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Convolutional Neural Networks
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Deep Learning at untapt
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Hubel & Wiesel (1959)

Vision Case Study
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Vision Case Study
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Vision Case Study
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Vision Case Study

Visual Cortices

Parietal Lobe
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Camera Obscura
da Vinci (15th Century)

Vision Case Study
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Block World

Larry Roberts (1965)

Vision Case Study
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Viola & Jones (2001)
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Neurocognitron
Fukushima (1980)

Vision Case Study
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MNIST Digits & LeNet-5

LeCun, Boutou, Bengio & Haffner (1998)
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Vision Case Study

LeNet-5

LeCun, Boutou, Bengio & Haffner (1998)
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ImageNet
Fei-Fei Li et al. (2009), 14m images, 22k categories
] )

Vision Case Study

mite

mite or scooter

black widow go-kart jaguar
cockroach moped cheetah
tick fireboat bumper car snow leopard

drilling platform golfcart

s | . s S 3 i
grille mushroom cherry Madagascar cat
convertible agaric dalmatiah squirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri|

fire engine || dead-man's-fingers currant howler monkey |,




Deep
Learning

ImageNet Classification Error
ILSVRC: 1.4m, 1k object classes

Vision Case Study

ILSVRC top-5 error on ImageNet
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e AlexNet

Krizhevsky, Sutskever & Hinton (2012)

Vision Case Study

256 Max
Max Max pooling
pooling pooling

Numerical Data-driven

Sl Fuup

H
&

Conv 5: Object Parts Fc8: Object Classes




Deep
Learning

Vision Case Study
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Theory

Application

Sunspring

Sharp & Goodwin (2016)
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Vision Case Study

Sunspring

Sharp & Goodwin (2016)

[video]


http://arstechnica.com/the-multiverse/2016/06/an-ai-wrote-this-movie-and-its-strangely-moving/
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Hardware

Building Blocks

local machine

build your own server
AWS / Google Cloud Platform
GPU(s) / TPU(s)
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Popular Libraries
based on Johnson (2016) in Stanford CS231n1.12

Building Blocks

Caffe Torch Theano TensorFlow

Language C++, Python Lua Python Python
Pretrained -(Lasagne) Inception

Yes++ VYes++

Parallel GPUs: Data  [Yes| Yes

Parallel GPUs: Model - - Experimental F

Readable Source Code [Né8l (C++) [Nesl [No|

Good at RNN Mediocre [¥esl L
Keras.

Higher-Level APIs
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[Human Learning Resources]

Building Blocks Data Seience Resources — J

= C  ® www.jonkrohn.com

Deep Learning
First Steps. For people in New York, | founded a Deep Learning Study Group. If you're further afield, you can

track our progress via GitHub. Otherwise, get a lay of the land from:

« the sequence of courses suggested by Greg Brockman, or
« this (more comprehensive) introductory resource post from Ofir Press

- ml? Textbooks. Relative to viewing lectures, | prefer reading and working through problems. The stand-out resources
for this, In the order they ought to be tackled are:

‘ « Michael Nielsen's e-book Neural Networks and Deep Leaming
« the In-press Deep Leaming textbook by Goodfellow, Bengio and Courville

Krohn, Cajoler of Di

Interactive Demos. Top-drawer interactive demos you can develop an infuitive sense of neural networks from are

Home provided by:
Posts + Chris Olah

Resources « the illustrious Andrej Karpathy

Publications

Talks Applications. Scroll down to see my recommendations for high-quality data sources as well as global issues in

Applications need of solutions. Problems worth solving with deep leaming approaches in particular are curated by OpenAl

Academic Papers. If you're looking for the latest deep learning research, bookmark:

Flood Sung's roadmap for deep leaming papers
Adit Deshpande’s list of nine key papers

this thorough, subcategorized reading ist

Karpathy's arXiv Santty Preserver

« GitXiv for open-source implementations of popular arXiv papers



https://www.jonkrohn.com/resources/
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Biological Neuron Morphology

Neural Units

Dendrites

Terminal Bulb
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Perceptron
Rosenblatt (1957)

ish
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Biological Neuron Physiology
The Binary Action Potential

