-towys Pos Do) = Vi(Pa gy, PRE", Dy,

which is exactly (15).

Now, suppose that the preferences of i are not substitutable. We suppose moreover that
the preferences of i fail the first condition of Defintion 2.3 Hence, for some price vectors
p,p € R® such that |D;(p)| = |Di(p))| = 1, p, = p/, for all w € Q;_,, and p, > p/, for
all w € Q_,;, we have that for the unique ¥ € D;(p) and V' € D;(p), either {w € V', :
Po=pLt LV, or ¥, , Z W .. We suppose that {w € V', : p, = p,} £ V_,;; the latter
case is analogous. Let ¢ € U, N {w € V', : p, = p}. Let pggh be a price for trade ¢

high enough such that ¢ is not demanded at either (plJ&", po. f,3) or (plie", pf,. (,})- Hence,

‘/i(ptpapgl\{ga}) - V;(p};gh7p/ﬂ\{§p}) = 07 while %(psmpﬂ\{%’}) - V;(pgighapfl\{go}) > 0. ThUS, we
see that V; is not submodular.

Proof of Theorem 7

The proof is an adaptation of the proof of Theorem 1 of Sun and Yang (2009) to our setting.
As our model is more general than that of Sun and Yang (2009)—we do not impose either
monotonicity or boundedness on the valuation functions, and we do not require that the seller
values each bundle at 0 and thus sells everything that he could sell—we have to carefully
ensure that the Sun and Yang (2009) approach remains valid.

We show first that IDFS and IIF'S imply the single improvement property. Fix an arbitrary
price vector p € R® and a set of trades ¥ ¢ D;(p) such that u;(¥) # —oo. Fix a set of trades
= € D;(p). We focus exclusively on the trades in ¥ and = by rendering all other trades that
agent ¢ is involved in irrelevant. To this end, we first define a very high price II,

M= _ max — A{|Ui([;p]) = Ui([Qp)]} + max{lps[} +1,

) CQy,ui(Q1)>—00,
Q2C04,ui(Q2)>—00

38The case where the preferences of i fail the second condition of Defintion 2 is analogous.
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and then, starting from p, we construct a preliminary price vector p’ as follows:

Do weWVUEorwé
Po=13po+1l weQ,;~(VUE)
po—11 weQ N (PUE).
Observe that U ¢ D;(p') and = € D;(p’). As ¥ # =, we have to consider two cases (each with

several subcases), which taken together will show that there exists a set of trades ® # ¥
that satisfies conditions 2 and 3 of Definition 5 and U;([®'; p]) > U;([¥; p]).

Case 1: =~ VU #£ @. Select a trade & € =\ . Without loss of generality, assume that

agent i is the buyer of & (the case where i is the seller is completely analogous).

Starting from p’, construct a modified price vector p” as follows:

I p:u w e Qz AN ((E_>Z AN (\I/_n U {51})) U \1/1_>) or w ¢ Ql

First, since = € D;(p'), & € Z, and p, = pf,, full substitutability (Definition A.5) implies
that there exists =" € D;(p") such that & € Z”. Second, observe that following the price
change from p’ to p”, (27, \V_;) C {&} and W, , C =7, Thus, 27, N V_,; = {&} and

U,, C=,. We consider three subcases.

Subcase (a): =/, \V,, # @. Let & € =] U, _,. Starting from p”, construct price vector

p" as follows:

= ! weLN((EL (U U{&L))UWy,) orwé Q
First, since 2" € D;(p"), & € 27, and pf, = p,, full substitutability (Definition A.6) implies

that there exists =" € D;(p”) such that & € Z". Second, observe that following the
price change from p” to p”, ¥ C =" and Z” ~\ ¥ C {&,&}. Thus, ¥ N\ Z” = & and
=" N0 = {&, 6} or {&2F

Since =" € D;(p""), we have U;([¥,p"]) < U;([Z"”,p"]). Furthermore, observe that from
the perspective of agent i the only differences from ¥ to = are making one new sale &,
ie., €6, (V) > €6 (2") with & € Q;, \ ¥, and (possibly) making one new purchase &, i.e.
eie (V) <eig (2 ”’) with & € Q_,; N .

