
  

    

Abstract— Understanding the correlation between neural 
features and symptoms of mood disorders, such as depression, 
could provide objective measurements for diagnosis and 
facilitate clinical treatments. In this paper, we study the 
correlation of neural features with positive naturalistic 
emotional displays, e.g., smiling, in human subjects in a normal 
setup, without presenting any experimental stimuli to the 
subjects. We employed a data driven approach and utilized 
Random Forest classifiers to decode positive emotional displays 
from brain activity. Our results on all of our eight subjects 
show that neural features from mesolimbic circuits including 
cingulate, hippocampus, insula, amygdala and orbitofrontal 
cortex (OFC) can be used for decoding emotions (mean area 
under the ROC curve = 0.86 +- 0.04). The most important 
features based on the Random Forest models were mainly 
clustered in the gamma frequency band (30-100Hz) and low 
frequencies, with majority of them in theta band (4-8 Hz). 
These features were distributed across the limbic network, 
specific to each individual. Remarkably, the gamma cluster was 
selective to the positive emotions while the low frequency 
cluster showed selectivity to the neutral state. These results 
demonstrate that non-task-based emotions can be decoded 
from brain neuronal activity, and, may inform biomarker 
identification for objective symptom assessment in the 
treatment of severe mood disorders. 

I. INTRODUCTION 

Identification of neural biomarkers correlated with 
behavioral symptoms of mood disorders, such as major 
depressive disorder, could provide objective metrics for 
diagnosis, risk-assessment and recovery tracking. In 
particular, changes in affective stages, e.g., an increase in 
presence of negative emotional display such as sadness 
or decreased presence of positive affective displays, such as 
laughter, are symptoms of depression [1]. Using behavioral 
paradigms such as memory recall [2] or image/video streams 
with specific valence [3], fMRI imaging [3] and EEG 
(Electroencephalography) [4] studies have reported that 
brain regions including limbic circuits, frontal cortex and 
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temporal cortex are involved in affective displays of laughter 
and emotional states, such as happiness. These studies have 
provided fundamental understanding of neural mechanisms 
underlying emotion and its affective processing. However, 
they are all influenced by limitations: (1) the aforementioned 
paradigms afford experimental control, but they may engage 
neural circuits which are distinct from those underlying 
endogenous changes during “natural emotional displays”, in 
which no task/stimulus would be delivered to elicit specific 
emotions, (2) available neural and behavioral datasets from 
each participant in both fMRI and EEG studies are limited 
(hour long sessions), (3) fMRI studies suffer from low 
temporal resolution (above 0.5 second), while EEG studies 
lack spatial resolution and do not have access to deep 
mesolimbic structures such as anterior cingulate region, 
which has been shown to be a prominent brain hub for 
inducing laughter [5,6].   

Here we study the neural correlates of naturalistic 
emotional displays, in the absence of any experimental task. 
Multiple days of continuous intracranial 
electroencephalography (iEEG) signals were recorded from 
human subjects undergoing seizure localization. Positive 
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Figure 1. A) Annotated positive emotional displays for an example 
patient across two days. The green lines and purple boxes are instances of 
the positive behavior, and the neutral state, respectively. B) z-score of 
analytic amplitude within each frequency band for an example channel, 
which are all averaged in 10 sec non-overlapping bins. 𝜃: theta, 𝛼: alpha, 
𝛽: beta,	𝐿𝛾: low gamma, H𝛾: high gamma   
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emotional displays, such as smiling, laughing and positive 
expressions, along with other human natural behaviors, i.e. 
drinking, eating and etc., were hand annotated from 24-hour 
audio and video recordings of consented subjects. This 
unique clinical situation allowed us to evaluate whether there 
are neural features correlated with natural positive emotional 
behavior in humans. In particular, we used machine learning 
and data driven approaches to address two main questions: 1. 
Do neural features allow distinction between positive 
emotional displays and neutral state? 2. If yes, what are the 
neural correlates underlying such positive behaviors? 

II. METHODS 

A.  Neural Recordings  
Electrophysiological data were collected by Natus EEG 

clinical recording system at sampling rates at either 512 Hz 
or 1024 Hz. Based on epileptic pathology and clinical needs, 
each subject (n=8, 4 females & 4 males, age: 20-36) had 
specific electrode coverage within the mesolimbic circuit, but 
some regions were common across all patients such as 
orbitofrontal cortex (OFC), cingulate and insula. All 
mesolimbic structures were sampled by either 4 contact strip 
or 4/10 contact depth electrodes. Electrode locations were 
validated by visual examinations (co-registered CT and 
MRI).  

