Basic Map Compilation

Course IV

Sponsored by

The Florida Association of Cadastral Mappers

In conjunction with
The Florida Department of Revenue

Compiled by:
John Gargis
Professional Surveyor and Mapper
August - 2000
Revised by:
Phyllis Entzi (Retired)
Michael Cheer CCF, CFE
Greg McNamee (GIS Consultant)
February - 2004

FLORIDA ASSOCIATION OF CADASTRAL MAPPERS

In conjunction with

THE FLORIDA DEPARTMENT OF REVENUE

Proudly Presents

COURSE 4

BASIC MAP COMPILATION

Origins of the Cadastre Concept

The term cadastre is probably derived from the Greek word katastichon, meaning notebook. In Latin, the term gradually evolved to captastrum, or register of territorial taxation units, in which Roman provinces were divided.

A cadastre may be defined as a record of interests in land, encompassing both the nature and the extent of these interests. An interest in land (or property right) may be narrowly construed as a legal right capable of ownership.

Precursory cadastral arrangements may be traced to the earliest agricultural settlements along the Tigris, Euphrates, and Nile Rivers. In the pristine Egyptian state, revenue for the Pharaohs and the priesthood were met principally be taxes on the land. For purposes of taxation, the land was measured and the boundaries demarcated. Clay tablets unearthed from the ancient ruins of Sumerian villages provide records of charges against the land, maps of towns and tracts of land, area computations, and most notably, court trials adjudicating ownership and boundary disputes. The Greeks and Romans established elaborate land record systems primarily in support of land taxation policies.

One of the most famous cadastral projects was the Doomsday Book of Norman England. The Doomsday Book was primarily a collection of facts about the land and its improvements made for fiscal purposes. The actual collection of data was carried out during 1085-1086 and covered all of England withthe exception of the four northern counties and the cities of London and Winchester. Similarly, Louis IV provided for the first measurement and assessment of French lands in 1115. The Milanese cadastre mapping program conducted between 1720-1723 was one of the earliest efforts to establish a fiscal cadastre in the modern sense.

Somewhat later, the Emperor Joseph II ordered a cadastral survey for the entire territory encompassed by the Austro-Hungarian monarchy. This survey was made over a period of five years (1785-1789) and resulted in
plans and descriptions of all individual land parcels in the monarchy. In 1807, Napoleon appointed the mathematician Delambre to carry out the task of surveying more than 100 million parcels, to classify, evaluate, and bring together under the name of each owner a list of all the parcels each owns to determine their total revenue; and to make of this assessment a record which should thereafter serve as the basis of future assessments.

In addition, it appears the Europeans developed an understanding and appreciation of the cadastre concept for purposes beyond taxation. The evolution of the legal or juridicial cadastre is from this period. The juridicial cadastre was conceived as a system for recording and retrieving information concerning the tenure interests in the land, whereas the fiscal cadastre identifies the people holding an interest (taxroll) in the land and the $\underline{\text { location (maps) of those interests. }}$

1. Compile: to compose out of materials from other documents
(1a. Compose: to arrange in proper form)
2. Cadastral: showing property boundaries, subdivision lines, buildings or other related details for taxation purposes.
3. Map: a representation on a flat surface of the whole or part of an area.
$* * * * * *$

To compile a cadastral map is to arrange in proper form, out of materials from other documents, property
boundaries, subdivision lines, buildings, and other related
details to represent on a flat surface the whole or a part of an area for taxation purposes.

Introduction

Basic Map Compilation is the last in a series of four courses prepared by theFlorida Association of Cadastral Mappers (FACM) to provide students with the educational tools needed for competent cadastral mapping and to complete one of the requirements needed for the Certified Cadastralist of Florida (CCF) designation. However, FACM recommends the successful completion of Courses I, II, \& III before attempting Basic Map Compilation.

In this course, the student will learn cadastral mapping as it relates to the Property Appraiser's Office. The Property Appraiser is required by Florida Statutes to maintain an accurate set of assessment maps. Whether the student is doing manual mapping or computer-aided mapping, an in depth understanding of compilation is the ground work for a good base map.

This text will review : "Mathematics for the Cadastralist" (Course I)

> "The Public Land Survey System" (Course II)
> "Interpretation of Real Property Descriptions" . . (Course III)

While not everything will be covered in depth, the text will discuss those things necessary to complete this course. In addition, the class will review problems and how to resolve them.

When this course has been completed, the student will have successfully created a section using state plane coordinates, plotted out subdivisions, run metes and bounds, calculated acreage, resolved discrepancies, drawn curves, identified water lines, added annotation, and created a parcel numbering system.

Equipment needed for this course are: (paper provided by FACM)
Calculator Pencils (green, red, black) Protractor
Triangles - large and small/ 45 and $60 \quad$ Engineering Scale
Erasing Shield
Misc tools as needed to map

Compass
Template for circles

Basic Map Compilation

Outline of Presentation

1.Review (Monday)

Chapter 1 - Mathematics for the Cadastralist Problem Solving
Chapter 2 - Public Land Survey System
Problem Solving
Chapter 3 - Interpretation of Real Property Descriptions
Problem Solving
Chapter 4 - Additional Information
Coordinates/Problem Solving
Aerial Photographs
Plats
2.The Map (Tuesday - Thursday)

Chapter 5 - Compiling the map
a) Gather Information

Coordinates
Plats
Deeds
Aerial Photography
Right of Way Maps
Unrecorded documents
Additional recorded instruments as needed
b) Assemble supplies

Paper (provided) Writing implements
Protractor
Engineering scale Straight edges
Triangles 30/60 and 45
Erasers
Erasing shields
Calculator (not scientific)
Templates (curves, elipse, bring your favorite)

Basic Map Compilation

Outline of Presentation (continued)

c) Plot the information

Create section corners and $1 / 4$ corners
Divide Section and draw forty acre line
Plot Subdivision /Condo Boundaries
Plot Deeds
Create Roads
Draw lot lines
Add Annotation
Draw water lines
Plot any additional information
Calculate Acreage
Create Parcel Numbering System
d) Resolve conflicts

3. Examination (Friday)

a) true and false
b) multiple choice
c) fill in the blank
d) use your map to find the answer

Basic Map Compilation

The following references were used to develop this workshop:
Dimensions: A Guide to Describing Real Property by First American Title Insurance Company

Florida Boundary Law Update by Marshall G. Reissman and Walter G. Robillard

Fundamentals of Mapping: Course 6 by International Association of Assessing Officers

GW'S Workshop: Legal Descriptions and Survey Analysis by Gordon H. Wattles

Introduction to Basic Manual Mapping by Erma J. Thomas, CMS, MCF, CFE Chief Cartographer Pinellas County Property Appraiser's Office

Land Survey Descriptions: by Gordon H. Wattles
Need For A Multipurpose Cadastre by The National Research Council

Reading and Understanding D.O.T. Right-of-Way Maps by Mapping Section of the Florida Department of Revenue

Resolving Discrepancies Between Records During Modernization of the Assessment Cadastre: by Cyril R. Smith

Surveying Theory and Practice, Fifth Edition by Raymond E. Davis, MS CE D. Eng Frabis S. Foote, EM \& Joe W. Kelly, BS

Mathematics Course Review

Chapter 1

Table of Contents:

History Page 1.1
Angles Page 1.1
Case Problems Addition
Subtraction
Bearings Page 1.7
Case Problems
Angles to Bearings
Bearings to Angles
Curve Components Page 1.12
Stationing Page 1.19
Case Problem
Abbreviations Page 1.22
Figures:Figure 1.3Components of Tangential Arc - Page 15
Figure 1.4 Compound Arcs - Page 16Figure 1.5Reverse Arcs - Page 17
Figure 1.6 Measurement Length Relationships - Page 18

Math for the Cadastralist

The Florida Association of Cadastral Mappers offers a course in Math for the Cadastralist. The purpose of that course is to provide a basic understanding of the math involved in creating assessment maps. This refresher class will review some of the information provided within that course.

History:

The art of mapping started as far back as the fifth or sixth century. Since the early decades of this century, map making has been closely associated with geography. The practice of mapping today is vastly different from that used by our ancestors, although there are some common bonds. It has become a respected discipline of its own. With rapid growth in the mapping field, it has separated into several different divisions, each with its own focus, technology, and education requirements.

Whether maps are computer generated or manually drawn, there are some basic fundamentals that must be learned. One part of these fundamentals is mathematics - angles, bearings, curves, and stationing. Mapping cannot be competently accomplished without a good understanding of them.

Angles:

All lines have a direction (angle or bearing), a size (length or distance), and a shape (straight or curved). This unit will discuss the angle of lines. An angle is the measure of rotation between two different intersecting line segments. A horizontal angle is an angle formed by the intersection of two lines in a horizontal plane. In a plane angle there are a maximum of 360 degrees . A triangle contains 180 degrees. Angles are usually expressed in degrees (${ }^{\circ}$), minutes ('), and seconds ("). While there are additional separations (decimal seconds), seconds are as far as this class will examine.

The name of the point where the angle is created by the two line segments is called the vertex:

When two lines intersect, the opposite angles of the intersection are equal. See below:

A right angle contains 90 degrees, while acute angles are those that are smaller than 90 degrees. Obtuse angles are those that are greater than 90 degrees, but less than 180 degrees. Two lines when turned to an angle of 180 degrees would form a straight line.

Acute angle

Right Angle

Obtuse angle

180 degrees
Straight lines

Addition of Angular Measurements Problems:

1.

2.

3.

4.

8.

Subtraction of Angular Measurements Examples:

$$
\begin{array}{r}
31^{\circ} 28^{\prime} 15^{\prime \prime \prime} \\
-12^{\circ} 22^{\prime} 12^{\prime \prime \prime} \\
\hline 19^{\circ} 06^{\prime} 03^{\prime \prime}
\end{array}
$$

$$
\begin{array}{r}
29^{\circ} 45^{\prime} \quad 49^{\prime \prime} \\
-11^{\circ} 26^{\prime} 02^{\prime \prime} \\
\hline 18^{\circ} 19^{\prime} 47^{\prime \prime}
\end{array}
$$

4.

$$
\begin{array}{r}
49^{\circ} 58^{\prime} 45^{\prime \prime} \\
-10^{\circ} 33^{\prime} 45^{\prime \prime} \\
\hline 39^{\circ} 25^{\prime} 00^{\prime \prime}
\end{array}
$$

5.

$$
\begin{array}{rr}
11^{\circ} & 11^{\prime} \\
-10^{\circ} & 12^{\prime \prime} 47^{\prime \prime} \\
\hline 00^{\circ} 58^{\prime} 38^{\prime \prime}
\end{array}
$$

Subtraction of Angular Measurements Problems:

1.

2.

3.

4.
5.

6.

7.

8.

9.

10.

Bearings:

Now that we have reviewed the angle form of measurement, let us review the bearings derived from those angles. Historically and even today, bearings are the dominant method used to describe the direction of a line. The bearing of a line is a statement of a line's direction. It lies between " 0 " degrees on the north or south to " 90 " degrees on the east or west. The bearing is written along the line it describes.

Every surveyor's compass has four quadrants. No quadrant can exceed 90 degrees. See below:

Therefore a call of "North 70 degrees East" would be determined by moving from the North at " 0 "degrees toward the East at " 90 "degrees and stopping at " 70 " degrees. If a line were due East - it would read $\mathrm{N} 90^{\circ} 00^{\prime} 00$ " E . However, it is seldom reflected in that manner. Most surveyors use "East" instead.

Maps and plats use bearings and angles in graphic presentations. Some times only angles appear on the documents, thus the cadastral mapper needs to know how to convert from one to the other. In some cases only the angles are shown.

Basic Map Compilation

Chapter 1 - Mathematics

Conversion of Angles to Bearings Examples:

1.

2.

3.

$$
\begin{aligned}
& 144^{1} 32^{\prime} \cdot 21^{\prime \prime \prime} \\
& \hline 90^{\circ} 00^{\prime \prime} 0{ }^{\prime \prime} \\
& \hline 1^{\prime 3} 32^{2}
\end{aligned}
$$

ANSWER: $.51^{\circ} 32^{\prime} 21^{\prime \prime} E$.

$$
\begin{aligned}
& 72 \cdot 12^{\prime} \cdot 45^{\prime \prime} \\
& \hline-28^{2} \cdot 55^{\prime \prime} 53^{\prime \prime} 46^{\prime \prime}
\end{aligned}
$$

ANSWER: N. $43^{\circ} 46^{\prime} 47^{\prime \prime}{ }^{\prime}$.

$$
\begin{array}{r}
179^{\circ} 59^{\prime} 60^{\prime \prime} \\
-84^{\circ} 54^{\prime} 11^{\prime \prime} \\
\hline 95^{\circ} 05^{\prime} 49^{\prime \prime} \\
-62^{2} 25^{\prime} 36^{\prime \prime} \\
\hline 32^{4} 40^{\prime} 13^{\prime \prime}
\end{array}
$$

ANSWER: S. $32^{\circ} 40^{\prime} 13^{\prime \prime} E$.

Conversion of Angles to Bearings

Problems:

1.

2.

4.

Conversion of Bearings to Angles Examples:

$$
\begin{array}{r}
180^{\circ} 00^{\prime} 00^{\prime \prime} \\
\frac{-85^{\circ} 21^{\prime} 33^{\prime \prime}}{} 94^{\circ} 38^{\prime} 27^{\prime \prime} \\
\underline{-32^{\circ} 45^{\prime} 10^{\prime \prime}} \\
\text { Ans: } \mathbf{6 1}^{\circ} 53^{\prime} 17^{\prime \prime}
\end{array}
$$

2.

Conversion of Bearings to Angles Problems:

1.

2.

3.

Basic Map Compilation
Chapter 1 - Mathematics

Curve Components:

Besides their lengthy appearance in deeds or on maps, sometimes the most intimidating part of a description is the existence of a curve. The most frequently used curve in property descriptions is the plane circular curve which is simply a portion of the arc of a circle.
A. Radius is the distance from a point on the curve to the center of the circle. The radii are always of equal length.
B. Length of curve is the linear measurement of the arc.
C. Concavity is the inside or indented side of the curve. Conversely, the convex side of a curve is the outside, or the side away from the center. (Rarely used because it points away from the radius point)
D. Direction upon a curve is the general bearing along the curve (such as Northerly or Easterly, etc). Direction applied to concavity specifies the bearing from the concave curve at its midpoint to the center of the circle.
E. Tangency occurs in a curve when the radius of the curve touches (point of curvature) a line and at that point makes an angle of 90 degrees with the line.
F. Radial bearings are furnished if a curve is not tangent to a course at the point of intersection thereof. The length and bearing of the radius must be given to determine the center of the circle.
G. The deflection angle is always equal to the delta angle (same as central angle).
H. The deflection angles between the tangents and the long chord are always equal and are each one-half of the delta (central) angle.

The correlated parts known as the elements of a curve are: radius, arc length, central or delta angle, tangent, and chord. Most of the time a plane circular curve can be fully determined by two of its elements. The radius and central angle are the two preferred elements - from these all other elements can be determined.

Types of curves:

A simple curve is the arc of a circle of a given radius.
Compound curves are a group of two or more segments of arc. They have a common radial line at the point of contact, different lengths of radius and the centers of the arcs are on the same side of the curve. Refer to Figure 1.1 Page 15.

A spiral curve is a collective group of multiple compound curves having radii of successively decreasing or increasing lengths.

Curves are reverse if they have a common radial line at the point of reverse and the centers of the arcs are on opposite sides of the curve. Refer to Figure 1.2 - Page 16.

Curves are tangent if they have a common radius or radial line at the point of contact. Refer to Figure 1.3-Page 17.

Railroad and Highway Curves:

With the railroads becoming increasingly important in the 1800's the use of curves became much more necessary. The railroads defined the radii of their curve as a relationship between the length of a long chord to the degree of change in direction. The "Railroad Definition Curve" says a one degree curve has the long chord length of 100 feet. The radius of a one degree railroad curve is 5729.6507 .

Basic Map Compilation

The highway builders of the early and mid 1900's said that they wanted to retain the traditional methods, because they had a good relationship between the arc length and the amount of change in direction of the curve. The "Highway Definition Curve" is based on the radius of a one degree change in direction equals an arc length of one hundred feet. The radius of a one degree highway curve is $\mathbf{5 7 2 9 . 5 7 8 0}$. Remember that as the degree of curve increases the radius length decreases. Most curves found in current deeds, plats, etc. are all simple highway curves.

The formula used to find the radius of a curve when the degree of curve is given: 5729.578 divided by degree of curve $=$ radii length .

Ex: $5729.578 \div 30=190.986$

The formula used to find the arc length when the degree of curve is given: (delta divided by degree of curve) $\times 100=$ arc length.

Ex: $(30 \div 22=1.3636) \times 100=136.3636$
The formula to find the delta angle when the arc length and degree of curve are given: (arc length divided by 100) x degree of curve $=$ delta angle

Ex: $(136.3636 \div 100=1.3636) \times 22=30$

Basic Map Compilation

Figure 1.1 Compound Arcs

Figure 1.2 Reverse Arcs
Basic Map Compilation
Chapter 1-Mathematics

Figure 1.3 Components of a Tangential Arc

Inches	Feet	Yards	Rods	Miles
12	1	1/3	0	0
36	3	1	0	0
198	$161 / 2$	$51 / 2$	1	0
63360	5280	1760	320	1
Feet	Yards	Rods	Acres	Miles
272 1/4	30 1/4	1	0	0
10890	1210	40	0	0
43560	4840	160	1	0
0	0	0	640	1

1 Rod = $161 / 2$ feet or $51 / 2$ yards or 25 links
1 Sq Rod = $2721 / 4$ sq ft or $301 / 4$ sq yds
1 Chain $=66$ feet or 4 rods or 100 links
1 Furlong = 660 feet or 40 rods
1 Mile $=320$ rods or 80 chains or 5280 feet
1 Acre $=43560$ sq ft or 160 sq rods or 10 sq chains
1 Acre $=70$ yds $\mathbf{x} 70$ yds or $208.71 \mathrm{ft} \times 208.7$

Lots Per Acre assuming typical grid for Streets and Alleys

Scale Conversion Formulae

$\underline{\text { Lot Size }}$	Lots per Acre	
$\mathbf{4 0} \times 100$	6.28	Ft/In $=\underline{\text { Scale }}$
45×125	6.11	
50×125	5.68	$\mathbf{M i} / \mathbf{I n}=\underline{\text { Scale }}$
50×150	4.74	$\mathbf{6 3 3 6 0}$
60×175	5.48	
60×200	3.10	
70×175	3.00	

Figure 1.6-Measurement Length Relationships

Basic Map Compilation

Chapter 1 - Mathematics

Stationing:

Stationing is used on Department of Transportation right of way maps to facilitate the tieing and depicting of numerous features to the traverse or survey lines. Stationing provides a location along a survey line and/or centerline of road. The key to understanding stationing is to know that one station $=100$ feet (Example: Sta. $2+00.00$ is 100 feet from Sta. $1+00.00$)

To determine distances between stations, you simply subtract one from the other. (See examples below)

Sta. $2+00.00$
-Sta. $1+00.00$
100.00 ft

Sta. $202+00.00$
-Sta. $201+00.00$

Sta. $20+50.25$
-Sta. $18+00.00$
250.25 ft

Another example:
Haley's Haven - Base line for Sewer/Sanitary

Sta 12 to Sta $16=400 \mathrm{ft}$

Basic Map Compilation

Case problem \# 1:

Callander Boulevard

1. Find the distance between the:
a. Gas Valve and the Sewer Manhole \qquad
b. Southern Bell Manhole and the terminus \qquad
c. Nail in Disc and Beginning of Curve \qquad
2. How long is the curve? \qquad
3. How long is the street from beginning to end?