Subcase (b): 2/, NV, , =g and V_,; \ =", # @. Let ¢y € ¥_,; \ =",. Starting from p”,
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construct price vector p” as follows:

Tl - we (B N Tl) U (T~ {)).
First, since 2" € Dy(p"), ¥ ¢ Z", and py, = pjj, by full substitutability (Definition A.6)
implies that there exists =" € D;(p”") such that ¢ ¢ Z”. Second, observe that following the
price change from p” to p"”, U N E" C {¢} and 2" \ ¥ C {{}. Thus, ¥ N\ =" = {¢} and
NV ={&} or @.
Since 2" € D;(p"), we have U;([¥,p"]) < U;([Z"”,p"]). Furthermore, observe that from

agent i’s perspective the only differences from ¥ to Z” are canceling one purchase 1,

ie., e 4(V) > €4 (2") with ¢ € U_,;, and (possibly) making one new purchase &, i.e.,
eie, (W) < eig (2") with & € Q; N\ .

Subcase (c): =7 = VU {&}. Let p” = p” and = = Z". Since =" € D;(p""), we have
Ui([Y,p"]) < U;([E",p"]). Furthermore, from agent i’s perspective the only difference from
U to = is making a new purchase &, i.e., ;¢ (V) < e;¢ (2"”) with & € Q_; N\ 0.

Case 2: =~V =g and ¥ \ = # . Select a trade 1, € ¥~ =. Without loss of generality,

assume that agent i is a buyer in v, (the case where i is a seller is completely analogous).

Starting from p’, construct price vector p” as follows:

1 pzd w e QZ ~ (\I]—M' AN {77Z)1}> or w ¢ Qz
p:d—H w e \Ij%z\{wl}
First, since = € D;(p'), ¥1 ¢ Z, and py,, = py,, full substitutability (Definition A.6) implies
that there exists Z” € D;(p”) such that ¢, ¢ Z”. Second, observe that following the price
change from p’ to p”, 2 C W and ¥_,; N 2", C {¢1}. Thus, ¥V, N =", ={¢1} and 2" C V.

We consider two subcases.

—=n

Subcase (a): ¥, N =/, # @. Let ¢ € ¥,, N E,. Starting from p”, construct price
vector p™ as follows:
" pZ} w € 2 \ (\Iji—> ~ {wg}) or w gé Q;
pl+Il we W\ {s}.
First, since =" € D;(p"), ¥ ¢ ", and plj, = py,,, full substitutability (definition A.5) implies

that there exists =" € D;(p") such that ¢ ¢ Z”. Second, observe that following the
price change from p” to p”, Z” C ¥ and ¥ N E” C {¢1,¢}. Thus, Z” \ ¥ = & and

U E" = {¢, 12} or {¢h}.
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Since Z” € D;(p"), we have U;([¥,p"]) < U;([E",p"]). Furthermore, observe that from
agent i’s perspective the only differences from ¥ to = are canceling one sale 1)y, i.e.,
iy (V) < €4, (E") with 1 € @,y N ¥, and (possibly) canceling one purchase 1, i.e.,
€4 ahn (\I/> > €44 (Em) with 7,01 € \If_m

Subcase (b): Z" = U~ {91 }. In this subcase, let p” = p” and =" = Z". Since 2" € D;(p""),
we have U;([V, p"]) < U;([2",p"]). Furthermore, from the perspective of agent i, the only

difference from ¥ to =" is canceling purchase 91, i.e., €; 4, (V) < €;4, (2") with 1 € Q_,; \ V.

Taking together all the final statements from each subcase of Cases 1 and 2, if we take
¢’ = =" we obtain that we always have a price vector p” and the sets ¥ and &’ that
satisfy conditions (2) and (3) of Definition 5. Moreover, since we always have ® € D;(p"),
U@ ")) > U([0, "),

Next, we show that U;([®',p"]) — U;([¥, p"']) > 0 implies U;([®', p]) > U;([¥, p]). First,

observe that when taking the difference the prices of all trades w € &' N ¥ cancel each other

7
w

unchanged. Second, observe that in all previous subcases, the construction of p
that for all w € (I \ &)U (' N\ V)), p, = p”. Combining the two observations above,
Ui([9,p"]) — Us([Y, p"]) = Ui(|9, p|]) — Ui([V, p]), and therefore U;([®', p|]) > U;([V, p]).