Membrane
potential

Time
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Neural Units
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Multi-Layer Perceptron

input layer
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Multi-Layer Perceptron

w4+ Aw

output+Aoutput
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Neural Units

0.8

0.6 -

0.4

0.2 4

Sigmoid Neuron

0.0




tanh Neuron
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RelLU: Rectified Linear Units

Nair & Hinton (2010); Maas, Hannun & Ng (2014)
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Neural Nets

@® Theory

Neural Networks

Outline



MNIST

LeCun, Cortes & Burges
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Fully-Connected Neural Net
Single Hidden Layer

hidden layer

Neural Nets

input layer
(T84 neurons)
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TensorFlow Playground

[demo]



http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=1&seed=0.17272&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

Deep
Learning

Outline

Deep Neural Nets

@® Theory

Deep Neural Networks
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Deep Fully-Connected Net

3 (or more) Hidden Layers

hidden layer 1 hidden layer 2 hidden layer 3

Deep Neural Nets input layer
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TFLearn

Deep Neural Nets

Caffe Torch Theano TensorFlow
Language C++, Python Lua Python Python
Pretrained Yes++ [Ves  [¥&8l (Lasagne) | Inception
Parallel GPUs: Data Yes Yes Yes Yes

Parallel GPUs: Model - - Experimental
Readable Source Code [Né8l (C++) [Nesl [No|

Good at RNN [No| Mediocre  [¥es]
Higher-Level APls [No| [No| 'Keras|




Deep
Learning

A Simple Deep Net in TFLearn

[notebook]



https://github.com/the-deep-learners/study-group/blob/master/demos-for-talks/simple_dnn.ipynb

Deep
Learning

Synaptic Pruning
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(Stochastic) Gradient Descent
Adam = AdaGrad + RMSprop
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Backpropagation

computes error & gradient of cost function

neuron j, layer [

ot =V,0 00 (2h) (BP1)
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Deep Neural Nets

Overfitting

...and avoiding it

A 4

e L1/L2 regularization
e dropout
e artificial data set expansion

Y

Y
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Improving Neural Networks
Mostly Hyperparameter Tuning

e problem simplification

e number and width of layers

e cost fxn: quadratic, cross-entropy, log-likelihood, &c.
e more epochs, early stopping

e clever initialization of weights and biases

e learning rate n, variable schedule

e regularization parameter A

e mini-batch size

e automation, e.g., with Spearmint

[Summary Blog Post]



https://www.untapt.com/blog/2016/09/29/deep-learning-study-group-session-3-how-to-improve-neural-networks/

Deep
Learning

Universality

Solve Any Continuous Function (Nielsen, 2015)
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Unstable Gradient

Typically Vanishes (but can Explode)

Speed of learning: 4 hidden layers

10° T
— Hidden layer 1
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Deep Neural Nets b Hidden layer 4
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Revolution of Depth

152 layers
A
Deep Neural Nets \
‘\
\\
22 layers | 19 Iayers
‘6.7 I

357 I I 8 layers I Slavers shallow

ILSVRC'15 ILSVRC'14  [LSVRC'14 ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)
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Deep Neural Nets

AlexNet
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@ Contemporary Applications
Convolutional Neural Networks
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ConvNets

topographical mapping

hyﬁer—complex @ high level
cells
; @ mid level

@ low level

camplex cells

simple cells

-
5
D 60
@ ac®
] .
= A .
=" .
D 5
o .
& 2
&
B w
F .
ZF A T T T
40 20 0 20 40

Stimulus orientation (deg)

THubel & Wiesel, 1968



Deep
Learning

Visual Cortices

Parietal Lobe

LGN
Occipital Lobe

V7 ]
V3a (Motion)
V3 (Form)

Light
ConvNets {

Temporal
Lobe S = VP (Relays signals)

V2 (Relays signals)

V1 (Catalogs Input)

V8

Sagittal Section

Extrastriate Cortex

Striate Cortex

Extrastriate Cortex
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Krizhevsky, Sutskever & Hinton (2012)

ConvNets

256 Max
Max Max pooling
pooling pooling

Numerical Data-driven

Sl Fuup

H
&

Conv 5: Object Parts Fc8: Object Classes




Deep
Learning

CONYOLUTIONS

ConvNets
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ConvNet Visualisation
Yosinski et al. (2015)