Basic Map Compilation

Chapter 1 - Mathematics

Case Problem \# 2:

Bates Drive

Begin Project

4. Find the distance between the:
a. Sewer Manhole and End of Project \qquad
b. Gas Valve and End of Curve \qquad
c. Southern Bell Manhole and Beginning of Curve \qquad
5. What is the total length of the project? \qquad

Basic Map Compilation

Chapter 1 - Mathematics

Abbreviations:

For a long time different abbreviations were used for the same thing, but the public was getting confused over what these abbreviations were indicating.

The Board of Professional Surveyors and Mappers came up with the requirement that should the drawing reflecting the field survey contain a noncommon place abbreviation, the surveyor and mapper will place on that drawing an explanation of the abbreviations. The actual code follows:

'5J-17.051 Minimum Technical Standards: General Survey, Map, and Report Content Requirements.'

(3) Surveys, Maps, and/or Survey Products Content.
(b) Surveyors and mappers must meet the following minimum standards of accuracy, completeness, and quality:
(11) Abbreviations general used by the public or in proper names that do not relate to matters of survey are excluded from the legend requirement.
a. Acceptable abbreviations on the face of survey maps are:

$$
\begin{aligned}
& N=\text { North } \\
& S=\text { South } \\
& E=\text { East } \\
& W=\text { West }
\end{aligned}
$$

or any combination such as NE, SW, etc.

- = Degrees

، = Minutes when used in a bearing
" = Seconds when used in a bearing
، = Feet when used in a distance
" = Inches when used in a distance
AC = Acres
$+/-\quad=$ More or less (or Plus or Minus) metric notation
b. Any other abbreviations relating to survey matters must be clearly shown within a legend or notes appearing on the face of the map or report.
Abbreviation Description Definition
PC Point of Curvature the beginning of a curve which is
each curve has two tangents - always of equal length - one at the beginning of the curve and one at the end of the curve - always at 90 degrees to the radius

PI Point of Intersection the point where the tangents intersect

Deflection Angle

Point of Tangency

Arc (length)

Long Chord

Radius
angle created between the continuations of the two tangents (angle at the PI) Same as Delta or Central Angle
the point at the end of the arc where it touches the next course
the linear measurement of an arc from the PC to the PT
a straight line run from the PC to the PT
a straight line from the center of a circle to any point on the arc; radii are always of equal length; radii always form a 90 degree angle with the tangents at the PC and PT

Basic Map Compilation

Abbreviation	Description	$\underline{\text { Definition }}$
D or $\boldsymbol{\Delta}$	Delta (Central) Angle	the angle formed by the inte of the radii at the center of the deflection angle at the equal to D
LCB	Long Chord Bearing	bearing of the long chord

FIND THE INTERIOR ANGLES OF THE FOLLOWING:

Sectional Based Descriptions

Chapter 2

Table of Contents:
The Public Land Survey Page 2.1
Design of the Overall Public Land Survey System Page 2.2
Public Land Survey System in Florida Page 2.15
Methods of Reading Sectional Descriptions Page 2.17
More Definitions Page 2.21
Calculating Acreage Page 2.22
Figures:
Figure 2.1 Public Land Survey System States - Page 4
Figure 2.2 Meridian Lines - Page 5
Figure 2.3 United States Initial Corner Locations - Page 6
Figure 2.4 Converging Meridians and Townships - Page 7
Figure 2.5 Township Status Map - Page 8
Figure 2.6 Typical Township Configuration - Page 9
Figure 2.7 Closing Section Govt Lot Configuration - Page 10
Figure 2.8 Meander Caused Govt Lot Creation - Page 11
Figure 2.9 Grant Caused Govt Lot Creation - Page 12
Figure 2.10 Omitted Lands Caused Govt Lot Creation - Page 13
Figure 2.11 Original Government Survey Map - Page 14
Figure 2.12 Section Aliquot Parts - Page 18
Figure 2.13 Sectional Breakdown Methods - Page 19
Figure 2.14 Thorough Sectional Breakdown Sheet - Page 20
Exercises: Plotting \& Acreage
Exercises 2.1 thru 2.4Simple Breakdowns
Exercises 2.5 thru 2.11 Complex Breakdowns

The Public Land Survey System

Under the Confederation, Congress was deeply in debt to France and had no power to levy any taxes. Millions of dollars in continental bills and treasury notes were outstanding and the Northwest Territory loomed as the only asset which might be turned into hard currency. Lands within the public domain could be sold to settlers returning millions of dollars to the treasury.

The Land Ordinance of 1785 directed that the public land of the United States be surveyed and subdivided according to a system that incorporated spherical coordinates for the primary lines and rectangular coordinates for the secondary lines. Although other laws have since expanded the system, clarified the surveying methods, and changed some procedures, the system is basically as it was in 1785.

The plan as developed was unique in three respects.

1. It introduced the new principle of "survey before settlement".
2. It introduced the concept of a mathematically designed and nationally integrated cadastral survey.
3. It created a standard unit, the township, and standard subunit, the section, of uniform shape and area with the lines physically marked on the ground.

The system of rectangular surveys and the laws governing its establishment have, with various modifications, been applied to all of the United States with the exception of Kentucky, Tennessee, West Virginia, Texas, Hawaii, and the original thirteen colonies. The surveys were performed by private persons (Deputy Surveyors) and the Bureau of Land Management (BLM) and continue to be done by them in Alaska. (Refer to Figure 2.1)

Design of the Overall Public Land Survey System (PLSS)

Land that has been surveyed in accordance with the PLSS is referred to as sectionalized and the descriptions that use this method are called sectionalized based descriptions.

The correct sequence order for a description based on the PLSS would be the government lots, the sectional subdivisions (aliquot parts), section, township, range, and principle meridian.

The basic unit of the rectangular system is called the township. A township is bounded by two parallels of latitude and two meridians of longitude. Because meridians converge, townships are not perfectly square. Think about a basketball. Notice the lines between the various sections of the basketball, as it was constructed, which make it round. Those are meridians. Notice how they merge at the "poles" of the basketball. (See Figure 2.2)

Independent points of origin called initial points have been established across those portions of the United States covered by the PLSS. A true meridian called the principle meridian, and a true parallel called a base line, pass through each initial point. The areas referenced by a principle meridian and a base line vary in size from a portion of a state to several states. (See Figure 2.3)

To allow for convergence of meridians, secondary control lines are located at 24 mile intervals. The east -west control lines are called standard parallels and the north-south control lines are called guide meridians. (See Figure 2.4)

Range lines (true meridians) are located at six (6) mile intervals on a standard parallel and extend north or south to the next standard parallel. Township lines (true parallels) are located at six (6) mile intervals and extend east and west. They pass through the principle meridian, guide meridians, and range lines. These range and township lines define areas approximately six miles square. (See Figure 2.5)

A Township/Range is further subdivided into thirty-six (36) one mile square units called "sections". (See Figure 2.6) Each of these sections can be further divided into various "aliquot parts". Government laws do not give legal credence to divisions smaller than quarter/quarter (40 Ac) sized parcels, but descriptions continue to be written down to a quarter acre parcel.

Ideally, twenty-five of the thirty-six sections would contain 640 acres each. The sections along the north and west boundaries contain all the irregularities in measurements due to convergence. Each section in this area contains fractional lots (1-4) along the north and fractional lots (4-7) along the west boundary. (See Figure 2.7) Fractional lots can also result from irregular boundaries caused by meandering water bodies, grants, indian reservations, etc. (See Figure 2.8 - water bodies and Figure 2.9 - grants and Figure 2.10 omitted lands)

Meander lines typically run along the mean high water (MHW) or ordinary high water (OHW) mark in a series of straight lines. Meander lines do not usually serve as title lines; they are primarily for surveying and mapping the water body. If section corners are located in navigable bodies of water, meander lines are established roughly parallel to the water line. (See Figure 2.11)

Figure 2.1 Public Land Survey System States

Basic Map Compilation

Chapter 2 - The Public Land Survey System

Figure 2.2 Meridian Lines

Figure 2.3 United States Initial Corner Locations

Figure 2.4 Converging Meridians and Townships

Chapter 2 - The Public Land Survey System

Figure 2.5 Township Status Map

36	31	32	33	34	35	36	31
1	6	5	4	3	2	1	6
12	7	8	9	10	11	12	7
13	18	17	16	15	14	13	18
24	19	20	21	22	23	24	19
25	30	29	28	27	26	25	30
36	31	32	33	34	35	36	31
1	6	5	4	3	2	1	6

Figure 2.6 Typical Township Configuration

36	31	32	33	34	35	36	31
	[4]3 ${ }^{21}$						
1	${ }_{6}^{5} 6$	5	4	3	2	1	6
12	- 17	8	9	10.	11	12	7
13	$\frac{2}{3} 18$	17	16	15	14	13	18
24	${ }_{\frac{2}{3}}^{\frac{2}{4}} 19$	20	21	22	23	24	19
25	${ }_{\frac{1}{3}}^{\frac{1}{4}} 30$	29	28	27	26	25	30
36	$\stackrel{2}{2} 31$	32	33	34	35	36	31
1	6	5	4	3	2	1	6

Figure 2.7 Closing Section Govt Lot Configuration

Township.1. Ramge.i. I. and W.

Figure 2.8 Meander Caused Gov't Lot Creation

Basic Map Compilation

Chapter 2 - Public Land Survey System

Figure 2.9 Grant Caused Gov't Lot Creation

Figure 2.10 Omitted Lands Caused Gov't Lot Creation

Basic Map Compilation

Chapter 2 - Public Land Survey System

Figure 2.11 Original Government Survey Map

THE PUBLIC LAND SURVEY SYSTEM IN FLORIDA:

Florida's official system of describing land is the rectangular survey system (PLSS). With the appointment of Colonel Robert A. Butler as Surveyor of the Public Lands of Florida (Surveyor General of Florida) on July 9, 1824, the actual work of surveying the state by the PLSS was begun. One of his first orders of business was the selection of the initial point. The site of the territorial capital had previously been selected "halfway" between the two major towns of St. Augustine and Pensacola. Colonel Butler was asked to select the initial point so that the capital building would be approximately in the center of the first quarter section to the northwest. The initial point, onequarter mile south and one-quarter mile east of the capital site, fell in a low area near the junction of two meandering streams and was referenced to four nearby trees. There is now a small park at the site with a concrete marker signifying that point.

From this initial point, the Principle Meridian was surveyed north and south and a Base Line was run east and west. The field work on the rectangular survey system in Florida was begun by the Deputy Surveyor, Benjamin Clements, sometime in November, 1824. The work on the PLSS was to proceed with all due speed as the new territorial government needed the cash, but prior surveys of private claims or grants impeded the task. In some instances, land grants held under private ownership had been subdivided by private survey into areas simulating government sections, but were not controlled by the rules for sectional land.

Working along the principal meridian and base line, the township corners were set at six mile intervals, and then the townships were marked off into a grid. Any specific township can then be located according to its relationship to the Tallahassee Meridian and the Base Line. (Refer to Figure 2.5 - Page 8)

Because of the shape of the earth, principal meridians come closer together as they extend toward the north pole. To adjust for this, correction lines were to be run every twenty-four miles. However, in Florida, due to the need for

Basic Map Compilation

Chapter 2 - The Public Land Survey System
rapid completion of the surveys, this was stretched somewhat to every 30 or 36 miles and in some cases even more. Much more than the original designers of the PLSS had intended. Due to this extension of the correction lines, some of the townships have major convergences and differences in distances from normal.

In most cases, townships were further divided into sections of one mile "squares" containing 640 acres each. Individual sections are identified by a numbering system that starts with Section 1 in the northeast corner of the township and ends with Section 36 in the southeast corner. (Refer to Figure 2.6 - Page 9) The meanders were run and the land classified for value purposes and then placed on the block for sale. In some southern counties, under state issued instructions, the center of the Section was also set. Highly unusual.

When a state's public land survey was completed, the records were turned over for safe keeping and the state was described as "closed". In the federal government's "rush" to declare Florida closed, large parcels were not yet surveyed and were left for the state to survey under her own instructions. Florida was only issued one set of General Instructions to Deputy Surveyors and that was in 1842.

In 1946, the responsibility for the surveying of public lands was turned over to the Department of the Interior, Bureau of Land Management (BLM) Cadastral Survey Department. They continue to have that responsibility to this day.

The survey records for the state are maintained by the Department of Environmental Protection, Division of State Lands. The federal government still has copies of almost every field book and map. An index to the actual patents to individuals is available on CD-ROM. Copies of most of the patents are also available from the BLM, but one must pay a research and copying fee for same.

Basic Map Compilation

Chapter 2 - The Public Land Survey System

Methods of Reading Sectional Descriptions:

Most government surveys show quarter sections and sections that measure exactly 2640 feet and 5280 feet on a side with interior angles of 90 degrees. Unfortunately, most sections vary greatly from these values and this causes many artificial overlaps and gaps to exist.

Each section consists of regular subdivisions (aliquot parts): the quarter section (NE $1 / 4-1 / 2$ mile square - 160 acres), and the quarter-quarter section (NE $1 / 4$ of NE $1 / 4-1 / 4$ mile square - 40 acres). The quarter-quarter section is the minimum legal subdivision under the general land laws, but is often further divided for descriptive purposes. (See Figure 2.12 - Page 18)

The first thing to remember in reading sectional type land descriptions is that the entire section must be considered first. As you begin reading each description, you will go from the large general area of one section (one square mile) to the specific description of one subject parcel.

One of the keys to understanding descriptions is to learn how to separate the various parts of multiple parcel descriptions. Read through the description first and look for terminology that may indicate more than one parcel. This could be a word "and" or a symbol ";" (semicolon). Circle these separators, so that as you read each description this information then stands out.

Some land descriptions depict a large parcel and then eliminate any part not transferred by the instrument. This is done by the phrase "less" or "less and except". As you are reading, underline that term so that it will also be obvious. Now let's take a look at finding the subject parcel.

When writing an address you list the house number, then the street, then the city and state with zip code, and finally the country. But to find the recipient, you travel to the country, then go to the state, then find the city, and then the street and finally you look for the house number.

Basic Map Compilation

Chapter 2 - The Public Land Survey System

Standard Section

Figure 2.12 Section Aliquot Parts

1

The Section

NW $1 / 4$ of the Section

3

SW 1/4 of NW 1/4 of the Section

SE $1 / 4$ of SW $1 / 4$ of NW $1 / 4$ of the Section 4 3

2 1

Notice how final Description starts with smallest parcel and ends with the largest; but to find it one must start with the largest part and work backwards to the smallest.

Figure 2.13 Sectional Breakdown Methods

Basic Map Compilation

Chapter 2 - The Public Land Survey System

ONE MILE

A Section of Land is One Square Mile and Contains 640 Acres A 1/4 Section Contains 160 Acres
A Township Area is 36 Square Miles and Contains 23,040 Acres
All Measurements in Government Survevs are indicated by links and chains.
One link $=7.92$ inches \quad One chain $=66$ feet or 4 rods or 100 links
One rod $=161 / 2$ feet or 25 links One mile $=5280$ feet or 320 rods or 80 chains One acre $=43,560$ square feet or 160 square rods or 10 square chains

Figure 2. 14 Thorough Sectional Breakdown Sheet

Basic Map Compilation

Chapter 2 - The Public Land Survey System

Writing a land description is much like that. Read the following: SE $1 / 4$ of the SW1/4 of the NW1/4 of Section 9-29-16. To find the subject parcel one must travel to Section 9 (640 Ac). Then go to the NW1/4 of the section (160 Ac); then inside that part find the SW1/4 (40Ac); then inside that part find the SE1/4 (10Ac). The subject parcel being that final SE1/4. Always remember that you are going from the large to the small. (See Figure 2.13Page 19)

If the above description had been written with a less out, it would have been taken from or removed from the final described portion (SE1/4-10Ac).

Something else to keep in mind - the letters before each $1 / 4$ denotes not only location, but shape as well. The general rule of thumb is that two letters designates a square parcel (NW $1 / 4$ or SE 1/4) and one letter designates a rectangle or strip of land ($\mathrm{S} 1 / 4$ or W1/2). Remember that the word "quarter" can denote a square or rectangle shaped parcel depending on the letters preceding it. The fully plotted description will be composed of one or more of these areas and when completed have a shape all its own.

More Definitions:

There are some more definitions which are used quite regularly in descriptions. These terms or phrases are used to define various specific points within a section. One of the more common is "quarter corner". Generally, this is where the original federal government surveyor set the wooden post when the section lines were run. While it may not be the half way point along the section line, it normally is fairly close. There are four per section named in reference to the compass and usually abbreviated: W $1 / 4$ corner, $\mathrm{N} 1 / 4$ corner, E1/4 corner, S $1 / 4$ corner. (Refer to Figure 2.12 - Page 18)

Another phrase used regularly is "center of section". While not always so, the general use of the phrase normally means the intersection point where a line drawn from the $\mathrm{N} 1 / 4$ corner to the $\mathrm{S} 1 / 4$ corner intersects a line drawn from the E1/4 corner to the W1/4 corner. It should be noted here that the

Basic Map Compilation

Chapter 2 - The Public Land Survey System
point derived from this intersection is not an equal division of either line. Those dividing lines are commonly known as the "north-south center line" and "east-west center line". When any quarter of the section (160 Ac) derived from this division is equally partitioned into four parts, the lines are referred to as "forty acre lines" because theoretically it would divide that quarter into four- forty acre tracts. But this division of the quarter all depends on the original size of the section.