B.  Behavioral Data Recordings and Annotations 
During several days of hospitalization, 24-hour video 

and audio were recorded for the same human subjects. Then 
a set of human raters were asked to manually annotate the 
emotional displays using ELAN [7] software by putting a 
single mark at each time stamp in the recordings. To 
increase reliability and precision of annotations, video labels 
were verified by two other annotators for each subject. The 
labels include both emotions, e.g., smiling, laughing, 
positive, and pain expressions, and other natural activities 
such as drinking, eating and etc. In this paper, we focus on 
instances of smiling, laughing and positive expressions that 
were all grouped under positive emotional displays (Figure 
1-A). Neutral display is defined from 10-minute long periods 
of annotated data where there are neither positive nor 
negative emotional displays. Emotional displays were later 
aligned with the neural recordings and formed a binary time-
domain trace (Figure 1-A).   

Comorbid depression and anxiety disorders were 
quantified by Beck Depression Inventory (BDI) and Beck 
Anxiety Inventory scores prior to surgery. Both scores ranged 
between minimal to moderate, 4-28 and 5-28, respectively.  

C.  iEEG Preprocessing 
 Raw iEEG recordings that were time aligned with the 

positive emotional displays, were demeaned, notch filtered 
(2nd order butterworth filter) at 60 Hz and its harmonics, and 
decimated (zero-phase 30th order FIR filter) to 512 Hz. Then 
the preprocessed signals were visualized to remove noisy 
electrodes and mark time epochs when there was motion or 
interictal artifacts [8]. After excluding noisy channels, 
common average referencing was performed on the 
electrodes that were on the same depth/strip lead.     

D. Feature Extraction  
To extract neural features, we applied the Hilbert 

transform on band pass filtered signals in five frequency 
bands: 4-8 Hz (theta), 8-12 Hz (alpha), 12-30 Hz (beta), 30-
55 Hz (low gamma), and 70-100Hz (high gamma), by 4th 
order butterworth filter. Using 1 second non-overlapping bin, 
we averaged the analytic amplitude within each frequency 
band. The resulting signals were z-scored within each 
frequency band for each electrode and were averaged by 10 
time points (10 seconds) centered on the occurrence of each 
emotional display, i.e. positive or neutral (Figure 1-B). 
Finally, the z-scored analytic amplitudes from all electrodes 
on the same lead were averaged. Thus, the resulting input for 
the decoder has dimension of number of regions times 
frequency for each label (i.e. positive emotional displays). 
The 1-second moving average was also applied on binary 
time-domain trace of the emotional displays.  

E.  Classification 
As mentioned in section B, instances of neutral display 

were extracted from 10-minute long periods of data during 
which there were no annotated emotions. To make unbiased 
labels for neutral state, they were chosen from different 
periods of annotations. We also maximized the number of 
neutral displays satisfying aforementioned criteria and 
randomly sampled the same number of labels as in the 
positive emotion group to make a balanced dataset. We 
applied this procedure 5 times for each subject to make 5 
datasets. 

We trained a Random Forest classifier [9] using k-fold 
cross validation for each subject. The folds were selected 
such that the training and test divisions do not share adjacent 
samples in time to avoid any information overlap between 
training and testing. K (5 or 10) was picked such that we get 
at least 10 samples in each fold. Number of samples varied 
between 42 to 164 samples within each class (e.g. positive or 
neutral emotional display) across subjects. The Random 
Forest classifiers were trained with 300 trees and were 
optimized for two hyper parameters: (1) each tree was grown 
such that the maximum number of samples per leaf was 
varied in the range of 1 and 20, (2) number of features at each 
node varied in the range of 1 to maximum number of features 
minus 1.  

 
Figure 2. Example of feature selection procedure for Subject 2. Red 
lines on both inset and the main figure are the knee point of cumulative 
summation curve(inset). Regions’ nomenclatures are as in the legend.  
𝜃: theta, 𝛼: alpha, 𝛽: beta,	𝐿𝛾: low gamma, H𝛾: high gamma   
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F.   Feature Selection 
Random Forest models give the relative importance of 

features as an output. In the case of classification, it is 
defined as the mean prediction error for each sample, such 
that those decision trees including that sample in the 
aggregated boot strapping, will be removed and the error is 
computed by the remaining trees. Using this approach the 
relative importance of tree nodes, i.e. features, is obtained 
[10]. We refer to the model prediction error for each feature 
as feature importance (FI).  

Subsequently, we ranked the FI and found the knee point 
of its cumulative summation curve for each subject using an 
algorithm called “kneedle”. This method estimates the knee 
point based on maximum curvature for a discrete set of 
points [11]. Those features up to the knee point (Figure 2, 
red vertical lines) were selected as the important features.  

G.   Statistical Analyses 
To assure that the results of main models are significantly 

above chance (50%), permuted Random Forest models were 
trained in the same way as explained in Section E, using the 
shuffled labels within each fold (to keep the balance between 
positive and neutral labels). Non-parametric Wilcoxon 
ranksum test was used for decoder statistical tests. To test the 
separation between features across the two classes, we used 
student t-test to obtain T-value and the p-value. All analyses 
were programmed in MATLAB.   