We now show that there exists a set of trades ® that satisfies all conditions of Definition 5.

out. Thus, replacing the prices p”’ with p, for all trades w € ® N ¥ leaves the difference

" implies

Since ¥ ¢ D;(p), Vi(p) > Ui([¥;p]). Since i’s utility is continuous in prices, there exists € > 0
such that Vi(q) > U;([V; ¢]) where ¢ is defined as follows:
Pote weQ NV, UY,,
e Po—€ weE(Q NV, )UV_,.

Our arguments above imply that there exists a set of trades ® # W such that U;([®;¢q]) >
Ui([¥;q]). Using the construction of ¢, we obtain U;([®;p]) — U;([V;p]) = Ui([®;4q]) —
Ui([W;q]) +e|(U N D) U (PN U)| > Ui([P;q]) — Us([¥; q]) > 0. Thus, U;([P;p]) > Ui ([¥; pl).
This completes the proof that IDFS and ITFS imply the single improvement property.

We now show that the single improvement property implies full substitutability DCF'S.
More specifically, we will establish that single improvement implies the first condition of
Definition A.4; the proof that the second condition is also satisfied uses an analogous argument.

Let p € R® and ¥ € D;(p) be arbitrary. It is sufficient to establish that for any p’ € R?
such that p), > p,, for some ¢ € Q_,; and p, = p,, for all w € Q\ {¢}, there exists a set of
trades U’ € D;(p') that satisfies the first condition of Definition A.4.

Fix one p’ € R% that satisfies the conditions mentioned in the previous paragraph and let
Y € Q_,; be the one trade for which p), > p,. Note that if either 1) ¢ W or W € Dy(p'), there
is nothing to show. From now on, assume that ¢y € ¥ and ¥V ¢ D;(p’).
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For any ¢ > 0 define a price vector p° € R® by setting py = py +¢€ and p, = p, for all
we Q\{Y}. Let A =max{e: ¥V e D;(p°)}. Note that A is well defined since i’s utility
function is continuous in prices. Also, given that U ¢ D;(p’), we must have A < p, — py.

Next, for any integer n, define a price vector p® € R® by setting Py =py A+ % and
Pl =p, for all w € 2\ {¢}. By the definition of A we must have ¥ ¢ D;(p") for all n > 0.
By the single improvement property, this implies that for all n > 0, there exists a set of trades
®" such that the following conditions are satisfied: (i) U;([\V,p"]) < U;(|®",p"]), (ii) there
exists at most one trade w such that e; ,(¥) < e;,(P"), and (iii) there exists at most one
trade w such that e; (V) > e;,(P").

Note that we must have ¢ ¢ ®" for all n > 1. This follows since for any n > 1 and any set
of trades ® such that ¢ € @, Uy([®;p"]) = Us([®;p]) = A~ < Ui([¥;p]) —A— 1 = Ui([¥;p"])
given that U € D;(p).

Conditions 2 and 3 imply that for all n > 0, we must have {w € V_,; : p/, = p,} = {w €
U, pl=p,} CO", and ¢, C U, ,.

Since the set of trades is finite, it is without loss of generality to assume that there is a set
of trades ®* € 2; and an integer n such that ®" = ®* for all n > n. Since ¢’s utility function
is continuous with respect to prices and p® — p®, we must have U;([®*; p?]) > U ([¥; p?)).
Since ¥ € D;(p?), this implies ®* € D;(p?). Since A < Py — Py and V; is decreasing in the
prices of trades for which i is a buyer, we must have V;(p?) > V;(p'). Since 1) ¢ ®*, we have
that U;([®*; p']) = Ui([®*; p?]) = Vi(p?). Hence, ®* € D;(p’) and setting ¥’ = &* yields a set
that satisfies the first condition of Definition A.4.