Calculating Acreage:

Describing a parcel by sectional breakdown allows for the quick calculation of acreage. This is based on a perfect section of one square mile. (Refer to Figure 2.14 - Page 20)

Divide -

Since each section contains 640 acres, then each Quarter (NE 1/4) contains 160 acres $(640 / 4=160)$. When NE $1 / 4$ is broken down into equal parts each quarter/quarter (SW $1 / 4$ of NE $1 / 4$) will contain 40 acres ($160 / 4=40$). The next division (NW 1/4 of SW $1 / 4$ of NE $1 / 4$) results in an acreage of 10 acres $(40 / 4=10)$. The final breakdown (SE1/4 of NW $1 / 4$ of SW $1 / 4$ of NE $1 / 4$) will result in an acreage of 2.5 acres $(10 / 4=2.5)$.

Multiply and Divide -

The most common way to calculate acreage is to multiply the length times the width of the parcel and divide by 43560 , which is the number of square feet in one acre. An entire section is 5280 ft . on all sides. The NE $1 / 4$ is 2640 ft . The SW $1 / 4$ of NE $1 / 4$ is 1320 ft . The NW $1 / 4$ of the SW $1 / 4$ of the NE $1 / 4$ is 660 ft . So then the SE $1 / 4$ of NW $1 / 4$ of SW $1 / 4$ of NE $1 / 4$ is 330 ft .

$$
\text { Example: }[(330 \times 330) / 43560=2.5 \mathrm{ac}]
$$

Basic Map Compilation

Chapter 2 - The Public Land Survey System

Plot the following Description and determine the Acreage:

The Northeast Quarter of the Northeast Quarter

ACREAGE:

\qquad
Exercise 2.1

Plot the following Description and determine the Acreage:

The East half of the East half of the Southwest Quarter of the Northwest Quarter.

ACREAGE: \qquad

Exercise 2.2

Basic Map Compilation

Chapter 2 - The Public Land Survey System

Plot the following Description and determine the Acreage:

The South Quarter of the Southeast Quarter.

ACREAGE:

\qquad
Exercise 2.3

Chapter 2 - The Public Land Survey System

Plot the following Description and determine the Acreage:

The East 660 feet of the Northwest Quarter of the Southeast Quarter.

ACREAGE:

\qquad
Exercise 2.4

Chapter 2 - The Public Land Survey System

Plot the following Description. Count the number of separate Parcels and Determine the total Acreage.

The Southeast Quarter of the Southeast Quarter of Section 17 and the Northwest Quarter of the Northwest Quarter of Section 21.
\qquad

Exercise 2.5

Plot the following Description - Count the parcels - Shade each one in Determine the total Acreage.

The Southeast Quarter of the Southwest Quarter of the Section, less the North half of the South half.
\qquad TOTAL ACREAGE \qquad

Exercise 2.6

Plot the following Description - Count the number of Parcels - Shade the parcels in and Determine the total Acreage.

The Northwest Quarter less the Southwest Quarter of the Southeast Quarter, also less and except the North Quarter of the Southeast Quarter.
\qquad Total Acreage \qquad

Exercise 2.7

Plot the following Description - Count the number of Parcels - Shade them in and Determine the total Acreage.

The South Quarter of the Northwest Quarter less the West half and the North half of the Southwest Quarter less the West Quarter.
\qquad Total Acreage \qquad

Exercise 2.8

Plot the following Description - Count the number of Parcels - Shade them in - Determine the total Acreage.

The Southeast Quarter of the Southeast Quarter of the Northwest Quarter and the West half of the Southwest Quarter of the Northeast Quarter and the East half of the Northeast Quarter of the Southwest Quarter and the Southwest Quarter of the Northwest Quarter of the Southeast Quarter of Section.

Number of parcels \qquad Total Acreage \qquad

Exercise 2.9

Plot the Description - Count Parcels - Shade them in - Determine total Acreage - Identify Number of Sections involved in Description

The Northwest Quarter less the North $1 / 4$; the West one-half of the Southwest Quarter, and the Northeast Quarter of the Southwest Quarter of Section 15; also the Northeast Quarter of the Southeast Quarter of Section 16; also a tract described as beginning at the Southwest corner of the Northeast Quarter of the Southeast Quarter of said Section 16, thence South 2640 feet, thence East 1320 feet, thence North 2640 feet, thence West 1320 feet to the Point of Beginning.

No. of Parcels \qquad Total Acreage \qquad No. of Sections \qquad

Exercise 2.10

Plot the following Description - Count the Number of Parcels - Shade them in - Determine the total Acreage.

The Northeast Quarter of the Southwest Quarter of the Northeast Quarter, the Southeast Quarter of the Southwest Quarter of the Northeast Quarter, the Southwest Quarter of the Southeast Quarter of the Northeast Quarter, the Southwest Quarter of the Northwest Quarter of the Southeast Quarter of the Northeast Quarter, also a tract of land beginning at the Northeast Quarter of the Southeast Quarter of the Northeast Quarter, thence west 1320 feet, thence south 330 feet, thence east 330 feet, thence south 330 feet, thence east 660 feet, thence north 330 feet, thence east 330 feet, thence north 330 feet to the point of beginning; all being in Section 15.

Number of Parcels \qquad Total Acreage \qquad

Exercise 2.11

Basic Map Compilation

Chapter 2 - The Public Land Survey System

Interpretation of Real Property Descriptions

Chapter 3

Table of Contents:

Descriptions Page 3.1
Relationship between Descriptions \& Surveys Page 3.2
All measurements have some error Page 3.2
Accuracy of equipment Page 3.4
Legal jurisdiction Page 3.4
Types of Discrepancies Page 3.4
Uncertainties in a Deed Page 3.6
Precedence of calls Page 3.6
Intent Page 3.7
Senior Rights Page 3.8
Miscellaneous Phrases Page 3.8
Public Relations Page 3.9

Description Course Review

The Florida Association of Cadastral Mappers (FACM) offers the course "Interpretation of Real Property Descriptions" - Course III. This course provides the student with a working knowledge of the basic property descriptions used in appraisal mapping. While this will not be an in-depth review, we will touch on some of the information provided within that course, and will attempt to provide some guide lines which the student may use in resolving conflicts among the calls of a description or between two or more descriptions.

Descriptions:

A description is the written record of a physical area or boundary, for the purpose of perpetuating location and title. Descriptions for documentary and record purposes are invariably predicated on data derived from some previous survey or record. A description must be unique, applying to one and only one, parcel. Land descriptions may be either written or graphic. Depending on the method and parcel being described, written descriptions may be clear and concise or lengthy and complicated. It must always be possible to locate and map the parcel from its written description.

The three basic methods of describing land are Government Survey (description of parcel area and location by section, township, and range), Metes and Bounds (description of boundary lines by distance, direction, and land references), and Plat Book and Page (graphic maps or plats recorded and filed). Government survey and metes and bounds are the most commonly used methods and are also historical methods of land partitioning. Although very large tracts of land (grants) were for surveying purposes only, not land partitioning. Metes and bounds descriptions are a road map describing the outside boundaries of a parcel of land. It has a reference point tied to an original section corner, then directs one to the point of beginning on the parcel, then in courses and distances and sometimes

[^0]monuments, directs one around the perimeter of the parcel and back to the point of beginning. Graphic land descriptions are based on the recording and filing of maps or plats prepared from one of the survey methods. They identify parcels by reference to lot and block numbers (or letters) and name or numerical designations given to the recorded filed maps. These references to graphic descriptions can be used in deeds as a brief, complete, and accurate substitute for written descriptions.

It must be remembered that valid boundary descriptions may utilize combinations of fractional section, metes and bounds, and plat book and page descriptions. Of course, the tedious but necessary task of carefully proofreading descriptions must be approached with the utmost precision and care, since even a slight change in punctuation can alter the meaning of an entire boundary description.

Relationship Between Descriptions and Surveys:

A large portion of the law concerning what to hold, what to reduce in importance and what are the meanings of the words used in descriptions, comes from the presumption by the courts that the description was prepared from an original survey made on the ground prior to the deed being prepared and the object is to follow in that surveyor's footsteps even if the intent of the seller was a different parcel. The courts will tolerate erroneous deeds as long as the description serves to identify the boundaries. They rely heavily on the intent of the deed as well as the surveys. Any part of this can be overcome by better evidence.

All measurements have some error:.

Understanding how surveyors work, the conditions encountered in the field, and the limits of the accuracy of the equipment will allow the layperson to better understand and interpret descriptions. No measurement is exact or the "true measurement", either in distance or angle. They are simply estimations of the true measurement.

[^1]To help you understand, remember the installation of the final piece of the Gateway Arch in St. Louis? The surveyors waited until the sun's rays had sufficiently heated the metal of the existing arch so that the final piece would fit into place without a problem. Ever see the cuts that are made in concrete to take care of the expansion and contraction of the concrete? Well, the same thing happens to measurements. The metal chain or tape used by the surveyor is longer in summer than they are in winter because metal expands with increasing temperatures. In Florida, the temperature of a tape lying on an asphalt roadway can be over 140 degrees (F). This causes the tape to expand by about 0.04 hundreds, thus making the measurements longer than what they actually are.

When looking through the telescope of the angular measurement instrument at an object on the surface, the object begins to "jump around". Your eyes begin to jump around as they attempt to follow the object sighted through the lens. All that jumping around affects the accuracy of any measurement made through the air.

Surveyors came up with a rough means to estimate the validity of their measurements called " an error of closure". In basic terms, in a closed traverse (where a survey starts and ends at the same point), a mathematic ratio can be determined by using the distance and angle between the known starting point and the actual closing point.

Computations on some of the original surveys in Florida reflect that error closure ratios as low as 1:200 were accepted by the Surveyor General. Later that became 1:1000. Little changed until the 40's and 50's when the minimum acceptable ratio became 1:5000, a 1000\% increase in accuracy or roughly ten percent per year.

The State of Florida has stated the following ratios based on the estimate of perceived land values:

Rural............ 1 foot in 5,000 feet

Basic Map Compilation

Chapter 3 - Interpretation of Real Property Descriptions

Suburban...... 1 foot in 7,500 feet
Urban........... 1 foot in 10,000 feet

Accuracy of Measurement Equipment:

In the early 1800 's, the distance measuring equipment was the most accurate. That is why the courts in this country and England have stated that the distance will hold over the angle. At the beginning of the $20^{\text {th }}$ century, the angles actually got better than the chain with the introduction of the transit to everyday surveying. Shortly thereafter, the steel ribbon tape came into common use and the distance equipment seemed to equal angles. With the advent of electronic angle measuring equipment, most of the instrument's internal error producing problems were removed.

Legal jurisdiction:

If the land is still in federal ownership, rather than state or private, different controls may be applicable. But the federal government has little, if any, land still available for purchase in Florida. The state only has a concern in those areas of ownership where the state was the original surveyor.

Types of discrepancies:

The general guidelines for discrepancy resolution that will provide a suggested course of action are as follows:

1. Deed discrepancies

a. Acreage discrepancies occur when the acreage specified in the legally recorded source document (deed or plat) does not approximately equal the acreage as calculated from the survey description or the cadastral map. Acreage discrepancies also occur on a regular basis in riparian parcels where one boundary of the property is a river, stream or ocean. Depending on whether the parcels were surveyed to the center line of the stream or

Basic Map Compilation

Chapter 3 - Interpretation of Real Property Descriptions
to the mean high water line, will have an obvious affect on the area calculation.
b. Dimension discrepancies occur when the dimension scaled or calculated for a parcel boundary does not approximately equal the corresponding dimension stated in the deed description or indicated on the plat. These discrepancies may cause conflict with adjoining properties, particularly when neither the subject property nor the adjoining property is controlled by a survey. These conflicts usually result in overlaps or gaps in ownership.
c. Ownership discrepancies occur when it is unclear if the intent of the deed was to transfer all interest of the grantor or only partial interest. The grantor may be deceased or missing, or have no fee simple interest in the property which he is conveying. These are only a few of the many problems most jurisdictions encounter.

2. Plat discrepancies

a.Discrepancies between plats or surveys are not as common in jurisdictions where the PLSS exists, but they can be found in any jurisdiction. In areas not covered by the PLSS, surveyors may have had a difficult time finding good monuments with which to tie their surveys or plats.
b. For the most part, plat discrepancies that are identified will not exceed the dimension or acreage tolerances. By adjusting the measurement of each lot in equal amounts, with no adjustment exceeding the tolerance, the cumulative measurement may be brought within tolerance.
c. Sometimes a surveyor may have difficulty determining the proper basis of bearing for a survey or plat. If the surveyor cannot determine true north, he must rely on the previously surveyed bearings of another survey. The older it is, the less likely the new survey's basis of bearing will be correct.

Basic Map Compilation

The resolution of discrepancies between the legal cadastre and the assessment cadastre for taxing purposes is no small feat. While there is precedent for making almost any resolution one might consider, the resolutions must be accomplished in a consistent manner which treats all property owners and all parcels equally.

Uncertainties in a Deed:

Patent Ambiguity - An uncertainty which is evident from the words in a description itself. For example, a detailed metes and bounds description that will not mathematically close or the name of the county is wrong, or the section, township or range is incorrect for the location of the parcel.
$\underline{\text { Latent Ambiguity - an uncertainty which does not appear within the description }}$ itself, but arises from evidence outside of the words in the deed. What happens if a call in the description states "... thence 1320 feet to the forty acre line and when it is plotted the distance is found to be 1332 feet? What lands are involved?

Precedence of Calls:

The term "monument" refers to a natural or artificial object on the ground which helps to establish location of the boundary lines. A "course" is the direction of a line run with a compass or transit, with references to a meridian. A "call" is a reference in a description of real property in a course, distance, marker, monument, or a natural object by which a boundary is defined. The following precedence of calls applies when construing deed descriptions:

Natural Monuments - refer to features of terrain such as trees, or the shore line of a lake, river, stream, or ocean. These should control over most any other call in a description. A description which states "...thence 1000 feet to the Gulf of Mexico" leaves no doubt as to where it goes, but whathappens when the distance after plotting turns out to be 1500 feet? It doesn't matter. The line should go to the Gulf of Mexico and the distance given ignored, because a call for a natural monument takes precedence over a call for distance.

Basic Map Compilation

Record Monuments - are those objects that are publicly recorded. A call in a description to the right of way of a road or a subdivision lot corner is a call to a record monument.

Artificial Monuments - usually refers to points established by a surveyor marked with objects such as a concrete post, iron pin, or wooden stake. Calls to an artificial object such as a 4 " x 4 " concrete marker will control next. This is under the theory that the reader was told in the description, what was set or found during the survey. Quite often, the original corner monument placed by the original government surveyor may have been lost, or the surveyors disagree where the original corner monument was located.

Artificial Monuments - not called for in the description - If no object was called for in the description, but a review of the survey drawing reflects manmade artificial monuments, that must have existed at the time of survey as disclosed byreference to maps or other documents of record, will control at this point.

Adjoining Owners - this form of description eliminates almost entirely the need of dimensions, defining an area perfect in its relations with the adjoining lands, without conflict, and dependent wholly upon the accuracy and the ability to locate the boundaries of such adjoiners. It is very suitable for areas not covered by survey. It is limited in its scope by the research necessary to find the adjoining owners in the records.

Bearings, Distances and Area - have the least precedence in the hierarchy of importance. These also have been addressed in other sections.

The law has established a specific order of priority in locating a boundary line: natural monuments prevail over courses and distances, and distances prevail over quantity.

Intent:

Intent is a term used to describe the probable intentions of the grantor and grantee as determined from the document itself. In writing descriptions, a single

Basic Map Compilation

error such as an improper numerical value, or a misplaced word or punctuation mark may result in litigation. This could throw the land titles and perimeters of an entire neighborhood into question, and cause great harm for several years if the intentions of the grantor and grantee are not fulfilled. Every attempt should be made to interpret what was the actual intent.

Senior Rights:

One of the most important logical means to determine what lands belong to a deed is senior rights. While they can be overcome, it takes a lot of additional evidence to do so. Simply put, senior rights are nothing more than - one can't sell something twice. Once sold, the original owner no longer has control of the land. When the next recorded document includes something that was already sold by the same seller, you will know what to do...bring the problem to either your supervisor or the person who prepared the document.

Miscellaneous Phrases:

Parts of a Parcel - using "__ ly" along with a compass direction and footage in a description (... Southerly 50 feet of lot 20). In the absence of evidence to the contrary, the distance (50 ft) is to be measured at right angles to the described line (Lot 20).

Line segments vs. Whole lines - when a call in a description makes reference to a direction and distance ("...thence north 500 feet along the subdivision boundary...") but the overall line is actually many different segments, how do you measure the parcel? The courts have generally held that a group of consecutive lines, even though they may have different directions, some of which may be in a different direction from the majority, can still be considered along a general direction.

Each and Either - in strip descriptions (roads, easements, etc) each denotes the strip to lie on both sides of the line at all points; either implies that the strip may be on one side or the other. It is correct to say "a strip of land 50 ft wide lying

Basic Map Compilation

25 ft on each side of the following described line..." but it is incorrect to say "a strip of land 50 ft wide lying 25 ft on either side of the following described line..."

Public Relations:

One of the most important aspects of discrepancy resolution is public relations. Most property owners do not fully understand the function of the assessment official. The discrepancy issue is simply too complicated for many property owners because they do not have the background knowledge upon which to base an understanding. In case of a question or conflict, call the person that Florida law requires to be on the document - the person who prepared it. Attorneys, title companies, surveyors are all willing to assist.

As a matter of fact, the rules as passed by the Florida Board of Professional Surveyors and Mappers require a surveyor and mapper to prepare a map explaining any metes and bounds description that they have prepared since 1981. Ask for a copy of it. Get whatever you need to assist you with the descriptions that give you trouble.

"5J-17.052 Minimum Technical Standards: Specific Survey, Map, and
 Report Requirements."

(5) Descriptions/Sketch to Accompany Description:
(a) Descriptions written by a surveyor and mapper to describe land boundaries by metes and bound shall provide definitive identification of boundary lines.
(b)When a sketch accompanies the property description, it shall show all information referenced in the description and shall state that such sketch is not a survey. The initial point in the description shall be tied to either a government corner, a recorded corner, or some other well-established survey point.