III. RESULTS 

A.  Decoder Performance    
Random Forest models that were trained and optimized 

by cross validation methods were able to significantly 
differentiate between the two classes across all subjects. The 
area under the receiver operating characteristic (ROC) [12] 
curve across seven subjects was in the range of 0.82 – 0.97 
and for one subject was 0.58 (mean±sem = 0.86 ± 0.04). The 
median area under the ROC curve (AUC) across all subjects 
was 0.89. Figure 3-A represents the ROC curve for an 
example subject, which was averaged across 10 folds of 5 
data sets (shading indicates sem). For all subjects, the AUC 
of the main model was significantly larger than the permuted 

model (Figure 3-B; mean +- sem = 0.495 +-0.005, green vs 
black boxplots), using Wilcoxon ranksum test (p<0.001). 
Furthermore, the mean accuracies across all subjects for the 
main and permuted models were 0.79 (sem = 0.03) and 0.5 
(sem = 0.0048), respectively. These results show that the 
positive emotional behavior could be distinguished from the 
neutral state using neuronal features across mesolimbic 
circuits.   

B.  Neural Features Distinguishing Positive Emotional 
Displays from Neutral State 
As mentioned above (Section F, methods), for each 

subject, we utilized Random Forest prediction error to 
extract important features from the main models (Figure 2). 
In sum, the cumulative sum of the ranked FI (Figure 2- 
inset), was computed and the top ranked features were 
selected by using an objective threshold, the knee point. In 
addition, FI was extracted for permuted models and as 
shown in Figure 2 (gray bars), these FIs were significantly 
smaller than the main model. To evaluate whether there is 
collinearity between selected features, the correlation matrix 
was computed across labels. Observing collinearity between 
features (Figure 4-A), we performed hierarchical clustering 
to objectively group the correlation matrix that resulted into 
two main groups: ‘gamma cluster’ (30-55 and 70-100 Hz) 
and ‘low frequency cluster’ including theta (4-8 Hz), alpha 
(8-12 Hz) and beta (12-30 Hz) across subjects. Within each 
subject there were specificities in both selected mesolimbic 
regions and frequency band. Table 1 shows the summary of 
selected features for each subject as  well as the limbic 
coverage used in the feature space. Clusters were named 
based on the majority of frequency band within each. 
Pooling clusters across all patients, low and high gamma 
frequencies formed 80% of the features within the gamma 
cluster, while just 15% of the low-frequency cluster was 
composed of gamma range.    

C.  Selectivity of Gamma and Low Frequency Clusters  
In the feature domain, gamma and low frequency clusters 

usually had opposite selectivity for emotional states (Figure 
4-B). Specifically, gamma distribution had larger values for 
positive expressions than the neutral state, while inverse 
direction was observed in lower frequencies, i.e. theta band. 

 
Figure 3. A) Decoder ROC curve for an example patient (Subject 2), B) population results of the area under the ROC curve for each subject. Green and 
black boxplots show main and permuted models, respectively. Wilcoxon ranksum test is used for statistics here.   
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This effect can be observed in the cingulate region of the 
example patient in Figure 4B: left panel shows that the high 
gamma distribution within cingulate is significantly different 
between positive and neutral state (t (657) = 16.34, 
p<0.0001, median of positive – median of neutral = 0.66). 
While, the theta distribution within cingulate has larger 
median value for neutral state compared to the positive 
emotional display (median of positive – median of neutral = 
- 0.43, t (657) = -10.77, p<0.0001). 

 The specificity of frequency band to the emotional 
state, was commonly seen across subjects with high decoder 
accuracy. Specifically, low- and high- gamma bands that 
were assigned to the gamma cluster are selective to the 
positive emotional state in 6/8 patients. While, the low-
frequency cluster, including theta, alpha and beta, were 
generally selective to the neutral state in the same subject 
pool. In one subject, all frequency bands were selective in 
both clusters and for one other subject, who was holding the 
lowest decoder performance (Subject 6), mixed effect was 
observed in both clusters. These results suggest that the 
gamma frequency band can serve as a biomarker of positive 
emotional display within specific mesolimbic regions in 
each subject.  

IV. DISCUSSION 
 Utilizing machine learning methods along with data 

driven approaches, we were able to decode positive 
emotional expressions in human subjects from a unique 
behavioral and neural dataset. This dataset not only provided 
continuous multi-day neural recordings from both deep 
limbic structures, i.e. amygdala, hippocampus and insula, as 
well as OFC and cingulate cortex, it also contained rich 
behavioral data that were hand annotated. The 
aforementioned properties, are not feasible in most imaging 
and EEG setups, studying mood and emotion related tasks.   