[video]



https://www.youtube.com/watch?v=AgkfIQ4IGaM

Deep
Learning

Network Architectures

Image input
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AlexNet: ILSVRC ‘12 winner

Krizhevsky et al. (2012)

[TFLearn notebook]



https://github.com/the-deep-learners/study-group/blob/master/demos-for-talks/AlexNet.ipynb

Deep
Learning

VGGNet: ILSVRC ‘14 runner-up

Simonyan & Zisserman (2015)

[TFLearn notebook]



https://github.com/the-deep-learners/study-group/blob/master/demos-for-talks/VGGNet.ipynb

Deep
Learning

ConvNet in TensorFlow

ConvNets Caffe Torch Theano TensorFlow
Language C++, Python Lua Python Python
Pretrained Yes++ [Ves  [¥&8l (Lasagne) | Inception
Parallel GPUs: Data  [Xes| Yes
Parallel GPUs: Model - - Experimental F
Readable Source Code [Né8l (C++) [Nesl [No|
Good at RNN [No| Mediocre  [¥es]
Higher-Level APls [No| [No| 'Keras|
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ConvNet in TensorFlow

[notebook]



https://github.com/the-deep-learners/study-group/blob/master/weekly-work/week1/deep_MNIST.ipynb

Deep
Learning

= cn localhost:6006/#events

EVENTS IMAGES GRAPH
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ConvNet in Theano

ConvNets Caffe Torch Theano TensorFlow
Language C++, Python Lua Python Python
Pretrained Yes++ VeS|  [Yes (Lasagne) Inception
Parallel GPUs: Data  [Yes)| Yes
Parallel GPUs: Model [Nl Yes Experimental F
Readable Source Code [Né8l (C++) [Nesl No|
Good at RNN [No| Mediocre = [Yes|
Higher-Level APls [No| [No| 'Keras
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ConvNet in Theano

[demo]



https://github.com/the-deep-learners/study-group/blob/master/weekly-work/week5/network3.ipynb

Deep
Learning

ConvNet in Keras

calls TensorFlow or Theano

ConvNets

Caffe Torch Theano TensorFlow

Language C++, Python Lua Python Python
Pretrained -(Lasagne) Inception

Yes++ VYes++

Parallel GPUs: Data  [Yes| Yes

Parallel GPUs: Model - - Experimental F

Readable Source Code [Né8l (C++) [Nesl No|

Good at RNN Mediocre [Yes| L
Keras.

Higher-Level APIs
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ConvNets

ConvNet in Keras

calls TensorFlow or Theano

[notebook]


https://github.com/the-deep-learners/study-group/blob/master/demos-for-talks/Keras_MNIST_ConvNet.ipynb

Deep
Learning

“2.5-dimension” CT Scans
Roth et al. (2015)
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Computer-Aided Detection
Shin et al. (2016); Roth et al. (2016)

Experimental Results (-100% sensitivity but -40 FPs/patient at
candidate generation step; then 3-fold CV with data augmentation)

TIN5 =01 TR TN =07T

TIN5 =08 FaRs 5000 FaRe TN p=007 TR 5=00

ConvNets

= Mediastinum = Abdomen
71% @ 3 FPs (was 55%) 83% @ 3 FPs (was 30%)

Distance (<=15) - Lymph Node FROC Curve for 15 Patients Distance (<=15) - Lymph Node FROC Curve for 14 Patients
i 1

g

~Cometwilh N =2 (AUC 0911)
- ConviNetwih N = 2 (AUC: 0892)
- ConvNetwith N = 5 (AUC. 0.924)
===~ ComNet with N = 10 (AUC: 0.930)
ComMetwih N = 15 (AUC: 0939)
A Cometwih N = 25 (AUC' 0938)
== == ComvNet wilh N = 50 (AUC: 0 928)
=== ComNet with N = 75 (AUC: 0.942)
ComvMetwith N = 100 (AUC 0.942)

= ConvNet with N = 2 (AUC 0.862)
= ConvNet with N = 3 (AUC: 0872)
~ConvNet with N = 5 {AUC: 0 890)
====ConvNet with N = 10 (AUC: 0.884)
ConvNet with N = 15 (AUC: 0 899)
Convietwith N = 25 (AUC0907)
====ConvNet with N = 50 (AUC 0.921)
» onvNet with N = 75 (AUC: 0917)
‘ConvNet with N = 100 (AUC: 0.916)