Basic Map Compilation

Additional Information

Chapter 4

Table of Contents:

State Plane Coordinate Systems Page 4.1
Plotting with Coordinates
Aerial Photographs Page 4.6
Subdivision Plats Page 4.8
Department of Revenue Mapping Guidelines
Figure 4.1 State Plane Coordinate Zone Map - Page 4.4
Figure 4.2 Plat of Bayshores Subdivision - Page 4.11
Figure 4.3 Bayshores Subdivision Description - Page 4.12

Additional Information

Chapter 4

State Plane Coordinates:

In the Florida Statutes, Chapter 177 titled "Land Boundaries" Part 1 is about Platting and Section 177.151 concerns State Plane Coordinates.
"177.151 State Plane Coordinates -
(1) Coordinates may be used to define or designate the position of points on the surface of the earth within the state for land descriptions and subdivision purposes, provided the initial point in the description shall be tied to the nearest government corner or other recorded and well established corner."

A description of land based on geographic coordinates eliminates many disadvantages found in both the metes and bounds and the rectangular survey system.

Most surveys of small areas are based on the assumption that the earth's surface is a plane, even though the true relationships of points to each other can only be accurately expressed in terms of spherical coordinates (latitude and longitude). To compute areas, distances, and positions using spherical mathematics is difficult and complicated. Because many surveyors were unable to use this method of referencing points, a system of listing geodetic stations, using plane rectangular coordinates in feet and decimals, was needed. The United States Coast and Geodetic Survey fulfilled this need by developing a state plane coordinate system for each state.

Such a system provides a common datum for referencing the horizontal control of all surveys in a large area. It eliminates individual surveys based on assumed coordinates that are not related to those used in other work.

Basic Map Compilation

Chapter 4 - Additional Information
Page 1

Projections:

For states which are predominately long in the east-west direction, the Lambert Conformal Conic projection is used. For a predominately northsouth shaped state, the Transverse Mercator projection is used. Florida requires two Transverse Mercator projections for the peninsular which are known as the East and West Zones and one Lambert projection zone for the North.

The North zone - This projection extends from the Perdido River eastward to the Baker-Duval county line, and from the north Florida state line to the Gulf of Mexico and the south Alachua county line.

The East and West zones - these two Zones covering the peninsular are approximately 150 miles wide. The projection touches the earth's surface for both zones at a distance of approximately 42.9 miles both east and west of the central meridian. The lines dividing the zones are always county lines.

The \mathbf{Y} (northing) zero point for all zones is in the Dry Tortugas but each zone has a different position for the \mathbf{X} (easting) zero point.

All state coordinate meridians (north-south lines) are parallel to each other. All bearings are based on a central astronomic meridian bearing of North.

As a person travels north within a state coordinate zone, his state coordinate increases. If the travel is south, the state coordinate decreases within the zone. As a person travels east within a state coordinate zone, his state coordinate increases. If the direction of travel is west within the zone the state coordinate decreases.

Descriptions of land boundaries, for location and record, may include recital of coordinate values for any and all angle points of boundary or tie as

Basic Map Compilation

Chapter 4 - Additional Information
supplemental. There are not many deeds which use the coordinates of a tract as its sole means to locate the lands to be included within the description. The courts have given coordinates even lower superiority ratings than acreage.

There are three coordinate systems in common use:
a. Geodetic coordinates (latitude and longitude)
b. State Plane coordinates
c. Local coordinates

The only difference between the last two are the method used to provide the numbers and the size of the numbers. The local systems normally will be just large enough to cover the parcel being described. Whatever coordinates are being used to compute a parcel should verified as to which value was placed first in order to correctly locate the points.

Until recently all state plane coordinate values were determined using the North American Datum, Adjustment of 1927. Nearly all the values have been re-computed on a new system called the North American Datum, 1988, Adjustment of 1990 and sufficient shifts in values occurred. If a state plane coordinate system is being used to describe land, the text should provide the name and adjustment period so multiple descriptions can be meshed together.

Basic Map Compilation

Chapter 4 - Additional Information

WEST
NORTH
\square EAST

FLORIDA DEPT. OF REVENUE PROPERTY TAX ADMINISTRATION GIS/MAPPING SECTION

Figure 4.1 State Plane Coordinate Zone Map

Plotting With Coordinates:

Plot the following three descriptions, from the coordinates listed, on the attached grid sheet. If you know how, also provide the distance along each line.
A. N 200
B. N 440
C. N 030
E 080
E 380
E 240
N 480
E 220
N 520
N 130
E 440
E 300
N 440
E 320
N 200
N 200
E 500
E 480
N 280
E 360
N 150
E 490
N 220
E 240

Plot the following Description:
John Smith to United States of America (Corps of Eng) July 10, 2088: Begin at Northeast corner of Section 10, Township 29 North, Range 19 West known as Station 1, $\mathrm{X}=972720$ and $\mathrm{Y}=618115$; thence south to Station 2, X $=972645$ and $\mathrm{Y}=617365$; thence west to Station $3, \mathrm{X}=972030$ and $\mathrm{Y}=$ 617405 to the east side of the road; thence Northwest along east side of road to Station 4, $\mathrm{X}=971955$ and $\mathrm{Y}=617505$; thence east to Station 5, $\mathrm{X}=$ 972365 and $Y=617480$; thence North to Station 6, $\mathrm{X}=972410$ and $\mathrm{Y}=$ 618135; thence return to point of beginning.
1.) Draw the perimeter on the 2 nd sheet of grid paper at a reasonable scale. 2.) What is the accuracy of the coordinates provided in the last example?

Basic Map Compilation

Chapter 4 - Additional Information
\square
\square
\square

Aerial Photographs:

Aerial photographs are taken with specially designed cameras, from airplanes or from ground stations. There are two basic types of aerial photographs rectified and non-rectified. Rectified aerials are photogrammetrically adjusted utilizing the principles of perspective in the projection of the details from the photographs onto maps drawn to scale. Non-rectified aerial photographs are photographs with no adjustment for the tilt of the camera or the perspective of the camera lens.

Photo interpretation is the identification of the nature and significance of features and objects contained in photographic images. In assessment mapping, the major goal of photo interpretation is to determine where property lines should be placed, "occupation lines" - observable features on photographs that indicate potential ownership boundaries.

They are also used in the field when deed descriptions are incorrect or contradictory and other data are not adequate for location of property lines or identification of owners. The following characteristics of photographic images are helpful in the interpretation of aerial photographs:

Size:

Size is a function of the scale of the photograph. The area of an object increases or decreases according to the square of the same object's increase or decrease in length or width. For example: a building will appear twice as long on a $1 "=100 \mathrm{ft}$ aerial than on a $1 "=200 \mathrm{ft}$ aerial, but the area of the building will appear to be four (4) times as large on the $1 "=100 \mathrm{ft}$ aerial photo.

Shape:

The vertical view of an object can inform as to its structure, composition, and function.

Basic Map Compilation

Chapter 4 - Additional Information

Shadow:

Shadows are particularly useful in interpreting vertical aerial photos because they provide a side view of vertical features that could otherwise be seen only from the ground.

Tone:

Tone variations result because objects of different colors reflect light differently and thus register differently on a photograph. Tone also depends on the angle of the sun and the reflectivity of the surface. (For example: water will usually be lighter or darker that the surrounding land)

Texture:

Texture is the degree of coarseness or smoothness of the photographic image and is created by tone variations in groups of objects that are too small to be individually identified.

Pattern:

Pattern is the spatial arrangement of objects. Cultural features like orchard trees display regular, often recurring, patterns; natural features like forest trees are random patterns.

Basic Map Compilation

Chapter 4 - Additional Information

Plats:

Florida's plat law came into existence because in the early part of the great Florida land boom of the 1910's, the plats being taken to the court house for recording were so poor that people couldn't find their lot. A large number of the drawings were not being made by surveyors and the data on the drawings wouldn't "work". Legislators heard all the complaining and acted to create the first plat law. From that point on almost no one other than a surveyor filed a plat and the quality greatly improved. The plat law sets up certain minimum standards that every plat must meet. However, counties and cities can increase or add to those minimum plat requirements but can never reduce them.

Florida Statutes Section 177 Part 1 is entitled Platting.

"Subsection 177.011 - Purposes and scope of Part 1: This part shall be deemed to establish consistent minimum requirements, and to create such additional powers in local governing bodies, as herein provided to regulate and control the platting of lands."

This section outlines the following requirements regarding plats:
177.021 Legal status of recorded plats. - "The recording of any plats made in compliance with the provisions of this chapter shall serve to establish the identity of all lands shown on and being a part of such plats, and lands may thenceforth be conveyed by reference to such plat."

177.031 Definitions - there are 20 definitions in this section.

(14) Plat means "a map or delineated representation of the subdivision of lands, being an exact representation of the subdivision and other information in compliance with the requirements of all applicable sections of this chapter and of any local ordinances..."

Basic Map Compilation

Chapter 4 - Additional Information
177.041 Title certification - "Every plat of a subdivision submitted to the approving agency....must be accompanied by a title opinion of an attorney...or a certification by an abstractor or title company showing that record title in the land...is held by the persons executing the dedication."
177.051 Name of Subdivision - "every subdivision shall be given a name by which it is legally known. Such name shall not be the same or in any way so similar to any name appearing on any recorded plat in the same county as to confuse the records or to mislead the public as to the identity of the subdivision..."

177.061 Qualifications of person making survey and plat certification -

 "Every subdivision ...shall be made under the responsible direction and supervision of a land surveyor who shall certify ...that the survey was made under his responsible direction and supervision and that the survey data complies with all of the requirements of this chapter."177.071 Approval of plat by governing bodies - " Before a plat is offered for recording, it shall be approved by the appropriate governing body, and evidence of such approval shall be placed on such plat."
177.081 Dedication and approval - "Every plat of a subdivision filed for record must contain a dedication by the developer. When a tract or parcel of land has been subdivided and a plat thereof bearing the dedication... and approval secured and recorded in compliance with this chapter, all streets, alleys, easements, rights-of-way, and public areas shown on such plat, unless otherwise stated, shall be deemed to have been dedicated to the public for the uses and purposes thereon stated. However, nothing herein shall be construed as creating an obligation upon any governing body to peform any act of construction or maintenance within such dedicated areas except when the obligation is voluntarily assumed by the governing body."

Basic Map Compilation

Chapter 4 - Additional Information
177.091 Plats made for recording: this section has 29 requirements that must be adhered to by the persons recording a plat. Three of them are:
(9) Each plat shall show the section, township, and range as applicable, or, if in a land grant, the plat will so state.
(10)The name of the city, town, village, county, and state in which the land is being platted is situated, shall appear under the name of the plat.
(11) Each plat shall show a description of the lands subdivided, and the description shall be the same in the title certification. The description must be so complete that from it, without reference to the plat, the starting point and boundary can be determined.

Basic Map Compilation

Chapter 4 - Additional Information

Figure 4.2 Recorded Plat

Figure 4.3 Plat Description

State of Florida

Cadastral Mapping Guidelines

Compiled by the:

Florida Department of Revenue Property Tax Administration Mapping \& GIS Section

In cooperation with the:
Florida Geographic Information Board

Table of Contents

1.0 Introduction

1.1 Applicability
1.2 Staffing and Training

2.0 Base Map Development

2.1 Paper to Digital Conversion
2.2 Outsource

3.0 Accuracy

3.1 Benefits
3.2 Control
3.3 Horizontal Accuracy
3.4 Scale Mixing

4.0 Projections \& Coordinate Systems

4.1 Florida Coordinate Systems (1927 and 1983 datums)
4.2 Latitude - Longitude (Geographic)
4.3 Universal Transverse Mercator (UTM)
4.4 Transverse Mercator Projection
4.5 Lambert Conformal Conic Projection
5.0 Cartography
5.1 North Arrow
5.2 Scale Representation
5.3 Map Date

5.4 Title Block

5.5 Disclaimer
5.6 Lines and Other Delineations
5.6.1 Public Land Survey System Lines (PLSS)/Land Grant Lines
5.6.2 Parcel Lines
5.6.3 Lot Lines
5.6.4 Block Lines
5.6.5 Easement Lines
5.6.6 Right-of-Way Lines
5.6.7 Hydrographic Lines

5.7 Annotation

5.7.1 Acreage
5.7.2 Dimensions
5.7.3 Lot Numbers
5.7.4 Block Numbers
5.7.5 Street, Road, Right-of-Way Names
5.7.6 Subdivision and Condominium Names

5.7.7 Easements

5.7.8 Parcel Numbers

6.0 Map Compilation

6.1 Assembling Source Data
6.2 Constructing a Framework for the Parcel Maps
6.3 Compiling the Boundaries of Parcels

6.3.1 Map Boundary Compilation Issues

7.0 Map Maintenance

7.1 Updating
7.2 Quality Control

8.0 Land Descriptions

8.1 Interpretation
8.2 Abbreviation
8.3 Condensing Descriptions

9.0 Land Description Conflicts and Solutions

9.1 Double Assessment
9.2 Omitted Areas
9.3 Parcel in Vacated Portion of Plat
9.4 Government Lots
9.5 Islands
9.6 Addressing Erroneous Descriptions

10.0 Parcel Numbering

11.0 Data Archival

12.0 Data Exchange Standards

12.1 Native and Direct Data Exchange Formats
12.2 Common Data Exchange Formats
12.3 Data Exchange Media

13.0 Metadata

13.1 Federal Geographic Data Committee (FGDC) Metadata Standards

14.2 Logical Model for Tax Parcel Boundary Geometry

14.3 Logical Model for Tax Parcel Legal Area Description

15.0 Glossary of Terms

Appendix A - Layers in Geographic Information System

Appendix B - National Map Accuracy Standards

Appendix C - State Plane Coordinate Zones of Florida

Section 1

1.0 Introduction

The principal responsibility of the county property appraiser is to locate, inventory, and appraise all property within the jurisdiction. A complete set of maps is necessary to perform this function. Maps help determine the location of property, indicate the size and shape of each parcel, and reveal geographic relationships that affect property value. Maps and map data are important not only for property appraisers, but for other agencies and individuals.

To make maximum use of data on land parcels, it is desirable for jurisdictions to try to develop a multipurpose cadastre. A multipurpose cadastre furnishes a framework to record, store, and provide comprehensive land information at the parcel level, and makes it possible to share parcel data among all users of the data.

A multipurpose cadastre should have the following components: a series of current, accurate, large-scale photogrammetric base maps that are tied to a geodetic network; cadastral overlays delineating all real property parcels; a unique identifier assigned to each parcel that is used as a common index to all land records; and a series of land files each containing the parcel identifiers in addition to other data.

Any jurisdiction that undertakes a cadastral mapping program should work with other agencies to establish a multipurpose cadastre. ${ }^{1}$

[^2]These guidelines have been compiled by the Florida Department of Revenue, Property Tax Administration Program, Mapping \& GIS Section to provide direction and assistance to the county property appraisers of the state.

1.1 Applicability

These guidelines apply to all county property appraisers or any other agency, institution, or corporation engaged in the preparation of maps for purposes as specified in Chapter 193.085 FS. Portions of these guidelines are practical only in a digital environment. Currently operating map programs which are technically or structurally unable to comply are not required to retrofit to these guidelines, but are encouraged to implement as many of these guidelines as soon as possible.

1.2 Staffing and Training

An effective mapping program requires adequate staff support. Staffing needs will depend on the type of mapping system and the size of the jurisdiction. All mapping personnel should receive training in procedures that are appropriate to the jurisdiction. ${ }^{2}$

In addition to traditional cadastral mapping skills and knowledge such as drafting, photo grammetry, and land transfer principles, among others, it may be desirable that personnel should also be capable of performing system analysis and design, database management, network administration, and computer operations. Adequate resources should be allocated to ensure that new and existing personnel receive appropriate periodic training.

Section 2

2.0 Base Map Development

A base map is a geometric control feature in a digital mapping system that permits many other specialized theme layers to be brought into absolute position by registration on the base map (See Appendix A). There are three general themes or layers of base map content that will permit registration of most other themes or layers: boundaries, roads, and water features. Boundaries can be divided into three classes: public land survey boundaries, parcel boundaries, and political boundaries.

2.1 Paper to Digital Conversion

Any approach to remapping should begin with a determination of the desired outcome of the project based on user needs and accuracy requirements prior to hardware and software purchases. Quality control measures should be implemented throughout the course of the project. There are several methods of converting paper maps to the

[^3]computer. Each method must follow these fundamental principles to be successful. The alternatives of scanning, board digitizing and coordinate geometry must be evaluated to determine the most desirable method to be employed for each portion of a mapping project. Most mapping strategies will probably use a combination of conversion methods to effect the optimum conversion strategy for an entire project. Care should be taken to plan each project with adequate time and resources to ensure a final product that will meet the standard of accuracy determined for the project.

1. The source document must be of usable quality.
a. Legible or restorable.
b. Accurate in scale and direction.
c. There are adequate sources to cover the area mapped.
d. Source documents are accessible and available.
2. There is adequate control to locate the map in the real world.
a. The frequency of the control ensures that all map portions are fitting properly.
b. The dispersion of the control ensures that there is no distortion in areas of difficult fits.
c. Controlled photos of project area should be inventoried and evaluated for use.
d. All existing digital coverage should be inventoried and evaluated for control potential.
3. Coordinate geometry (COGO) should be implemented as much as possible to ensure consistency between recorded instruments, as built designs, other available digital maps, and the base map. Although coordinate geometry is usually regarded as the most accurate method of base map construction, it is sound practice to integrate the COGO work with existing reliable digital sources to ensure accuracy and consistency and minimize the expense and effort of the duplication of existing digital work. When inconsistencies between the property records and other mapping sources (i.e.: photo evidence) appear, a thorough investigation should be initiated to discover all the relevant evidence to make the judgement for locating the element on the map accurately. The recorded instrument remains the authoritative record upon which all property valuations must rely. If the record conflicts with the evidence of the map, the recourse for the mapper is to identify the discrepancy for reconciliation by the proper authorized parties.
4. Hardware and software should be evaluated and chosen that will implement the conversion successfully.
a. Scanners should be of adequate resolution to convert source documents to a pixel size that will support desired accuracy.
b. Scanners should support an adequate number of shading levels to reproduce the detail of the original document to the screen.
c. Scanners should be of adequate size to accommodate source material with a minimum of cutting or folding.
d. Digitizer resolution should support accuracy required.
e. Computer processing and storage must have the capacity to process and store large raster files.
f. The video adapter and monitor of the system must allow clear viewing of digitized materials.
g. The software employed must offer adequate manipulation tools to capture and enhance source documents.
h. The software employed must be friendly enough to ensure consistent, accurate use by trained operators.
i. Software employed must provide all the tools required to ensure accurate fitting of digitized source to project.
j. Software employed should facilitate quality control procedures.
5. Operators are trained and follow sound conversion procedures.
6. Quality control is frequent and thorough.