Proof of Theorem 10

We assume throughout that Q = Q; (and so X = X;); this is without loss of generality as all
of the analysis here considers only the sets of contracts demanded by ¢ and, for any sets of
contracts Y and Z such that Y; = Z;, we have that Y* € C;(Y) if and only if Y* € C;(Z).

Step 1: We show first that full substitutability implies monotone—substitutability for oppor-
tunity sets such that the choice correspondence is single-valued. That is, we will show for all
finite sets of contracts Y and Z such that |C;(Y)| = |Cy(Z)| =1, Y,, = Z;,,and Y.,; C Z_;,
for the unique Y* € C;(Y) and the unique Z* € C;(Z), we have | Z*,,| — |Y*,| > |Z, | — Y2,
Fix a fully substitutable valuation function u; for agent i. Consider two finite sets of contracts
Y and Z such that |C;(Y)| =|Ci(Z2)| =1, Vi, = Z;—,, and Y.,; C Z_,;. Assume that for any
we Qi if (w,py) €Y, and (w,p)) € Y;,, then p, = p/; this is without loss of generality
as for a given trade w € €);_,, agent 7, as a seller, will only choose a contract with the highest

price available for that trade, and thus we can ignore all other contracts involving that trade.
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Let Y* € Ci(Y) and Z* € C;(Z). Define a modified valuation @; on 7(Z;) for agent i by
setting, for each ¥ C 7(%;),

For all feasible W C Z, let
Ui(W) = a;(tr(W)) + > Po— Y, Pu
(w,pw)E(Z~W )i (w,pw)EW_;

and let C; denote the choice correspondence over Z associated with U;. By construction,
(V) = ui(0:(V)), (16)
where here the object operator o is defined with respect to the underlying set of trades 7(Z):
0;(V) ={o(w):we¥ ,;}U{ow):weT(Z2)\V,,}.

As the preferences of i are fully substitutable, the restriction of those preferences to 7(2)
is fully substitutable, as well.? Thus, the restriction of i’s preferences to 7(Z) is object-
language fully substitutable and so #; satisfies the gross substitutability condition of Kelso
and Crawford (1982) over objects.

Now, we must have C;(Y) = {Y*, U(Z~Y*);,} and Ci(Z) = {Z*,,U(Z ~ Z*);}. As we
assume quasilinearity, the Law of Aggregate Demand for two-sided markets applies to C; (by
Theorem 7 of Hatfield and Milgrom (2005)). As Y C Z, this implies that | Z*,,U(Z~\ Z*),—| >
X, U(Z N Y"*),|; this inequality is equivalent to |Z*,| — |ZF,| > |YX,| — |Yi%, |, which is
precisely the Law of Aggregate Demand. We also have that Y; ., N\ Y%, C Z,_, \ Z*,, and
Y*, C Z ., as the preferences of ¢ are fully substitutable. Thus, the preferences of 7 satisfy

the requirements of Part 1 of Definition 9 when the choice correspondence is single-valued.

The proof that i’s preferences satisfy the requirements of Part 2 of Definition 9 is analogous.

Step 2: We now use Step 1 to show that full substitutability implies monotone—substitutability.

For this step, let
w(WY) =w(V) — > inf{py: (,py) €Y+ D sup{py: (¢¥,py) €YY,
YeV_,; YET,
where we take inf @ = co and sup @ = —oo; that is, 4(V;Y) is the utility that 7 obtains from
the set of trades ¥ and both paying, for each trade in ¥_,;, the lowest price corresponding to
a contract in Y and receiving, for each trade in ¥,_,, the highest price corresponding to a

contract in Y.

39T0 see the full substitutability of U;, note that the full substitutability of the restriction of U; to any
subset of X follows immediately from the fact that the preferences of i satisfy CFS.
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We also extend the operator 7 to sets of sets of contracts, so that 7()) = Uyey{7(Y)} for

any ) C p(X).

Finally, it is helpful to define an operator which, given a set of available contracts W, makes

each trade in 7(W’) slightly more appealing to i relative to W’ and each trade not in 7(WW’)

slightly less appealing to i relative to W’. Let

r(W;W'e)={(w,p,—¢) € X : (w,po) € W U{(w,pn+¢) € X: (w,pn) €W ~W]L}
U{(w,po+¢) € X :(w,p,) e W _ U{(w,p,—¢)€X:(wp,)€WNWI]L}

The r function here allows us to perturb sets of contracts so as to obtain unique choices,

similar to the methods used to prove Lemma 1.