True Positive Rate (Sensitivity)
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ConvNets

Kaggle

Data Science Bowl 2017

[link]


https://www.kaggle.com/c/data-science-bowl-2017/

Deep
Learning

Transfer Learning

Caffe
ConvNets
Caffe Torch Theano TensorFlow
Language C++, Python Lua Python Python

Pretrained

Yes++ Yes++
Parallel GPUs: Data Yes Yes
No. Yes.
Yes

- (Lasagne) Inception

Experimental F

No.

m e e
Keras.

Parallel GPUs: Model
Readable Source Code ~[Yes| (C++)
Good at RNN

Higher-Level APIs
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Transfer Learning
Caffe

[Model Zoo]



https://github.com/BVLC/caffe/wiki/Model-Zoo

Deep
Learning

ConvNets

®  ® [y aboutsblank

Transfer Learning

X | © TensorFlow For Poets x Jon

< C &

@ Introduction

3 ) Retrieving the ima

training Inceptior

Using the Retrained

Model

Other Hyperparameters

ep: Training on

Sategories

Did you find a mistake? Please file a bug.

googl 1sorflow-for-p 0 ¥

< TensorFlow For Poets ( 37 min remaining

1. Introduction

TensorFlow is a an open source library for numerical computation, specializing in
machine learning applications. In this codelab, you will learn how to install and run
TensorFlow on a single machine, and wil train a simple classifier to classify images of
flowers.

What are we going to be building?

In this lab, we will be using transfer learning, which means we are starting with a model
that has been already trained on another problem. We will then be retraining it on a similar
problem. Deep learning from scratch can take days, but transfer leaming can be done in
short order.

We are going to use the Inception v3 network. Inception v3 is a trained for the ImageNet
Large Visual Recognition Challenge using the data from 2012, and it can differentiate
between 1,000 different classes, like Dalmatian or dishwasher. We will use this same
network, but retrain it to tell apart a small number of classes based on our own ex:

What you willlearn
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Video Classification

[video]



https://www.youtube.com/watch?v=qrzQ_AB1DZk

Deep
Learning

Outline

@ Contemporary Applications

Long Short-Term Memory Recurrent Neural Networks
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Sunspring

LSTMs




Deep
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Antecedents

Theory

Application

LSTMs

Sunspring
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A history of language technologies

Scientists from
IBM and
Georgetown
demonstrate

a limited
machine-
translation
system

1954 60

1965

John Pierce’s highly
critical report on
language technologies
published. Funding
languishes for decades

“2001: A Space Odyssey”
released

No US government
research funding for

Microsoft speech-recognition
Dawn of “common system reaches human parity

task” method.
Researchers share
data, agree on
common methods
of evaluation

Siri debuts on iPhone

Statistics-based version of
Google Translate launched

machine translation
or speech recognition
I

70 75 80

85 90 g 2000 05 10

Google releases neural-net machine
translation for eight language pairs
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Translation method | Phrase-basedt | Neural-networkt | Human

A3 4 5 Perfect translation=6
Spanish | 1
English E French I i
LSTMs Chinese 1 1
Spanish — English | i
French —» English i i

Chinese — English | |




RNNs; LSTM RNNs

Hochreiter & Schmidhuber (1997)
Graves, ... & Schmidhuber (2009)

24 X X-NoNoNoNe
= @@
w @ O O O O O O

Time 1 2 3 4 5 6 7




Learning Vector Space Embedding

walked

walking

swimming

Verb tense

Male-Female

Word2Vec: Mikoloy, ... & Dean (2013)

spain \
Italy \Hudzid
Rome

Germany —
Berlin
Tuskey e
Ankara

Russia ——
Moscow
canada Ottawa

Japan ——
o Tokyo
Vietnam ————— ganoi

China ————————— Beijing

Country-Capital
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t-SNE

Hinton & van der Maaten (2008)
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vz