2.2 Outsource

Several vendors are available who can provide services ranging from technical assistance to turn-key systems, complete with periodic updates of map changes. Costs vary depending on the approach to conversion and the level of service provided. Careful consideration should be given to the costs and services provided, as well as ultimate ownership and use of the data generated. An in-house quality control program is essential to ensure that the product delivered is according to predetermined specifications.

Section 3

3.0 Accuracy

Map accuracy is the degree toward which any given feature(s) on a map conforms to its true position on the ground.

3.1 Benefits

The direct benefit of map accuracy is to ensure accurate spatial representation of mapped features not only on cadastral maps, but also for features included in other map themes such as those used for planning, permitting, routing and emergency services. Accurate cadastral maps aid property appraisers in the determination of equitable assessments throughout the jurisdiction.

3.2 Control

A base map consists of geometrically controlled features in digital mapping system that permits many specialized theme layers to be brought into absolute position by registration on the base map. A base map that would support property appraisal has three base components (Geodetic Control, Public Land Survey System, and Parcel Boundary) that permit the overlaying of other themes: boundaries, roads, and water features.

3.3 Horizontal Accuracy

Horizontal accuracy should meet or exceed U.S. National Map Accuracy Standards (NMAS). NMAS are reproduced in Appendix B of this document. Note, however, that adherence to NMAS can usually be achieved only when maps are compiled directly by survey, GPS, and/or photogrammetric methods.
U.S. National Map Accuracy Standards require that at scales of 1:20,000 and larger (for example, $1: 12,000,1: 1,200$) that 90% of a randomly chosen sample of well-defined map features will be on the map within $1 / 30$ inch (0.03 inches) (at scale) of their true location on the ground. The table below illustrates the positional accuracy of several relevant scales.

Scale Horizontal Accuracy

$$
\begin{aligned}
& 1: 1,200+\text { or }-3.33 \text { feet } \\
& 1: 2,400+\text { or }-6.67 \text { feet } \\
& 1: 4,800+\text { or }-13.33 \text { feet } \\
& 1: 9,600+\text { or }-26.67 \text { feet } \\
& 1: 10,000+\text { or }-27.78 \text { feet } \\
& 1: 12,000+\text { or }-33.33 \text { feet }
\end{aligned}
$$

3.4 Scale Mixing

The mixing of digital map data of widely divergent scales into a common database should be avoided, as the positional accuracy of the aggregate database would be considered to be no better than that of the smallest scale.

Section 4

4.0 Projections and Coordinate Systems

The following projections and coordinate systems are recommended for the input, storage, and in particular, the exchange of digital map data. It is recommended that cadastral maps in Florida be based upon state plane coordinates adjusted to the 1983 (1990 readjustment) horizontal datum. Other projections and coordinate systems may be used to satisfy special requirements.

4.1 Florida Coordinate Systems (1927 and 1983 datums)

The Florida Coordinate Systems, 1983/90 datum, in which map distortion has been minimized by dividing the state into three zones (See Appendix C) must, by state law, be used for surveying and the compilation of engineering maps. These systems may also be used for the compilation of regional maps, but since they do not provide uninterrupted coverage of the entire state, such mapping should not extend beyond the limits of any given zone. These systems may be used for the input, storage, and exchange of digital map data, as well as for the output of hardcopy maps.

4.2 Latitude - Longitude (Geographic)

Latitude - Longitude is a projectionless coordinate system that may be used for the input, storage, and exchange of digital map data. Although it may also be used for the output of hardcopy maps, it is not structurally suited for that purpose.

4.3 Universal Transverse Mercator (UTM)

The Universal Transverse Mercator map projection system may be used for regional mapping, but like the State Plane Coordinate Systems, such mapping should not extend beyond the limits of any given zone. This system may be used for the input, storage, and exchange of digital map data, as well as for the output of hardcopy maps.

4.4 Transverse Mercator Projection

The Transverse Mercator map projection is based on an imaginary cylinder covering the area of interest. This projection is best for areas that lie in a north-south direction such as the Florida peninsula. This system may be used for the input, storage, and exchange of digital map data, as well as for the output of hardcopy maps.

4.5 Lambert Conformal Conic Projection

Lambert projects an imaginary cone to cover the area of interest and has greater east-west integrity than north-south such as the Florida panhandle area. This system may be used for the input, storage, and exchange of digital map data, as well as for the output of hardcopy maps.

Section 5

5.0 Cartography

Map design considerations determine whether a map is legible and easily interpreted. The following cartographic elements should appear on all cadastral maps in order to facilitate functionality, while other elements may be included as optional according to local needs or resources.

5.1 North Arrow

An arrow-like symbol indicating the direction to which the control framework of a map or drawing is referenced.

5.2 Scale Representation

Since maps must necessarily be smaller than the areas mapped, their use requires that the ratio or proportion between comparable measurements be expressed on the map. This is called map scale and should be the first thing of which the map user becomes aware. ${ }^{3}$ Scale should be expressed as a statement of map distance in relation to earth distance or a graphic (or bar) scale or both.

5.3 Map Date

The actual date the map was plotted should be prominently displayed.

5.4 Title Block

A title block may include such items as county and state names, scale, north arrow, legend, plot date, disclaimer, and map index, among others.

5.5 Disclaimer

Disclaimers are used to limit and define the map author's responsibility for the content, accuracy, and currency of a map. Although some maps may require specialized disclaimers, the following disclaimer represents one suggestion:
"This map is the product of Agency, Division and was printed on Date. This map was produced with the intent that it be used for Purpose at the scale of X. There are no warranties made as to the fitness of this map for any unlisted purpose or reproduction at any other than the original scale."

The agency can complete the italicized sections with appropriate information relating to the agency and the purpose of the map.

5.6 Lines and Other Delineations

Certain lines are basic and are expected to appear on any cadastral map. Significance of some lines may be distinguished by line weight.

5.6.1 Public Land Survey System Lines (PLSS)/Land Grant Lines

Rule 12D-8.008, (1), (a), Florida Administrative Code, requires all descriptions (and thus parcel maps) to be based upon reference to the government grid survey system.

5.6.2 Parcel Lines

Parcel, or boundary lines of all assessed property. Parcel lines may include the following line types: subdivision, block, right-of-way, hydrographic.

5.6.3 Lot Lines

All recorded subdivision lot lines, except that when said lines are not coincident with parcel boundary lines they may be displayed as "broken lines" and/or maintained in a separate layer.

5.6.4 Block Lines

Recorded subdivision block lines.

5.6.5 Easement Lines

All easement lines that present a significant influence on property value should be displayed. A significant influence on property value may occur in the presence of an easement that is not general or common to all properties (i.e. conservation
easements, drainage easements, and ingress and egress or right-of-way easements).

5.6.6 Right-of-Way Lines

Road, utility, and railroad right-of-way lines form parcel boundaries.

5.6.7 Hydrographic Lines

Water boundaries (i.e. seas, lakes, streams, rivers) forming parcel boundaries, or where significant to value.

5.7 Annotation

Lettering a map means the preparation of this aspect of the artwork, which includes all the names, numbers, and other typographical material. ${ }^{4}$ Procedures for the placement and size of annotation should be developed by each jurisdiction. Accurate interpretation of a map is dependent upon the annotation placed thereon. Certain elements of annotation are expected to appear on any cadastral map.

5.7.1 Acreage

Rule 12D-1.009, Florida Administrative Code states that all acreage of parcels over one acre in size, where known, are to be reflected on the map. Where known as used in the rule means acreage from instruments of title as are usually recorded in the public records of the county.

5.7.2 Dimensions

Rule 12D-1.009, Florida Administrative Code states that all dimension of parcels over one acre in size, where known, are to be reflected on the map. Where known as used in the rule means dimensions from instruments of title as are usually recorded in the public records of the county.

5.7.3 Lot Numbers

Numbers of all recorded subdivision lots, all Government Lots, and where applicable, numbers of lots in "unrecorded subdivisions".

5.7.4 Block Numbers

Numbers of blocks in all recorded subdivisions and where applicable, numbers of blocks in "unrecorded subdivisions".

[^4]
5.7.5 Street, Road, Right-of-Way Names

Names and/or route numbers of streets, roads, and rights-of-way forming parcel boundaries.

5.7.6 Subdivision and Condominium Names

Names or reference codes of all subdivisions and condominiums. Where only reference codes are utilized it is suggested that an associated legend be shown.

5.7.7 Easements

Where easements are shown it is recommended that the type of easement be displayed.

5.7.8 Parcel Numbers

See Section 10 of this document.

Section 6

6.0 Map Compilation

Five major tasks need to be considered when actually developing a parcel map system. ${ }^{5}$ These tasks include:

1. Assembling and weighting source data
2. Constructing a framework for the parcel maps
3. Compiling the boundaries of parcels
4. Adding notation as needed
5. Maintenance
6. Quality control

The issues of annotation and maintenance are addressed in Section 5.8 and Section 7.0, respectively, of this document.

6.1 Assembling Source Data

The first task in the creation of a parcel map is to assemble relevant records from appropriate sources. These sources include but are not limited to:

[^5]1. Title records
2. Assessment records
3. Infrastructure records (highways, utilities, transmission lines, etc.)
4. Land use and zoning regulation records
5. Resource and environmental records
6. Court records
7. Survey records (plats, plans, and surveyor notes)
8. Aerial photographs
9. U.S. Geological Survey maps
10. Government Land Office Surveys (township plats and notes)
11. Existing parcel (or tax) maps.

Highly weighted information should be plotted first and held fixed, while lower-weighted information is fitted to it. ${ }^{6}$ Highly weighted information means the most precise and accurate data available, upon which the highest degree of reliance can be placed.

Weighting source data is a process by which you classify your mapping data, from the geodetic control to the parcel descriptions. It can and will determine the validity and accuracy of your maps. It should be done by a person with extensive cadastral mapping experience and a good working knowledge of surveying principles and practices.

It should be noted that the various sources of control will likely be based on unrelated reference systems or bases. It is imperative that a single reference base be chosen for the entire jurisdiction being mapped and that all subsequent survey data be "rotated" to the common control base.

6.2 Constructing a Framework for the Parcel Maps

The framework for parcel mapping establishes a link to a ground control system that is common to all maps in a digital mapping system. This linkage has two forms: 1) direct ties by ground surveys between the National Geodetic Reference System (NGRS) and the legal referencing system for parcels and 2) the planimetric detail of the base map.

6.3 Compiling the Boundaries of Parcels

Once relations between locations that constitute the framework are determined, the process of placing parcels within the framework begins. This process depends upon a prioritization of the parcel records and data.

While all aspects of parcel mapping are important, particular attention should be focused on ensuring that all parcels are accounted for.

[^6]
6.3.1 Map Boundary Compilation Issues

To effectively display and perform analysis on mapped data, consideration should be given to the following issues:

1. Tax district or taxing unit boundaries shall split contiguous ownership into separate parcels. Exceptions to this rule are subdivided lots that are already described in their smallest legal division. When a taxing district or line cuts through a subdivision lot, it shall be parcelled in the district where the largest volume of land occurs or where the improvement is located, wherever practical. ${ }^{7}$

Section 7

7.0 Map Maintenance

It is important that cadastral maps be a reflection of the respective county's tax roll. A regular maintenance program should be implemented to assure that the maps are current and accurate.

7.1 Updating

There should be a direct correlation between what is depicted on a parcel map and the assessment roll.

7.2 Quality Control

Standard procedures for quality control should be established to continuously edit and inspect all ownership maps for accuracy, neatness, and completeness.

Section 8

8.0 Land Descriptions

Real property descriptions prepared for the assessment rolls shall conform to the minimum requirements as set forth in Rule 12D-8.008, F.A.C. Descriptions should be written so as to afford a taxpayer adequate notice of the tax assessed against his property. Furthermore, such clarity in a description would reduce errors in the tax sale process.

8.1 Interpretation

Omission of qualifying and descriptive words and phrases should be avoided, as should unnecessary abbreviations, which would render the description nonsensical. Remainder descriptions of a parcel that has been divided should be written as negative, that is, by excepting the portion from the parent parcel for which an accurate description appears of record.

8.2 Abbreviation

It is preferable, for clarity, to avoid the use of abbreviations in property descriptions except for those words or phrases that are commonly abbreviated. In such cases, usage should be made in accordance with the abbreviations and their associated meanings as given in Rule 12D-8.008, 2, (d), F.A.C.

8.3 Condensing Descriptions

This is a difficult and important process and should be avoided except in extreme cases. Reducing the length of descriptions by using accepted standard abbreviations and eliminating unnecessary wording results in a more compact assessment roll, however qualifying words and phrases should never be eliminated. When bearings and dimensions are used, rounding and truncating should be avoided. If condensing a land description is necessary the corresponding public record (i.e. official record book and page) should be referenced.

Section 9

9.0 Land Description Conflicts and Solutions

Some of the errors, problems, and omissions encountered in land descriptions are discussed and suggested solutions offered in the sections, which follow.

9.1 Double Assessment

Double assessment is the most common error found on the assessment roll and is described as a parcel that appears on the assessment roll twice, in part or in its entirety. Parcels that are double assessed in their entirety are usually the result of errors copying, or condensing, from the source document, or failure to except a parcel from the original description.

9.2 Omitted Areas

Omitted areas are frequently the result of the excepting of an exempt parcel from a description and failing to list the descriptions for these areas. These descriptions may frequently be located in assessment rolls for prior years.

9.3 Parcel in Vacated Portion of Plat

Vacated portions of a plat have the same status as any other acreage property and should be assessed by a metes and bounds description. Plats not vacated but which are superseded by a plat recorded at a later date should be dropped from the assessment roll. The plats or parts recorded last take precedence over all earlier recorded plats of the same area.

9.4 Government Lands

The land of any governmental unit is to be mapped in the same manner as all other lands.

9.5 Islands

Islands within an assessing district are to be mapped the same as other areas of a county. The (U.S.G.S.) quadrangle maps will usually give the island name.

9.6 Addressing Erroneous Descriptions

Cadastral mapping will occasionally reveal errors in deed descriptions such as gaps, gores, overlaps and the failure to mathematically close. It is not within the scope of the duties of the property appraiser or the cadastral mapper to attempt to resolve such discrepancies. Efforts may be made to contact deed scriveners or parties in the transaction to reveal the discrepancy.

Section 10

10.0 Parcel Numbering

A parcel identification system provides a method for referencing land parcels, or data associated with parcels, using a number or code instead of a complete legal description. The correlation of maps and individual property records requires that all parcel files be indexed using a uniform parcel identifier.

There are three basic forms of parcel identifiers in common use: location identifiers, namerelated identifiers, and alphanumeric identifiers. The primary identifier for assessment purposes should be a location identifier.

A location identifier is one in which the parcel number provides the location of the parcel. Examples include map-based identifier systems, geographic coordinate identifier systems, or identifiers related the Public Land Survey System.

Parcel identifiers should be unique and permanent, that is assigned to one and only one parcel and should change only when the boundaries of the parcel change, and a new parcel is created. ${ }^{8}$

It is recommended that, when mapping is accomplished digitally, a centroid, or geographic coordinate system of parcel identification, based upon the Florida State Plane Coordinate System be established as a secondary method of identification. Parcel identifiers using this system are composed of x and y coordinates for a single point, usually the approximate center of the parcel. The following example illustrates such a concept:

Parcel (polygon) Centroid: This number would consist of 19 numeric character fields in the current 12D-8 (NAL) file that is submitted to the Department of Revenue annually. It would be added to the end of the existing record layout and broken out as follows:

Fields 1 through 7 would represent whole numbers left of the decimal in the State Plane Coordinate Easting (X) value;
Fields 8 through 14 would represent whole numbers left of the decimal in the State
Plane Coordinate Northing (Y) value;
Fields 15 through 17 would represent condominium unit, if applicable. (Units 1999);

Field 18 and 19 would denote the Datum (ie. 27= 1927 datum, 83=1983 datum).
Since the State Plane Coordinate zone boundaries follow county boundaries and the Department requires a county code number (first 2 character fields) as part of the 12D-8 record layout, there is no need to indicate the zone nor further identify the county.

This number can be generated in two ways:
(1) Software generated; Most, if not all CADD/GIS software that are polygon based generate this number automatically when a polygon (parcel) is built. It calculates the mathematical centroid of that polygon. In many cases it is the tag (or label) point. However, in some cases the mathematical center of the polygon could fall outside of the actual polygon boundary. In those cases, or if the county chooses not to use this method, the following is an alternative method:
(2) Manually generated; The mapper and/or CADD operator can physically pick the centroid point with the mouse.

As long as the actual point falls within the parcel boundary, either means is acceptable.

[^7]This number would not be a replacement to the current parcel number now in place in all 67 counties, however it would be in addition to that number and would provide an actual physical location to all parcels within the state. It is up to the discretion of the property appraiser whether this record is maintained throughout the year or only generated at the time of tax roll submission.

Section 11

11.0 Data Archival

It is recommended that each jurisdiction implement a plan for archival of digital map data.

In order to avoid loss of digital map data in the event of mechanical failure, a back-up copy of the map data base should made on a regular schedule. The frequency, method, and media used for data back up will be determined by the jurisdiction's maintenance schedule.

Consideration should be given to off-site storage of the map data base to protect against the loss of on-site archived data in the event of theft, fire or natural disaster.

Section 12

12.0 Data Exchange Standards

Various methods of data exchange used by state, regional, local governments and private sector organizations depend on the complex matrix of hardware and software systems in place at both the source and target organizations. In determining the most desirable exchange format, considerations must be made for the preservation of accuracy and completeness, transfer efficiency, the data type (vector or raster) and the intended use of the data. In addition, compliance with F.S. 119 should also be assured.

12.1 Native and Direct Data Exchange Formats

Native data exchange formats for vector and raster data should be used for transfers between like software systems. If a direct exchange format exists between two dissimilar GIS software systems, it should be used only after a detailed investigation based on the considerations stated above in section 12.0.

12.2 Common Data Exchange Formats

Common exchange formats listed below should be used when vector data exchange in native and direct exchange formats are not available. If compression of data is used to
reduce file size be certain that the receiving agency has the appropriate software to read the data.
? ESRI Export Format (.e00)
? ESRI Shape File (.shp)
? Spatial Data Transfer Standard (SDTS)
? Drawing Exchange Format (DXF)
? Digital Line Graphs (DLG-3) standard or optional format
? Initial Graphics Exchange Standard (IGES) Version 3
? Standard Interchange Format (SIF)

12.3 Data Exchange Media

Various data exchange media are dependent on the hardware systems installed at the source and target organizations. The users exchanging data will determine the best media based on available network connections, modem connections, available input and output devices, CDROM or other transfer media.