Observation 1. For all sets of contracts W,Y,Z C X such that Y C Z, we have that
r(Y;W,e) Cr(Z;W,e) for all e > 0.

Now, we consider two finite sets of contracts Y and Z such that Y;., = Z,_, and Y_,; C Z_;.
Fix an arbitrary Y* € C;(Y); we need to show that there exists a set Z* € C;(Z) that satisfies
the requirements of Part 1 of Definition 9. Let Z* € Cy(r(Z;Y™,¢)).

We first show five intermediate results on the effects of our price perturbations, where we
g > 0 to be sufficiently small and § > 0 to be sufficiently small given e.
Fact 1: C;(r(Y;Y*,¢)) = {r(Y*;Y*, ¢)}. For any feasible W C Y such that W = Y* 4041
U(r(Y*Y* €)= Ui(r(W; Y™ ) = Uy (Y") = U;(W) + |[Y* e Wle
> Y e Wle >0,
where the equality follows from the definition of r, the first inequality follows from the fact

that Y* is optimal at Y (i.e., Y* € C;(Y)) and the second inequality follows from the fact
that W 2 Y*. Thus, we see that C;(r(Y;Y*,¢)) = {r(Y*;Y*,¢)}, as desired.

Fact 2: 7(Ci(r(r(Y:;Y* e); 2*,0))) C 7(Ci(r(Y;Y*,¢))). Consider an arbitrary ® € 7(Cy(r(Y;Y*, £)))
and an arbitrary = ¢ 7(C;(r(Y;Y*,¢))). For € small enough, we have that,
(@ (r(Y; Y™, €); 2°,6)) — a(E;r(r(YY " €); 27,6))
> (@ (YY" e)) —aEr(Y; Y, e) — [P S E[§ >0,

where the first inequality follows from the definition of r and the second inequality follows as ®

is associated with an optimal set of contracts at 7(Y; Y*, ), = is not associated with an optimal

4ONote that (feasible) subsets of Y and (feasible) subsets of 7(Y;Y*,¢) are in a one-to-one correspondence.
“1Here, we use © to denote the symmetric difference between two sets, i.e., Wo W’ = (W~ W) U(W ~W').
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set of contracts at 7(Y; Y™, ), and § is sufficiently small. Thus, Z ¢ 7(Cy(r(r(Y;Y*,€); Z*,6)))
and so 7(Ci(r(r(Y;Y*,¢); Z2*,8))) C 7(Ci(r(Y;Y*,¢))).
Fact 3: 7(C;(r(Z;Y*,¢))) C 7(C;(Z)). Consider an arbitrary ® € 7(C;(Z)) and an arbitrary
= ¢ 7(Ci(Z)). For € small enough, we have that

WP;r(Z;Y" e)) —uEr(Z;Y ) Y7 e) > (P Z) —U(E; Z) — [P S Ele > 0,

where the first inequality follows from the definition of r and the second inequality follows as
® is associated with an optimal set of contracts at Z, = is not associated with an optimal
set of contracts at Z, and ¢ is sufficiently small. Thus, = ¢ 7(C;(r(Z;Y*,¢))) and so
T(Ci(r(Z;Y™,e))) € 7(Ci(2)).
Fact 4: 7(Ci(r(r(Z;Y*,€)); 2*,0))) C 7(Ci(r(Z; Y*,¢))). Consider an arbitrary ® € 7(C;(r(Z;Y*,¢)))
and an arbitrary = ¢ 7(C;(r(Z;Y*,¢))). For § small enough, we have that
W(®;r(r(Z;Y",2); 27,0)) — a(E; r(r(Z; Y™, €); 27, 6))