Word2Vec + t-SNE
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v2

Word2Vec + t-SNE
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‘Understand’ Language

with Word2Vec features in your model
(posi

[('angularjs’, 0.9534549117088318),
('backbonejs’, 0.9315043687820435),
('ember', 0.905410647392273),
('emberis', 0.9029799103736877),
('reactis’, 0.896049439907074),
('requireis’, 0.8759748339653015),
('coffeescript 0.8645504713058472) ,
('bootstrap’, 0.8554328083992004),
('nodejs', 0.8515532612800598),
('backbone', 0.8443130254745483) )]

model.most_sim:

[('oversaw', 0.8659406900405884),
('directed’, 0.8491166234016418),
('supervised’', 0.8058902621269226),
('coordinated’, 0.7858685851097107),
('led', 0.7539615035057068),
('orchestrated', 0.7211644649505615),
('supported', 0.7198437452316284),
('comanaged', 0.6774874925613403),

( 'encompassing’, 0.6726169586181641),
('administered’, 0.6706464886665344)]

[even with small corpora]


https://medium.com/@grivescorbett/word2vec-in-niche-domains-with-limited-data-e8c3a2c7ef52

Deep
Learning

Quick, Draw!
ConvNet + LSTM

[link]


https://quickdraw.withgoogle.com/
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Deep Learning at untapt
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untapt

Digital Recruitment Platform

untapt
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untapt
Candidate-Side Feedback
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untapt
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probability of invitation to interview

N
number of words in experlence sechon of appl\cahon
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untapt
Client-Side Feedback

Your Candidates Care About Most © Where Your Applicants Live @

Your Candidates @ All untapt Candidates

AT

Work / Life Balance Lovel of Responsibility
Technology Compensation Type of Company.

Responsiveness @ Experience © Previous Roles © Roles Applied To © Interviewing Elsewhere ©

141 57%

Response Time, in Days
Average Count
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untapt
Multi-Stage Bayesian Regression with PyMC3

21 26 a5 4 L 5 s s o 1o

prior posterior ‘\

mean mean

wide
variance

untapt

Krohn, Rives-Corbett & Donner (2016)
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0.8
untapt

After

06

untapt

Area Under Curve of ROC for Individual Jobs

n_apps
® 100
® 200
@ 300

06 08
Before Fitting Job-Specific Bayesian Model

Krohn, Rives-Corbett & Donner (2016)
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untapt

Ensemble with Deep Neural Net

Give me one bullet-point from your resume:
>> « Sat around all day checking my Facebook feed
I predict a 0.0% chance of interview

untapt

Give me one bullet-point from your resume:
>> « Developed trading applications in Python
I predict a 24.6% chance of interview

Give me one bullet-point from your resume:

>> « Developed python solution for Monte Carlo risk calculation using numpy,
scipy and pandas, with a Javascript frontend in Angular]S and React

I predict a 98.1% chance of interview

deep-orange.untapt.com .
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Deep
Learning

Google DeepMind
Challenge Match

8-15March 2016

Reinforcement

)¢ Google DeepMind
¢ Challenge Match
-t ach 2018

AlphaGO

Silver et al. (2016)

£6% AlphaGo
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Videa Pinbal]

At
Crazy Cimber]
Gopher

Demon Attack |
Name This Game |
]

inforcement

Fishing Dty
Up end Dour ]
e Hockey

Private Eye |
Montezuma's Revenge.

g

H

. 2
TTI LW
Yaag:

2

Deep Q-Learning

et | I—
HE RO Teiit at human-evel or above.
Asteric | B39 — oelow human-evel
Battle Zone | 6736l —
Wizard of Wor | GT5e——
Chopper Command_ | GSll—
Centipede | EEHRNE——
Bank Heist | 57800+
River Raic | G780
Zacon | S+
Amicar | 65—
Alien| 2~
Venture | @
Seaquest | [-25%
Double Durk

2

))
(

T T T T (T
100%  200%  300%  400%  600%  600% 1000%

1
4500%

Mnih et al. (2015)

[Atari Games]


https://www.youtube.com/watch?v=6kO4eZWeKOM

Deep
Learning

[OpenAl Universe]

Reinforcement

[Google DeepMind Lab]



https://openai.com/blog/universe/
https://deepmind.com/blog/open-sourcing-deepmind-lab/

Deep

=)
£
£
©
®
i

Reinforcement
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