Section 13

13.0 Metadata

Metadata are commonly defined as the data about data or the data about the processes performed on data. The major uses of metadata are:
? To maintain an organization's internal investment in geospatial data.
? To provide information about an organization's data holdings to data catalogues, clearinghouses, and brokerages, and
? To provide information needed to process and interpret data to be received through a transfer from an external source. ${ }^{9}$

13.1 Federal Geographic Data Committee (FGDC) Metadata Standards

It is recommended that consideration be given to documentation of the data utilized in the construction of cadastral maps. The State of Florida Geographic Information Board (GIB) has chosen to adopt the full Federal Geographic Data Committee (FGDC) Content Standard for Geospatial Metadata, and reserves the right to add to this content standard as necessary to accommodate the needs of the citizens of the State of Florida. It is further recommended that the FGDC Content Standard for Geospatial Metadata be referred to as a template for documenting the quality and source of cadastral map data.

[^8]
Section 14

14.0 Data Base Design

Particular attention should be paid to data base design and organization to facilitate data exchange among state and local governmental agencies. The following illustrates a logical model for tax parcel geometry and tabular data intended for newly designed systems, if desired.

14.1 Logical Model for Tax Parcel Geometry and Tabular Data

This diagram illustrates the core components for transferring the geometry of tax parcels. In this diagram, the parcel is assumed to be the tax parcel. The parcel boundaries have been determined by the local government prior to transfer. The method for computing the boundary of each parcel, such as coordinate geometry or best fit to an orthophoto, are not being transferred in this example. The parcel geometry is expressed as a Shape (or similar) file.

This model indicates that the polygons or areas that define cities, villages and towns and other tax districts may be separate shape files. For example, if the boundaries of the cities, village, and towns come from a different source than the parcels or are stored on a separate layer or as a separate object or separate graphic, then these items should be transferred as separate shape files. In these cases, the metadata for the cities, villages, and towns and other tax districts would be different than the metadata for the parcels.

If the city, village, and town are carried as attributes of the parcel, then any time a new city, village, or town or tax district intersects an ownership parcel, a new tax parcel is created. In this case the attributes for city, village and town and tax districts would be in the same Shape file as the parcel.

By connecting the tabular tax records to the intersecting entity, both scenarios are accomplished.

In the related tabular data file the primary key form the joining of the parcel to the tax districts is carried as the database primary key. The additional attributes for Parcel Centroid X and Parcel Centroid Y were added explicitly. In a relational database system this is not necessary, but is included to show that the linkage could also be made in this way.

14.2 Logical Model for Tax Parcel Boundary Geometry

Record Boundary

Record Boundary ID
Record Bounds
Direction Value
Distance Value
Record Boundary Comment
Direction Type
Direction Unit
Direction Quadrant
Distance Unit
Distance Type
Source Index
Source Agent
Source Type
Source Date
Curve Data
Offset Left
Offset Right

This diagram illustrates the core components for transferring the boundary information for the tax parcels from local governments to the Department of Revenue. In this diagram, as in the first diagram, the parcel is assumed to be the tax parcel. These are attributes that attach to lines in a file that describe the measurement information used to generate the tax parcel boundary.

Much of the information in this diagram is captured automatically as part of the coordinate geometry or other parcel automation process.

14.3 Logical Model for Tax Parcel Legal Area Description

This diagram could be an attachment to a parcel geometry file from the first diagram or this may be part of the County's existing GIS or CAD data files. The content of this file serves as a checklist for the information that may need to be included in a boundary
information file. The logical model provides a structure for the boundary information and standardizes the content and abbreviations. This standardization will make it easier to write programs to develop exports to or extract from a parcel boundary information file.

In terms of physical form, the information on units and source may be stored in separate look up tables that are then related to the line or boundary through the primary key, Records Boundary ID. It is also possible to further standardize the curve information and pull it out to a look up table as well.

Section 15

15.0 Glossary of Terms

absolute map accuracy. The accuracy of a map in relationship to the earth's geoid. The accuracy of locations on a map that are defined relative to the earth's geoid are considered absolute because their positions are global in nature and accurately fix a location that can be referenced to all other locations on the earth.
base map. A map showing certain fundamental information, used a base upon which additional specialized data are compiled.
cadastre. An official register of the quantity, value, and ownership of real estate; used in determining property value.
cadastral map. A map showing the boundaries of subdivisions of land, for the purposes of describing and recording ownership; used in determining property value.
compilation. (1) Cartography: the production of a new or revised map or chart, or portion thereof, from existing maps, aerial photographs, surveys, new data, and other sources. (2) Photogrammetry: The production of a map or chart, or portion thereof, from aerial photographs and geodetic control data, by means of photogrammetric instruments.
coordinates. Linear or angular quantities that designate the position of a point in a given reference frame or system. Also used as a general term to designate the particular kind of reference frame or system, such as state plane coordinates or spherical coordinates.
coordinate geometry (COGO). Automated mapping software that translates the alphanumeric data associated with a survey (distances, bearings, coordinates, etc.) into digital map information for creating and updating a digital cartographic data base.
centroid. A code (usually numerical) used to locate or identify a point, such as the center of a parcel.

Florida High Accuracy Reference Network. The extension of the National Geodetic Reference System into Florida is referred to as the Florida High Accuracy Reference Network (HARN). A HARN is a statewide or regional upgrade in accuracy of the North American Datum 1983 (NAD83) coordinates using GPS observations.
geodesy. A branch of applied mathematics concerned with the determination of the size and shape of the earth and the exact positions of points on its surface and with the description of variations of its gravity field.
geodetic coordinates. The quantities of geodetic latitude or longitude that define the position of a point on the surface of the earth with respect to the reference spheroid.
geographic coordinates. A system of spherical coordinates for defining the position of points on the earth. The declinations and polar bearings in this system are the geographic latitudes and longitudes respectively.

Geographic Information System (GIS). A computerized data-base system for capture, storage, retrieval, analysis, and display of spatial data.
geoid. The shape of the earth as a three-dimensional spheroid that coincides with the surface of the earth at sea level and extends in an imaginary surface through the continents with a direction of gravity that is perpendicular at every point.
geometric. Of, relating to, or according to the methods or principles of geometry.
Global Positioning System (GPS). Determination of coordinates of points using a network of satellites intended for this purpose.
index map. (1) A map of smaller scale on which are depicted the locations (with accompanying designations) of specific data, such as larger-scale topographic quadrangles or geodetic control. (2) Photography: A map showing the location and numbers of flight strips and photographs.
lot. A plot of land, generally a subdivision of a city, town, or village block, or some other distinct tract, represented and identified by a recorded plat.
monument. A permanent physical structure marking the location of a survey point or boundary line. Common types of monuments are inscribed metal tablets set in concrete post, solid rocks, or parts of buildings: distinctive stone posts; and metal rods driven in the ground.
multipurpose cadastre. A framework that supports continuous, readily available, and comprehensive land-related information at the parcel level.
parcel. A single, discrete piece of land having defined physical boundaries and capable of being separately conveyed.
photogrammetry. The art, science, and technology of obtaining reliable information about physical objects and the environment through processes of recording, measuring, and interpreting images and patterns of electromagnetic radiant energy and other phenomena.
planimetric map. A map that presents only the horizontal positions for the features represented; distinguishable from a topographic map by the omission of relief in measurable form.
plat. A diagram drawn to scale showing all essential data pertaining to the boundaries and subdivision of a tract of land, as determined by survey or protraction.
projection. A systematic representation of all or part of the surface of a sphere onto a plane.
relative map accuracy. The accuracy of a map in relation to a local survey network that is not tied to the earth's geoid. The accuracy of locations on a map defined relative to a local survey network is considered relative because the positions are accurate only within a certain geographic area covered by the network.
state plane coordinate systems. A series of grid coordinate systems prepared by the U.S. Coast and Geodetic Survey for the entire United States, with a separate system for each state. Each state system consists of one or more zones. The grid coordinates for each zone are based on, an mathematically adjusted to, a map projection.

Appendix A

Appendix B

United States National Map Accuracy Standards

With a view to the utmost economy and expedition in producing maps which fulfill not only the broad needs for standard or principal maps, but also the reasonable particular needs of individual agencies, standards of accuracy for published maps are defined as follows:

1. Horizontal Accuracy. For maps on publication scales larger than 1:20,000, not more than 10 percent of the points tested shall be in error by more than $1 / 30$ inch, measured on the publication scale; for maps on publication scales of $1: 20,000$ or smaller, $1 / 50$ inch. These limits of accuracy shall apply in all cases to positions of well-defined points only. Welldefined points are those that are easily visible or recoverable on the ground, such as the following: monuments or markers, such as bench marks, property boundary monuments; intersections of roads, railroads, etc.; corners of large buildings or structures (or center points of small building); etc. In general what is well defined will also be determined by what is plottable on the scale of the map within $1 / 100$ inch. Thus while the intersection of two road or property lines meeting at right angles would come within a sensible interpretation, identification of the intersection of such lines meeting at an acute angle would obviously not be practicable within $1 / 100$ inch. Similarly, features not identifiable upon the ground within close limits are not to be considered as test points within the limits quoted, even though their positions may be scaled closely upon the map. In this class would come timber lines, soil boundaries, etc.
2. Vertical accuracy, as applied to contour maps on all publication scales, shall be such that not more than 10 percent of the elevations tested shall be in error more than one-half of the contour interval. In checking elevations taken from the map, the apparent vertical error may be decreased by assuming a horizontal displacement within the permissible horizontal error for a map of that scale.
3. The accuracy of any map may be tested by comparing the position of points whose locations or elevations are shown upon it with corresponding positions as determined by surveys of higher accuracy. Tests shall be made by the producing agency, which shall also determine which of its maps are to be tested, and the extent of such testing.
4. Published maps meeting these accuracy requirements shall note this fact on their legends as follows; "This map complies with National Map Accuracy Standards."
5. Published maps whose errors exceed those forestated shall omit from their legends all mention of standard accuracy.
6. When a published map is a considerable enlargement of a drawing (manuscript) or of a published map, that fact shall be stated in the legend. For example, "This map is an enlargement of a 1:20,000-scale map drawing," or "This map is an enlargement of a 1:24,000-scale published map."
7. To facilitate ready interchange and use of basic information for map construction among all Federal mapmaking agencies, manuscript maps and published maps, wherever
economically feasible and consistent with the uses to which the map is to be put, shall conform to latitude and longitude boundaries, being 15 minutes of latitude and longitude, or 7.5 minutes, or 3-3/4 minutes in size.

U.S. BUREAU OF THE BUDGET

Issued June 10, 1941
Revised April 26, 1943
Revised June 17, 1947

Appendix C

WEST
NORTH
EAST

Basic Map Compilation

The Map

Chapter 5

Table of Contents:

1. Original Government Survey Map - Township 29 Range 16
2. State Plane Coordinate Grid Sheet - Section Breakdown
3. Subdivision Plats
4. Condo Plats
5. Vacations
6. Deeds of Record

Exhibit 5.1a - Township 29 South, Range 26 East (Black \& White)

Exhibit 5.1b - Township 29 South, Range 26 East (Color)

Exhibit 5.2

Subdivision Plats and

Condominiums

Exhibit 5.3 \& 5.4

Plat Book 12 - Page 2

Pan

kAPOK TERRACE

Plat Book 36 - Page 14

Plat Book 36 - Page 15

Plat Book 42 - Page 46

waticro4s.

Plat Book 42 - Page 54

Plat Book 45 - Page 74

Plat Book 109 - Page 49

CONDOMINIUM
Book\# 32 Page\# $/ 13$

| CONDOMINIUM |
| :---: | :---: |
| Book \# Page\# $/ 14$ |

Condominium Book 32 - Page 114

Condominium Book 53 - Page 38

Vacation Resolutions

Exhibit 5.5

78109830

A RESOLUTION DEDICATING A CERTAIN RIGHT-OF-WAY IN BORDEAUX ESTATES, PINELLAS COUNTY, FLORIDA.

WHEREAS, the City of Clearwater is the owner of the hereinafter
described proporty; and
WHEREAS, it has now come to the attention of the City Commlator
that ald property hae never been formally dedicated as right-of-way, although
the same la to be led for such purpose; and
WHEREAS, the City Commission desires to officially dedicate ald
right-of-ivay by formal resolution;
NOW, THEREFORE, BE IT RESOLVED BY THE CITY COMMISSION OF THE CITY OF CLEARWATER, FLORIDA, IN SESSION DULY AND REGULARLY ASSEMBLED, AS FOLLOWS:

1. That the following described property be and the same la nereoy
dedicated an additional right-of-way for the intersection of Bordeaux Lane
and Cabala Lane for use by the general public and the City of Clearwater
generally as their interests may appear:
Start at the NW corner of Lot 7, Bordeaux Estates, ms -recorded in Plat Book 78, page 25 of the Public Records of Pinellas County, Florida, for the P.O.A.; run thence
 78.35 feet: thence run $589^{\circ} 26^{\prime} 48^{\prime \prime}$ E. 76.52 feat; thence run S $0^{4} 11^{1041 \mathrm{~W}} \mathbf{1} 82.70$ foot to P. O. B.
2. That the City Clerk la hereby directed to record this Resolution In the Public Record of Pinellae County. Morida.
3. That thin Resolution shall become effective immediately upon
lit passage.
PASSED AND ADPPTED this 6th day of July. A. D. 1978.

CITY OF. CLEARWATER, FLORIDA:

WHEREAS, it has been requested by Carolina Connecticut Propertiea,
Inc. owner of certain real property in Section 9. Township 29 South, Range
16 East, Pinellas County. Florida, that the City of Clearwater, Florida,
vacate a certain portion of right-of-way for Monterey Avenue; and
WHEREAS, after proper public notice and public hearing thereon, the
City Commisaion finds that said right-of-way is not neceseary nor required
and it is doemed to be to the best intereat and advantage of the Clty and the
general public that the bame he vacated:
NOW, THEREFORE, BE IT RESOLVED $T Y$ THE CITY, COMMISSION OF TIE CITY OF CLEARWATER, FLORIDA, IN SESSION DULY AND REGULARLY ASSEMBLED, AS FOLLOWS:

1. That the following:

Commence at the $S E$ corner of the $S W 1 / 4$ of Section 9 , Townthlp 29 South, Range 16 East. Pinollaa County, Florida; thonce run $\mathrm{N}^{\circ} 07^{\prime 2} 28^{\prime \prime} \mathrm{E}$ along the North-South centerline of aald Section 9. 50.00 fect to a P.O. B.: thence Easterly along the North right-of-way line of Drew Street, 40.00 feot; thence $\mathrm{N} 0^{\circ} 07^{\prime} 28^{\prime \prime} \cdot \mathrm{E}, 365.89$ rect; thence $\mathrm{N} 89^{\circ} 52^{\prime} 32^{\prime \prime} \mathrm{W} ; 80.00$ foet; thence $\$ 0^{\circ} 07^{\prime} 28^{\prime \prime} \mathrm{W}, 365.89$ feet to the North right-of-way line of Drew Strect: thence Easterly along the North right-ofway live of Drew Street, 40. 00 fect to the P. O.B..
be and the oame ia hereby vacated. cloacd and roleased, and the City of
Clearmater herby quit claims and releasen all of its right, title and intoreat
thereto to the persons, firms or corporations entitled thereto by law, oxcopting
that the City of Clearwater herejy retains a twenty-foot easement lying ten foot
(10') oach side of the centerline of aaid described real property for maintenanco
and installation of any or all public utllitiea and for accone.

Deeds of Record

Exhibit 5.6

This Ztarranty Feed Noate sthe

berrinfler called the armilor. k City of Clearwater, Florida, a municipal corporation,
uhose mostoffice address is PO Box 1348, Clearwater, Florida
tarrainaflers called the girnnater

Witnesseth: Thar the "rauntur. fur wend in romsidererntion of the sum ..f: 10.00

 ('sucnsy. Harisfo. riz:
The East Four Hundred Ninety (490) feet of the South onehundred (100) feet of the North four hundred sixty-seven and twenty-three hundredths (467.23) feet of the West Six Hundred Sixty (660) feet of the Northwest quarter. (NWh) of the Southeast Quarter (SEt) of the Sout hwest Quarter (SWh) and ALSO the South Two Hund red (200) feet more or less of the Northwast Quarter (NWt) of the Southeast Cuarter (SEt) of the Sauthwest Quarter (SWL) of Seation Nine (9) Township Twenty-nine (29) South Range Sixteen (16) East, and further described as fillows:

The East. 490 feet of the following described trict: Beginning at the Northw:s st corner of the Southeast Cuarter (SE\&) of the Southwest Quarter (SWh) of Section 9 Township 29 South Range 16 East, and run thence South 0011'00" West along the 40 acre line 367.23 feet for point of beginning, thence South $0^{\circ} 11^{\prime \prime} 00^{\prime \prime}$ West 100 feet, thence South $89^{\circ} 26^{\prime} 13^{\prime \prime}$ East 660.0 fert, thence North $0^{\circ} 11^{\prime} 00^{\prime \prime}$ East 100 feet, the nce North $89^{\circ} 26^{\prime} 13^{\prime \prime}$ West 660 feet to point of beginning, and also Bepin at the Northwist corner of the Southeast Quarter (SEt) of the Southwest Guarter (SWh) of said Section, and run thence south $0^{\circ} 11^{\prime \prime 00 " ~ W e s t ~ a l o n g ~ t h e ~} 40$ acre
 line four hundred sixty-seven and twenty-three hundredths (467.23) feat for point of beginning, from the point of beginning thus established run South $0^{\circ} 11$!00" West Two Hundred (200) feet more or less to the Southwist corner of the North half ($\mathrm{N} \frac{1}{2}$) of the Southeast Quarter (SEt) of the Southwest Quarter (SWh) of said Section, thence South $89^{\circ} 26^{\prime 1} 13^{\prime \prime}$ East six hundred sixty (660) feet, thenoe North $0^{\circ} 11^{\prime} 00^{\prime \prime}$ East two hund red (200) feet, thence North $89^{\circ} 26^{\prime} 13^{\prime \prime}$ West six hundred sixty (660) feet to the point of beginning.


``` all tidies．
```


Zatuuren stardust，inc．

a corporation existing under the laws of the State of Florida
having its principal place of business in the County of Pinellas and Os State of Florida party of the first part，and

BAUMGARDNER REALTY，INC．
North Hines Road，Clearwater 33515
of the County of Pinellas and State of Florida
parts of the second part，
1；ittregseff．that the said party of the first part，for and in consideration of
 to it in hand paid by the said party of the second part，the receipt whereof is hereby acknowledged，has spanked，bargained and sold to the said party of the second part forever，the following described land，situate，lying and being in the County of Pinellas ，State of Morida，to wit：

The south 400 feet of North 410 feet of East 275 feet of Northwest Quarter（N W⿳亠丷厂彡2，of Southwest Quarter（SN $\frac{1}{2}$ ），Section 9， Township 29 South，Range 16 E．．Pinellas County，Florida，

Third
Subject to a certain Mortgage to／City National Bank of Clearwater as recorded at 0 ．R．2332，Page 276，with a current principal balance of $\$ 28,800.00$ which grantees assume and agree to pay．

And the said party of the first part does hereby fully warrant the title to said land， and will defend the same against the lawful claims of all persons whomsoever．

In 䐓itury caused these presents to be signed in its name by its Rrigherent， and its corporate seal to be alfred．

（Corporate Seal）

Otritie of tiluriina
Clump ty of PINELLAS
3 Merely entity．That on this \％／8 day of May
A．D． 1967 ， before me personally appeared John D．Stames
respootivaly of STARDUST，INC． under the laws of the State of Florida ，to me known to be the persons described in and who executed the foregoing conveyance to
executive line-
FORM 125 FLORIDA WARRANTY DEED
Made this both July of J. D. 1969

Rilltrert RICHARD B. BAUMGARDNER. individually and as surviving spouse of ETHEL G. BAUMGARDNER, Deceased, joined by his wife, JUNE E. BAUMGARDNBR

of the County of pinellas and State of Florida
parties of the first part, and
BAUMGARDNER REALTY, INC.
923 N. Gaines Road. Clearwater, 33515
a corporation existing under the lams of the State of Florida
hating its principal place of business in the County of pinellas and Sicleof Florida party of the second part.