> (P r(Z;Y"e)) —a(Er(Z;Y",e) — [P O E|6 > 0,
where the first inequality follows from the definition of r and the second inequality follows as ®
is associated with an optimal set of contracts at r(Z; Y™, €), Z is not associated with an optimal
set of contracts at r(Z; Y™, ¢), and § is sufficiently small. Thus, Z ¢ 7(Ci(r(r(Z;Y*,€); Z*,6)))
and so we have that 7(Ci(r(r(Z;Y*,€); 2*,6))) C 7(Cy(r(Z;Y*,€))).
Fact 5: C;(r(r(Z;Y*,e);2*,6)) = {r(Z*;Z*,6)}. We have that for any feasible W C
r(Z;Y*,¢) such that W # Z* 22

U(r(2*27,8)) — Ui(r(W; 2*,8)) = Uy(Z*) = Uy(W) + |Z2* o W6
> 2" oWIs >0

where the equality follows from the definition of r, the first inequality follows from the fact
that Z* is optimal at r(Z;Y*, e), e, A= Ci(r(Z;Y*,¢e)), and the last inequality follows as
W # Z*. Thus Ci(r(r(Z;Y*,€); 2*,6)) = {r(Z*; Z*,5)}.

Combining Facts 1 and 2 shows that there is a unique element, of 7(C;(r(r(Y;Y*,); Z*,4)))
and, since r(r(Y;Y™*, ¢); A 9) is a finite set, there must therefore exist a unique
Y* € Ci(r(r(Y; Y™, €); Z*,0)).

Fact 5 shows that Z* = r(Z*; Z*,6) is the unique element of C;(r(r(Z;Y*,); Z*,6)). Thus,
as [r(r(Y;Y* e): Z2*,6)]oi C [r(r(Z;Y*,e); Z*,6)]_; by Observation 1 (as Y.,; C Z_,;) and

42Note that there is a natural one-to-one correspondence between (feasible) subsets of Z, (feasible) subsets
of r(Z;Y*,¢e), and (feasible) subsets of r(r(Z;Y™*,¢e); Z*,9).
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[r(r(Y; Y™, €); Z%,0)ics = [r(r(Z;Y*,€); Z2*,8)]iss (as Yi, = Z;_,), Step 1 of the proof implies

AR VAR SR R AN (17a)
[r(r(Y;Y*,): Z2%,0)| i N Y2, C [r(r(Z;Y*,€): Z%,0)] =i ~ 27, (17b)
Y5 C 7y, (17¢)

Each contract (w,p,) in }N/_*ﬂ has the property that p,, is the minimal price associated with w
among all prices associated with w by some contract in r(r(Y;Y*, &); Z*,6) as Y* is optimal
at r(r(Y;Y* e); zZ*, §). Similarly, each contract (w,p,) in Z*,; has the property that p,, is
the minimal price associated with w among all prices associated with w by some contract
in r(r(Z;Y*,s);Z*,é) as Z* is optimal at T‘(T(Z;Y*,€);Z*,5). Moreover, each contract
(W, pw) € }72: has the property that p, is the maximal price associated with w among all
contracts associated with w in r(r(Y; Y™ ¢); A §), as Y* is optimal at r(r(Y;Y* &); A J).
Similarly, each contract (w, p,) € Zf ", has the property that p,, is the maximal price associated
with w among all contracts associated with w in r(r(Z; Y™, ¢); A §), as Z* is optimal at
r(r(Z;Y*,€): Z*,8). We thus rewrite (17b) and (17¢) (while maintaining (17a)) as

1225 — 125 = Y5, = Y5 (18a)
(@) ere;yee;zene): || [ W) €rtr(Z:Y7,6); 27,0) 1 ]
wéT(YE,) or c w & 7(Z%,;) or (18b)
Hw,p,) €r(r(Y;Y* e); Z*,9) - Hw,p,) € r(r(Z;Y*e); Z*%,0)
I such that p, < p, 1. I such that p, < p, 1.
[ (w,py) € T(T(Y;Y*,€);Z*,5) )] [ (w,py) € r(r(Z; Y*,s);Z*,é) )]
) we T(Y*,) and ) - ) w e T(Zr,) and ) (18¢)
Bw, po) € r(r(Y;Y*,€); 27,6) Bw,po) € r(r(Z;Y*,e); 2%,0)
| such that p, < p, 1. I such that p, > p,, 1

Combining Facts 1 and 2 yields that 7(Y*) = 7(Y*), implying that |[Y*,| = |Y*,| and