First, Random Forest models, reached promising 
performance, e.g. mean AUC = 0.86, distinguishing positive 
emotional displays from neutral state. This high-performance 
result, suggests that model inputs, i.e. the neural features 

from mesolimbic structures, are selective to the positive 
emotional expressions. Specifically, analytic amplitudes 
within traditional EEG frequency bands, including: 4-8 Hz 
(theta), 8-12 Hz (alpha), 12-30 Hz (beta), 30-55 Hz (low 
gamma), and 70-100Hz (high gamma), were used across 
available mesolimbic structures within each subject. 

 Second, we asked which neural features contributed the 
most to the decoder. Ranking Random Forest prediction error 
output, and assigning a threshold to its cumulative 
summation curve, allowed us to find subject-specific neural 
features that were selective to positive expressions (Table 1). 
A recent study by Sani et al. [13], reported that dynamical 
decoding approaches can be used to identify specific mood 
biomarkers for each subject. In both this paper and the results 
presented here, subjects were patients with epilepsy under 
clinical monitoring for seizure activity, and electrode 
coverage was based on the clinical needs. The heterogeneous 
coverage motivated us to search for personalized emotion 
biomarkers within each subject. Furthermore, if each node of 
the mesolimbic network has a specific function, then based 
on experience and brain plasticity each subject might have a 
dominant node or pair of nodes that are active more than 
other regions encoding emotions.  

Remarkably, selected features were divided into two main 
clusters including gamma cluster and low frequency cluster 
which contained theta, alpha and beta, across selected limbic 
regions (Figure 4 and Table1). Pooling all selected features 
across subjects, gamma and theta frequency were the most 
repeatable biomarkers in each cluster. In addition, the gamma 
frequency band was selective to the positive emotional 
displays compared to the neutral state within majority of 
subjects.  

Consistent with the literature [1], we have observed 
negative correlations between number of positive emotional 
displays and BDI score (n=17, r=-0.59, p = 0.012, Spearman 
correlation). Specifically, those patients expressing more 
positive behaviors had lower BDI scores. Thus, monitoring 
emotional expressions and their correlated neural features, 
can be employed to objectively assess symptoms of mood 

 

Figure 4. A) Clustered correlation matrix of the important features for subject 2. B) shows distribution of two features (cingulate-theta and cingulate-high 
gamma) for the positive emotional display and the neutral state in green and purple, respectively. Black and blue vertical lines are distribution’s median.    
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disorders.  

Furthermore, these results would introduce a beneficial 
framework for future studies to utilize experimental 
paradigms with naturalistic setups to further understand 
dynamics of the neural biomarkers underlying emotions. 
These biomarkers can be targeted by therapeutic 
interventions, including neurofeedback and closed-loop 
electrical stimulation, as a method to shift to positive states. 

V. CONCLUSION 
 Undertaking machine learning approaches we have 

identified personalized biomarkers distinguishing positive 
emotional displays in human subjects, which could serve as 
an objective mood tracker in the treatment of severe mood 
disorders. 
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TABLE I.  SUMMARY OF BIOMARKERS  

Subject 
Identifier 

Summary of limbic regions and selected features 

limbic coverage after 
removing interictal 
epochs  

Selected features  

Subject 1  OFC, CIN, AMY, 
INS 

CIN (L𝛾, H𝛾), AMY(H𝛾), INS 
(𝜃, H𝛾) 

Subject 2 OFC, CIN, HPC, INS OFC(H𝛾), CIN (𝜃, H𝛾), HPC 
(L𝛾, H𝛾), INS (𝜃, 𝛽, H𝛾) 

Subject 3  OFC, CIN, HPC, 
AMY 

CIN (L𝛾, H𝛾), HPC(all), 
AMY(all)  

Subject 4 R_OFC, R-CIN, R-
HPC, R-INS, L-CIN, 
L-INS 

R-HPC(all), L-CIN (𝛼, H𝛾), L-
INS (𝜃, H𝛾) 

Subject 5 OFC, CIN, HPC, 
AMY , INS 

CIN (𝛽, L𝛾, H𝛾), HPC (𝛼, L𝛾, 
H𝛾), AMY(𝜃), INS (𝜃, 𝛽)  

Subject 6 OFC, CIN, INS   OFC (𝜃, 𝛽, H𝛾), CIN(𝛽),	INS 
(L𝛾, H𝛾) 

Subject 7 CIN, HPC, AMY, 
INS   

CIN (𝜃, L𝛾, H𝛾), AMY 
(𝜃, 𝛼, L𝛾, H𝛾), INS (𝜃, 𝛼, 𝛽, H𝛾) 

Subject 8  OFC, CIN, HPC, 
INS1   

OFC (𝜃, 𝛼), HPC (𝛼, 𝛽, L𝛾, H𝛾), 
INS (𝜃, L𝛾, H𝛾)2 
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