 (o) them in Mind premial. the recoin! whereof is hereby achmoulederig. ha we
 framed and l by these prexumfs ilo divine, durgaim, sell, alien. remise, release, cufcoff, comely wmd confirm unto : he surd burly of the second part and its success-
 County of Pinellas uni State of Florida, more particularly described wa follows:

> The South One Hundred Ninety-three (293) Feet of the North Six Hundred Three (603) Feet of the
> East Two Hundred Seventy-Five (275) Feet of the Northwest Quarter (Ninth) of the Southwest Quarter (SHh) of Section. 9; Township 29 South, Range 16 East. Pinellas County Florida:

Subject to Restrictions and Easements of record.
Subject to taxed for 1969 and subsequent years.

cinhtrevith all tho tenements, hereditaments and appurtenances, with

70051685
 0.x 3352 粠 77
 This quith-thim Beed, Execuled ihs 2Gith day of than . A. D. 1970 . by

 GERALD VINCENT BROWN, joined by his wife, JESS唓M. BROWN first party. to KENNETH M. BROWNwhose postoffice address is 600 Main Street, Dunedin, Florida
second party:

 re medraile ar requira.)
Witnesseth, That the said first party, for and in constderation of the sum of 5 Ten and no/10Q in tiand paid by the said second party. the recetp! whereof is hereby acknowledged. does hereby remise, ralease and quit-clatm unto the said second party Jorevar, all the right, ule. interest. daim and demand which the said firat party has in and to the following described lat, plece or parcel of land, situale, lying and being in the Counly of Sinellas Fiale of Florida lo-wit:

Beginning at the Northwest corner of the SE1/4 of the SW-I/4 of Section 9. Townshlp 29 South. Range 16 East, and run thence South 0 deg. $11^{\prime} 00^{\prime \prime}$ West along the 40 acres line 367.23 feet for P. O. B.; thence South 0 deg. $11^{\prime \prime} 00^{\prime \prime}$ West 100 feet; thence South 89 deg. $26^{\prime} 13^{\prime \prime}$ East 660. 0 feet; thence North 0 deg. $1 l^{\prime} 00^{\prime \prime}$ East 100 feet; thence North 89 deg. $26^{\prime} 13^{\prime \prime}$ Weat 660.0 feet to point of beginning: LESS the East 490 feet thereof, located in Pinellas County, Florida

To Have and to Hold the same logether with all ond strgular the appurtenances stherumito bebonging or in anywise appertaining, and all the estate. right. itte, interest, lien equity and claim whatsoever of the sald frast party. either in law or eauity to the only proper use, beneft: and behoof of the satd second party forever.
 first above writian.
Signed saeled and delioered in prasence of:

Chim Shumturv：
 9th
 day of
 March
 A．D． 1971 ，

Made this
强Iturett．PENNWOOD，INC．， a corporation existing under the laws of the State of Florida having its principal place of－business in the County of Pinellas and State of Florida party of the frst part，and
CITY OF CLEARWATER，FLOKIDA；a Municipal Corporation；whose mailing address is：P．O．Box 4748°－Clearwater
of the County of Pinellas and State of Florida part of the second part．

期什urgerth，That the sajd party of the first part，for and in consideration of the sum of ．．．．TEN AND NO／100．．．Dollars， to it in hand paid，the receipt whereof is hereby acknowledged，has granted，bar－ gained，sold，aliened，remised，released，conveyed and confirmed，an， \boldsymbol{y} by these presents doth grant，bargain，sell，atien，remise，release，convey and oonfirm unto the said part of the second part，and it＇s successors heirs and assigns forever，all that certain parcel of land lyin\＆and being in the County of．．．．．．．． Pinellas．．．．．．．．．．and State of Florida，more particularly desoribed as follows：
The East half（E1 $\frac{1}{\frac{1}{2}}$ ）of the North half（N $\mathrm{N}_{\frac{1}{2}}$ ）of
the Southeast Quarter（ SE_{4}^{4} ）of the Southwest
Quarter（SWi）of SECTIUN 9，TOWNSHIP 29 SOUTH，
HANGE 16 EAST；Less and except a $12 \frac{1}{2}$ foot strip
along the North edge of said property，which is
reserved for the use of the general public as
a road．

This conveyance is made subject to taxes for the year 1971 and subsequent years．This conveyanoe is also subject to that certain Mortgage in favor of F．K．Tenny and Eva W．Tenny，his wife；dated February 11， 1967 and filed for mecord in O．R．2552，Page 522 of the public records of Pinellas County，Florida．The purchaser herein assumes the present unpaid balance due on said Mortgage in the amount of $\$ 9,792.75$ ．

$$
\text { Mar } 12 \quad 3 \text { as PM } 71
$$

Clugethrr with all the tenements，horeditifitints and appurtenanoes，with every prumbede，ridht，title，interest ana estate，reversion，remainder and easement thereto bolonging or in anywise appertaining

And the said party of the first part doth covemant with the said part y of the sarnnd nomt thint it is tawfullu setzed of the said nremises：that thet are，frea

Chis $\frac{\pi}{4}$

Made this
chaos ter.

, A. D. 1971
Between
PENNWOOD, INC.
a corporation existing under the laws of the State of. Florida party of the first part, and CITY OF CLEARWATER, FLORIDA, a municipal corporation,

Pinellas and State of Florida
, of the County of or paving of the second part, whose mailing address is PO Box 4748, Clearwater, Florida 33518

Witnesselh, that the said party of the first part, for and in consideration of
 in hand paid by the said party of the second part, the receipt whereof is hereby acknowledged, has remised, released and quitclaimed, and by these presents does remise, release and quitclaim unto the said party of the second part all the right, tithe, interest claim and:demand which the said party of the first part has in and to the following described lot, piece or parcel of land, situate lying and being in the County of Pinellas State of Florida, to wit:

North 12-1/2 feet of the East 1/2 of the North 1/2 of the Southeast $1 / 4$ of the Southwest $1 / 4$ of Section 9, Township 29 South, Range 16 East, Pinellas County, Florida.

F. M. TENNY andevanu_trandic
and State of Florida
of the County of party of the first part, and CITY OF CLEARWATER, FLORIDA, a municipal corporation, whose mailing address is P Box 4748, Clearwater

Pinellas and State of Florida
of the County of party of the second part,
Witnesseth, that the said party of the Alost part, for and in consideration of
 in hand paid by the said party of the second part, the receipt whereof is hereby acknowh edged, has remised, released and quitclaimed, and by these presents does remise, release and quitclaim unto the said party of the second part all the right, title, interest claim and demand which the said party of the first part has in and to the following described lot, piece or parcel of land, situate lying and being in the County of Pinellas

State of Florida, to wit:

North 12-1/2 feet of the East $1 / 2$ of the North $1 / 2$ of the Southeast $1 / 4$ of the Southwest $1 / 4$ of Section 9. Township 29 South, Range 16 East, Pinellas County, Florida

To Have and to Hold the same, together with all and singular the appurtenances thereunto belonging or in anywise appertaining, and all the estate, right, title, interest and claim whatsoever of the said party of the first part, either in law or equity, to the only proper use, benefit and behoof of the said party of the second part.

In Witness Whereof, the said party of the first part has hereunto set his hames and seal the day and year first above written.

Between

MEBRELL CORPORATION

a corporation existing under the laws of the State of Florida party of the frst part, and CITY OF CLEARWATER, FLORIDA, feet, chord 94.81 feet, chord bearing S $65^{\circ} 04^{\prime \prime} 35^{\prime \prime} \mathrm{W}$; thence run S $62^{\prime} 22^{\prime \prime} 21^{\prime \prime} \mathrm{W}$ 99. 40 feet to a point of curve; thence along a curve to the right, radius 1369.94 feet, arc 114.57 feet, chord 113.54 feet, chord bearing S $64^{\circ} 44^{\circ} 51^{\prime \prime} \mathrm{W}$; thence S $67^{\circ} 07^{\prime} 21^{\prime \prime} \mathrm{W} 29.80$ feet to a point of curve; thence along a curve to the right, radius $1,382.39$ feet, arc 119.43 feet, chord 119.39 feet, chord bearing S $69^{\circ} 35^{\prime} 5 \mathrm{~J}^{\prime \prime} \mathrm{W}$; thence $\mathrm{S} 72^{\circ} 04^{\prime} 21^{\prime \prime} \mathrm{W} 121.60$ feet to a point of curve; thence along a curve to the left, radius 322.83 feet, arc 283.22 feet, chord 274.23 feet, chord bearing $S 46^{\circ} 56^{\prime 2} 21^{\prime \prime} W$; thence $S 21^{\circ} 48^{\prime} 21^{\prime \prime} \mathrm{W}, 580.17$ feet to a point of curve; thence along a curve to the right, radius 268.31 feet, arc 73.73 feet, chord 73.50 feet, chord bearing $S 29^{\circ} 40^{\prime} 42^{\prime \prime} \mathrm{W}$ to a Point of Ending; said Point of Ending lying N $00^{\circ} 07^{\prime} 43^{\prime \prime} \mathrm{E}, 50.0$ feet: and thence $\mathrm{S} 89^{\circ} 32^{\prime} 56^{\prime \prime} \mathrm{E}$ 334.82 feetfrombe Southwest corner of the SE $1 / 4$ of said Section 9, "Township 29 South, Range 16 East.

To Have and to Hold the same, together with all and singular the appurtenances thoreunto belonging or in anjuise appertaining, and all the estate, right, tille, interest and claim whatsoever of the said party of the first part, either in lavo or equity, to the only proper use, benefit and behoof of the said party of the second part.

WARHAMTY DECO WFOM CORPÓNATION

This : Ztartranty \#eed Made ond seceurd the 29th day of Apri1 A. D. 1971 by
MEBRELL CORPORATION
a corporation extrting under the lawe of Florida business at St. Petersburg, Florida horainafier called the grantor, to CITY OF CLEARWATER, FLORIDA, a municipal corporation, whose postoffice address is PO Box 4748, Clearwăter, Florida 33518 hereinafler callod the grantoo:

Wettnesseth: That the grantor. for and in considerediton of the sum of $\$ 1.00$ and othar valuable conselderations, reccaipt whereof ta hereby acknowladged. by thase presante does grant, bargain, sell. alien. remise, rolease. convoy and confum unto the grantes, all that certain land stluate in Pinellas Counly. FLorda, viz:

That portion of the $N 1 / 2$ of the SW $1 / 4$ of the SE $1 / 4$ of Section 9 . Township 29 South, Range 16 East lying Southerly and Easterly of the Southeasterly right of way line of Bayshore Drive (C. R. \#30) (als0 that portion of the SW $1 / 4$ of the SW $1 / 4$ of the SE $1 / 4$ of Section 9 . Township 29 South, Range 16 East lying Easterly of the Easterly right of way line of Bayshore Drive (C.R. \#30).
In the event that the City fails to properly maintain the subject property in an attractive and well kept manner, then the Grantor reserves the right to beautify the same from time to time in the interest of preserving the vista from Grantor's adjacent property. Grantor reserves the right to build a small dock to serve boating enthusiasts residing on the adjacent upland properiy but agrees in so doing to abide by all pertinent laws, rules and regulations of whatever nature. *
logetiet with all the tenemants. horeditaments and appurtenancas therato belonging or in anywhe appartaining.

Io Have and to Hold, the same in foo amphb forover.
Thit the grantar hereby covenants with satd grantes that it is lawiully seized of sald Land in fae stmple; that it has good righs and tanoful authorty to sell and convary sald land; that it hareby fully warrants the tule to sald land and will defend the same agatnst the lawful clatme of all persons whomsoever: and that sold fand to free of all encumbrances *The above described parcel shall only be used for a pirk With no temporary or permanent structures on the land. In the event the. Grantife berein uses the said property herein for some other purpose, then the

In tifiness tethereot

1055106

MAM合ANTV DEED

IFHOM CORPOAATION:

This Warranty \#eed
 Made and exacuted the 29 th $^{\text {Le-uday of }}$

Apri1 A. D. 1971 by

MEBRELL CORPORATION
a comporation existing under the laws of Flo'rida business al St. Petersburg, Florida hersinafter callod the grantor, 10

CITY OF CLEARWATER, FLORIDA, a municipal corporation, whose postoffice address is PO Box 4748. Clearwater, Florida 33518
hereinafter called the grantoe:
(Wherever wed berrim do terms "Frentor" and "erantes" include all the parties to thia inatracoent and.

Hiflnesseth: That the grantor, for and in consideration of the sum of $\$ 1.00$ and other valuable consideratlons, recelpt whereof ts hereby acknowledged. by these presents does grant, bargain, sell. alien, romise, release, convey and confirm unto the grantea, all that certain land situate in Pinellas Counily. Florida, uiz:

- Begin at the SW corner of the SE $1 / 4$ of Section 9 , Township 29 South, Range 16 East and run thence along the $1 / 4$ section line $N 0^{\circ} 07^{\prime \prime} 43^{\prime \prime}$. E. 1148.19 feet for P.O. B.; thence continue $N 0^{\circ} 07^{\prime \prime} 43^{\prime \prime} \mathrm{E}, 185$ feet to the 40 acre comer; Thence S $8^{\circ} 27^{\prime} 02^{\prime \prime} \mathrm{E}$ along the 40 acre line, said line also being the South line
Fof Del Oro Groves Sub. as recorded in Plat Book 12, page 2 of the Public ERecords of Pinellas County, Fla., 1316.44 feet to the 40 acre corner; thence Gs $0.05^{1} 14^{\prime \prime} \mathrm{W}$ along the 40 acre line, 258.33 feet to a point of intersection with The Northwesterly right of way line of Bayshore Drive (C.R. \#30); thence along
the Northwesterly right of way line of Bayohore Drive (C.R. $\mathrm{F}_{\mathrm{f}} 30$) along a curve Nto the left; radius 1004.91 feet, arc 80.03 feet; chord 80.00 feet, chord bearing近 $65^{\circ} 29^{\prime} 55^{\prime \prime} \mathrm{W}$; thence $\mathrm{N} 24^{\circ} 55^{\prime} 25^{\prime \prime} \mathrm{W}, 118.74$ feet; thence $\mathrm{N} 8^{\circ} 9^{\circ} 27^{\prime} 02^{\prime \prime} \mathrm{W} .1193 .61$ feet to P.O.B., LESS the W. 40 feet thereof for road right of way.

Togethet whth all the tentements, heredtaments and appurtenances thersto belonging or in anyulse appertaining.

Io Have and to Hold, tho same in foo simple forever.
Ant the grantor hareby covenants with said grantee that it is lowfully seized of said land in foo simple that it has good right and lawful authorily to sell and convey sald land; that it hereby fully warrants the title to said land and will defend the same against the lawful claims of all persons whomeosver: and thal sald land is fres of all oncumbrances. In the event that the City fails to properiy maintain the Grantown of preserving the viata from Grantor's adjacent property.

HES:

In Zuitness Z:thereof the grantor has caused these presents to be executed in lis name, and its comporale seal to be hereunio affiked. by its proper officers thereunio duly authorized, the day and year first above writen.

11055107

O.R. 3546 mice 385
yainawtrioera
HRAMM rncmeationt
Mamcoifonm as:

This Weartranty Beed Mado ond seceurd the : zesth doy of

 Apri1 A. D. 1971 by MEBRELL CORPORATION a corporation exdsting under the lows of Florida and having lis principal place of buslması al St. Peteraburg, Florida hereinafier callod the grantor. toCITY OF CLEARWATER, FLORIDA, a municipal corporation, whose postoflice addrass is PO Box 4748, Clearwater, Florida 33518
hereinafter called the granteo:

Thituesseth: That the grantor. for and in consederation of the sum of $\$ 1.00$ and other valuable consideralions, receipt whereof ts hereby acknowledged, by these presents does grant, bargain, sell. d1 007 Zallen, remlee, roloase, convey and confirm unto the arantee. all that certain land slluale in ; County. Florida, olx:

The South 50.0 feet of the Southwest $1 / 4$ of the Southwest 1/4 of the Southeast 1/4 of Section 9, Townehip 29 South, Range 16 East, Pinellas County, Florida.

AND
The Weat 40.0 feet of the Southwest $1 / 4$ of the Soufheast 1/4 of Section 9, Township 29 South, Range 16 East, Pinellas County, Florida.

This deed is given for right of way purposes.
Togethet wilh all the lenamants. hersdilaments and appurianances thersto belonging or in anyzolse apportotinding.