Y75, | = Y], and so we have

1Z7 =125, > Y25 — Y5 (19a)
(w,pn) € r(r(Y;Y*,2); Z%,6) : (w,pu) € 7(r(Z;Y*,€); Z%,6) :
) wé¢T(Y®,) or ) - ) w & T(Z%,;) or A (19b)
I(w,pw) € r(r(Y;Y",e); Z7,0) (w,pw) €7(r(Z; Y, €); 2%, 6)
such that p, < p, " such that p, < p, "
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(W, po) €7(r(Y;Y*,€); Z%,6) : (w,po) € r(r(Z;Y*,€); Z%,0) :

w e 7(Y;%,) and c w e T(Z:,) and (19¢)
Aw,p.) € r(r(Y;Y*,€); 2%,0) T Bw.pe) €r(r(Z;Y* ) 2%,6)
such that p, > p, o such that p, > p, .

Similarly, combining Facts 3-5 yields that there exists Z* € C;(Z) such that 7(Z*) = 7(Z*),

implying | Z*,,| = |Z*,| and |Z:,| = | Z,|, and so we have
125 = 1Z5] = Y2, — [V (20a)
( (wopa) €r(r(Y; Y 2);27,0) ] [ (w.po) €r(r(Z:Y*,6); 2%,8) « ||
) wé¢ T(Y%,) or ) - ) w ¢ T(Z%,;) or ) (20b)
Hw,p,) € r(r(Y;Y* e); Z*,9) Hw,p,) € r(r(Z;Y*e); Z*%,0)
! such that p, < p, 1o ! such that p, < p, 1.
(w,p) € r(r(Y;Y*,€); Z%,6) : (w,p) € 1(r(Z;Y™,€); 2%,0) -
) w e 7(Yr,) and ) - ) w e T(Zr,) and A (20¢)
Bw, po) € r(r(Y;Y*,€); 27,6) Bw, po) € 1(r(Z;Y",€); Z7,9)
such that p, > p, o such that p, > p,, i

We have, by (20c) that, if w € 7(Y;*,), then w € 7(Z},); moreover, since Y;, = Z,, by
assumption, the set of prices corresponding to a given w € €);_, is the same in Y and Z. We
thus rewrite (20c) (while maintaining (20a)) and (20b)) as,

125 = 125 ] = Y5, — Y] (21a)
(w.po) € r(r(Y;Y*,2); 27,0) | ] ([ (w.p.) €r(r(Z;Y*,€); 27,6) -
7 wéeT(Y?E,) or A - 7 w ¢ T(Z%,;) or A (21b)
Hw,p,) € r(r(Y;Y*, e); Z*,9) w,py,) € r(r(Z;Y*,e); Z2*,0)
such that p, < p, N such that p, < p, "
(w,p,) €Y : ] [ (w,py) € Z:
w e T(}_/;’;) and - w e 7'(%*%) and (21¢)
Hw,p,) €Y Hw,p) € Z
such that p, > p, IR I such that p, > p, o

We have, by (21b) that, if w ¢ 7(Y%,), then w ¢ 7(Z*,); moreover, since Y,; C Z_,; by
assumption, the set of prices available for a given w € Q)_,; is larger in Y than in Z. We thus
rewrite (21b) (while maintaining (21a) and (21c)) as

125 = 1251 = Y5 = YL (22a)
(w,py) €Y : (w,pw) € Z -
wé¢T(YE,) or - w ¢ T(Z%,;) or (22b)
Hw,p,) €Y Hw,p,) € Z
such that p, < p, " such that p,, < p, "
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(w,pu) €Y : (w,p,) € Z:

w e 7(Y;r,) and w e T(Z;,) and (22¢)
ﬂ(waﬁw) ey a ﬂ(wvﬁw) €z
such that p, > p, i such that p,, > p. i

We rewrite this expression as

2% = 1255 = Y2 = Y5
Y\Y, 2N 27,
Y], € [Z7]is
Thus the preferences of i satisfy the requirements of Part 1 of Definition 9.

The proof that the preferences of ¢ satisfy the requirements of Part 2 is analogous.
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