To Halle and to Hold, the sams in fee simgle foreogt.
Pid we grantor heroby cooenants with said grantee that it is lawfully seized of said lqnd in fee stmple that th has good right and lawful authority to sell and convey sald land; that it hereby fully warrants the utb to sald land and will defend the same against the lawful chalms of all parsons whomsoever: and that sald land 4 free of all ancumbrances

In wifitness tethereof

dir the grantor has caused these presents to be dxacuted in ts namet and itr corporate saal to be herounio affixed, by its proper officers thereiunto duly authorized, the day and year flrat above writtern.

72140629

This inetrimbent was prepared by CHESTER B.. MCMULLEN, JR

305 5. Osceola Avenua Clearwater, Flarida 33518

WARRANTY DEED EY TRUSTEES OF DISSOLVED CORPORATION

tais Indenture, made this $22^{\frac{c}{c}}$ day of Nostabie 1972, between CEESTER E. McMULLEN, JR., RETA JORDAN AND LENA E. MORIN, all of Clearwater, Pinellas County, Florida, being the Directors of West Indies Corporation, a dissolved Florida corporation, at the time of its dissolution and as such Trustees of the property of such dissolved corporation for the benefit of the stockholders, party of the first part and CEESTER B. McMULLRN, JR., whose mailing address is 410 West Druid Road, Clearwater, Pinellas County, Florida 33516, party of the second part,

WITNESSETH, that the said parties of the first part, for and in consideration of the sum of Ten Dollars ($\$ 10.00$) and other valuable consideration, to them in hand paid by the said party of the second part, the recelpt whereof is hereby acknowledged, have granted, bargained and sold to the said party of the second part, his heirs and assigns forever the following described land, situate, lying and being in the county of Pinellas, State of Florida, to-wit:

An undivided one-sixth (1/6) interest in and to the following land, to-wit:
Southeast Quarter (SEy) of the Southeast Quarter
(SEk) of Section 9, Township 29 South, Range 16
East;

AND
Government Lot One (1), Section 15, Township 29 South, Range 16 East:

AND
Government Lot Four (4), Section 10, Township 29 South, Range 16 East.

And the said parties of the first part do hereby fully warrant the title to said land, and will defend the same against the lawful claims of all persons whomsoever.

IN WITNESS WHEREOF, the said parties of the first part hava heremonto set their hands and seals the day and year first above written

Signed sealed and delivered
WEST INDIES CORPORATION
between SLiNSTATE DUILDERS, INC.
corporation organized and existing under the laws of the State of . . Eloriaia
and having its principal office and place of business in the City of \qquad
County of Hillsborough State of Florida party of the first part, and CITY OF CLEARNATER, a Municipal Corporation,

WITNESSETH, That the said party of the first part, for and in consideration of the sim of Ten and no/100 Dollars - (\$10.00)-m and other valuable considerations, to it in hand paid by the said party of the second parc, the receipt whereof is hereby acknowledged, has granted, bargained and sold to the said party of the second part, successor isis and assigns forever, the following described lands, situate, lying and being in the County of

Pinellas

State of Florida, to- wit:
A parcel of land lying in the South $1 / 2$ of the Southeast $1 / 18$ of the Southwest $1 / 4$ of Section 9, Township 29 South, Range 16 East, Pinellas County, Florida, more particularly described as follows:
Commencing ar the $S E$ corner of the $S W 1 / 4$ of section 9 , run North $00^{\circ} 07^{\prime 2} 28^{\prime \prime}$ East along the North-South centerline of Section 9 a distance of 666.89 feet; thence North $89^{\circ} 26^{\prime} 26^{\prime \prime}$ Nest a distance of 40.00 feet to the point of beginning. From said point of beginning run South $00^{\circ} 07^{\prime} 28^{\prime \prime}$ Nest a distance of 251.00 feet; thence North 80告26'26" West a distance of 330.00 feet; thence North $17^{\circ} 44^{\prime} 57^{\prime \prime}$ West a distance of 210.00 feet; thence South 89 ${ }^{\circ} 26^{\prime} 6^{\prime \prime}$ East a distance of 390.00 feet to the point
And the sad n party of the first past docs hercioy fully warrant! the title to said lathe, and will defend the same against the lawful claims of all persons whomsoever, except taxes arid assessments for the year 1974 and subsequent 4 ears:
 executed in its name by its proper officers and its corporiec seal we hereto affixed the day sind year first above written.

executive line

80083869

 G. PATRICK ILEY and JACOUFLINE H. ILEY, hia
OEORGE RUPPEL and SANDR J. RUPPEL, hIf WiEe

Plnellas
and Slate of Florida , party of the firnt pard and CITY OF CLEARHATER, PLORIDA, a munleipal corporation 12 South Oaceola Avenue, Cloarwater, Flordda $315 / 6$

Pincllas and State of Florida of the County of Witneseeth, that the said party of the first port, for and in consideration of
 in hasul paid by the said party of the sacond part, the receipt wherrof is hereby acknoulh edfod, thas romised, roleased and quitclamod, and by these presents does romise, retaces and quitclaim unto the sain party of tho socond part all the right, tithe, intorest aladon and demard which the said party of tho first part has in and to the following desorbid lot . piaco or parcel of land. situale lying and beind in tho County of Plnellas Stald of Florida, to wif:

State of Florida,

 Countr of PinellasI HXRABY CERTIFY, That on thle dey personally appoared before ma, an ofloer duly anthorisod to adminioter oathe and tale aoknowied intente, G. PATRICK ILEY, JACQUELINE R. ILEY, GEORGE RUPPEL and SANDRA J. RUPREL

O月. 8028 9, 1061

Parcel 1 -
The North Throefourthe (3/4) of the Southweat Quarter (SH $1 / 4$) of che southuet Quarcer (SW 1/4) of Section tine (9) Tumblifp Twatity-nina (29) soueh, Kntige gixtoen (16) East.

Subject to the Right of Way of County IIIghway No. 31 along the East 33 feet of suld
ladd. Less the followlag deacribed parcelet

1. AIF land includad in Plat of Kapok Tartace firet Additiun, eccording to the map or plat thereof as recorded in Plat Book 49, pages 48, Pulilic kucords of Plaellae County, Floride.
2. Beginniag at point 965.78 fate 8 outh of the Northeat comer of che SW $1 / 4$ of the SW $1 / 4$ of Section 9, Tounchip 29 South, Range 16 East for a polnt of beginaing, and rus thence South along the East boundary of said quarter gection a distance of thirty-five faet; run thence North $89^{\circ} \mathbf{2 4}^{\prime \prime} 1^{\prime \prime}$ ' West a diatance of 1337 feat more or leas to the West boundery of eald Section; run theace North along the Hest boundary of said Section aletance of thirty-five faet; rum thence East in a atraight line to the point of beginning.
3. That part of ald trect lying North of the 8outh line of Kapok Terrace Firet Addition extended Wast to the Wast boundary of the $5 W 1 / 4$ of the $5 W$ 1/4 of eald Section. Containing 16 and $3 / 4$ ecres M.O.L.

Parcel 2 -
The Souch one-fourth (S1/4) of tha SOUTHEEST QUARTER (SW 1/4) of the SOUTHEST QUARTER (SW1/4) of SECTION 9, TONNSHIP 29 SOUTH, RANGE 16 EAST: leas and except che South 30 feet thareof: and leas also exibting road right of way: AND ALSO:

The South 35 feet of the North chree-fourths (N 3/4) of the SOUTHEST QUARTER (SW 1/4) OF THE SOUTHWEST QUARTER (SW $1 / 4$) OF SECTION 9, TOWRSHIP 29 - OOUTH, RANGE 16 EAST: less and except exis.ing road right of way.

Parcel 3 - The East $1 / 2$ of the South $1 / 2$ of the Southeast $1 / 4$ of the Sourheast $1 / 4$, lese ine Sourh 30 feet, AND
The West $1 / 2$ of the South $1 / 2$ of the Southeagt $1 / 4$ of the Southeast $1 / 4$ LESS that part described in Instrument No. 1883431, dated March 17. 1955. filed March 18, 1955, recorded in Deed Book 1525, page 194 Public Records of Pinellee County, as follovs: "Comence at a brake at the Sourhwat corner of the Soucheast Quarter (SE 1/4) of the Southeast Quarter (SE 1/4) of Section 8. Tombhip 29 South, Range 16 . Eart, lor polat of begianing, run thence North along sald quarter quarter section line to stak at the Northwest coraer of $51 / 2$ of Southeas Quarter (SE $1 / 4$) of Southeast Quarter (SE 1/4): chence Eatc 660 fect to atake; thence South parallel to ald quarter quarter section line to atake lying on the South ilne of and Southeast quartet (SE 1/4) of Southeagt Quarter (SE 1/4) thence Wer 660 feet to point of beginning: same being also deacribed as: The Weat 10 acres of the 5outh hall (51/2) of the South cast Quartar of the Southeast Quarter (SE 1/4) of Section 8. Tounship 29 South. Range 16 Labr, lying and belag in Pinellag Councy. Ploride." In section 8, TOMiship 29 Soutb, RANGE 16 EAST, Public Records of Pinellag County, Plorida.

Parcel 4 - Beine a composite deacripion of parcels 1 and 2 deacribed above:
The SW $1 / 4$ of the $541 / 4$ of Section 9 . Toundipp 29 South, Range 16 East LeSS Kapok "Terrace Pirat Addition as recorded in Plat Book 49. page 28 aleo leas that part of eald tract lying North of the South line of Kapok Terract pirar Addition extended West to the Wert boundary of the SH $1 / 4$ of the $S H 1 / 4$ of asdaection. subject vo right of way for County Road 31 on the Rest and liesf tha souch 30 feer es conveyed to the Ciey of Clearwater in O. K. Rork 2457, paye 471.
 perry of the moond part.
-
Titmosicth. that the sold party of the firat past, for and tn conolderation of the sum of
 wh im in hand peid by the sald party of the second part, the recripi wheroof th hereby acknowoladged, hat granted, bergotried and wold to the sald party of the second part his hatre and aseigne forvoer, the following daentbad land, nituate lying and being in the County of, Spate of Flonda, to wit:

PINELLAS in the Stote of 'FLORIDA
-

A parcel of land lying in the Northwest Ouncter (NW $1 / 4$) of the Southweat Quarter (SW $1 / 4$) of the Southwest Quarter (SW $1 / 4$) of Section 9. Township 29 South, Range 16 East, described an foll lowis

Degin at the Southwest corner of Lot 1 . In Block "N" of Kapok Terrace - lat Addition as recorded in PlatBook 49. page 48, of the public records of pinellas county, Florida, for a P.O. D. I and from the P.O.B. run N O deg. $11^{\prime \prime} .59^{\circ} \mathrm{B}$ - Alstance of 130.0 feet! run thance $N 89$ deg. $24^{\circ} 14^{\prime \prime}$ wast a distance of $442.44^{\text {ceet aiore }}$ or less to the west boundary of aaid section g i run thence south along the wast boundary of said Section 9 a diatance of 138.0 feat and run thenco easterly in a stralght ilino to the established P.O.B. LESS AND EXCEPT TIIE ROAO RIGIT-OF-WAY.
subject to easements and restrictions of record.

And the ead party of thr ftret part dow horeby frelly warrant the tilla to satd land, and woll deferd the same against she lowoful claims of all persons whomsoeder.
 and year finst above wiston.

$0.8 .6334 \operatorname{mac} 1842$

This Indruturs，

鲜Ptu®Pt KAPOK CORPORATION，d／b／a a corporation existing under the laws of the State of Delaware having its principal place of business in the County of Pinellas Pinellas and ́ State of florida party of the first part，and PINLLLAS COUNTY，a political subdivision of the State of Florida 315 Court Street，Clearwater，Florida 33516
of the County of Pinellas and State of Florida partly of the second part，

Tifturguptl，that the said party of the first part，for and in consideration of
 to it in hand paid by the said party of the second part，the receipt whereof is hereby acknowledged，has granted，bargained and sold to the said party of the＇secoñd part forever，the following described land，situate，lying and being in the County of

Pinellas
，State of Florida，to wit：
The East 157.5 Ft ．of the South 193 Ft ．of the North 603 Ft ．of the Fast 275 Ft ，＇， of the Northwest $1 / 4$ of the Southwest $1 / 4$ of Section 9，Township 29 South，－Range 16 East，LESS existing right－of－way as show on the ichulleu－Booth Road Maintained Right－of－hay lap as recorded in Road Plat Book B，Page 61, Public Records of Pinellas County，Florida．
 OF TIE CONDHNATION BY GRANTEE OF TILE REAL HSTATI：DESCRIBED，HEREIN，MD NO FLORIDA DOCUMENTARY STAMP TAX IS PAYABLE ON ACCOUSY OI THIS TRANSACTION，IN ACCORDANCE WITH TILE PROVISIONS OF FLORIDA ADMINISTRATIVI：／CODE RULE $\backslash 12 \mathrm{~B}-4.14$（15）（b）．

And the said party of the first jartadoas＇hereby＇flilly warrant the title to said land， and will defend the same against the lawful élauns of all persons whomsoever．

caused thésépresents to be signed in its name by its President， ，and its corporate seal to be affixed，ratsentedsbyoits
the day and year above written．
 KUPK CORIORNTION，d／b／a
KAON TREE ILS \＆COROMTION
Attest：

Klarphy Certify．That on this
$8^{\text {th }}$ day of October A．D． 19 86， before me personally appeared MARON R．FODINLN President sud
＇respentivedy of KAPOK CORPORTIOX，d／b／a KMOK TRIE LNSS CORPORTION，a corporation ＇under the laws of the State of Delaware ，to me known to dontheint persons described in and who executed the foregoing conveyance to PIN：LLAS COUNTY，a political subdivision of the State of Flor dot
 such officer，for the uses and purposes therein mentioned；aft that figs affixed thereto the official seal of said corporation，and the said instriliment is fie act and deed of said corporation．

调ttuess my signature and official seal at Clearwater in the County of Pinellas year last aforesaid．
abd State of Florida，the day pit O under A LCidsem Notary Public
My Commission Expires 5／21／89．

Gathipri bamgardiner reaity, inc.
a corporation existing under the laws of the State of Florida having its principal place of business in the County of Pinellas State of plorida party of the first part, and
PINELLAS COUNTY, a political subdivision of the State of Florida
315 Court Strcet, Clearwater, Florida 33516
of the County of Pinellas and State of Florida partyof the second part,
\#iturnjptl!, that the said party of the first part, for and in consideration of
 to it in hand paid by the said party of the second part, the reccipt whercof, is hereby acknowledged, has granted, bargained and sold to the said party of the' second part forever, the following described land, situate, lying and being in the Covnty of

$$
\text { Pincllas } \quad \text { State of Florida, to wit: }
$$

The East 157.5 Ft . of the South 400 Ft . of the North 410 Ft . of the Last $275 \mathrm{Ft}=\mathrm{of}$,' the Northwest $1 / 4$ of the Southwest $1 / 4$ of Section 9, Township 29 South, Range 16 Fast, LESS existing right-of-way as shown on the Mckullen-Booth Road Maintained Right-of-Nay Nap as recorded in Road Plat Book B, Page 61, Public Records of Pinellas County, Florida,
this deed is given by grantor to tile county of pineims undir tirvat of add in lieu OF TIE CONDLENATION BY GRANTEE OF TIIE REAL íSTA'TE DESCRIBED'IiEREIN, AND NO FLORIDA doclaientary stayp tax is payable on accoukt of this truisaction, in accordance hith THE PROVISIONS OF FLORIDA ADMINISTRATIVE CODI: RULI: $12{ }^{1}$ B-4.14(15) (b).

And the said party of the first, part does hereby fylly uarrant the title to said land, and will defend the same against the laiufut elaims of all persons whomsocver:

Ill 1 lltuthit 1 H!preitf, the said party of the first part has caused thesegresents to be signed in its name by its President, ána its corporate seal to be afixed, vatserved bycito
(Corporate
Seal)
Aktest:

 the day and year above wniten.

- vidaidáluloon

Coisuty of Pinellas
Herrely Certify. That on this $8^{\text {th }}$ before me personally appeared AARON R. FODMAN
day of October A.D. 19 s6, Presidentwoud
Roghectivaly of baliggranir reatiy, inc.
, a corporation
under the laws of the State of Florida , to me known to be the: personsdèscribed in and who execuled the foregoing coneeyance to -PINELLAS COUNTY, a political subdivision of the State of Florida and sererally acknouledged the exccution thercof to be kher free aêt and ode such officers, for the uses and purposes therein mentioncd; and that thex afixed. thereto the official seal of said corporation, and the said instrumentit the act ard deed of said corporation.

in the C'ounty of Pinellas and State of Florida, Ifis day and year last aforesaid.
and state of Forida, he day and
$\begin{aligned} & \text { Notary Public } \\ & \text { 3fy Commission Expires } 5 / 21189\end{aligned}$

This Inturture,

of Florida, as to an undivided two-thirds (2/3rds) interest, as tenants in common,whose pait-ifflce address 18 . 315 court Street, Clearwater, Attn: General Servicesof the County of Pinellas .Stare of Florida 34616 .grantee. other good a hd valuable considerations to said kranturi in hand paid by said grantee, the receipt whereof is hereby arknowdrdaed, has granted, backainrd and sild to the said grantee, and grantee's heirs, successors and atslkne forever. the following de scribed land, situate, lv ink and being in. PINELIAS. County, Florid d, to wit:

SEE EXHIBIT "A" ATTACHED HERETO AND MADE A PART HEREOF

Subject to easements, reservations and restrictions of record, if any, which are specifically not reimposed or extended hereby, and to taxes for the year 1988 and all subsequent years.

No warranty of title is made to any submerged lands conveyed on even date herewith.

 all persons whomsoriv.
 Signed, scaled and delieveredun our per stine:

ORGG981GOOT3

PARCEL NO. 1

Covernacnc Lot 4. Seccion 10. Townehip 29 Soueh, Range 16 Easti ehac pare of eho Soucheast 1/4: of tho Southeast $2 / 4$ of Seceion 9 . Townisip 29 Solleh, Range 16 East. which is Soucheascerly of the cean hich esecr line aburcine Davshore Boulevard.

As

Governacnt Lot 1. Section 15, Tounship 29 South, Range is East, less chat pare Souch of an Easterly projection of che North line of Covernacnt Lot 4 in Section 16, Iewnship 29 South, Ranac 16 East, which projection is extended co the deep varer channel in Tapa Bay:

Nil che abova being in Finelias Councy. Fhorida.

PARCEL NO. 2

 Flot:da.
farcel nos. 1 and 2 my also be descarbedi as follohs:
A parcel of land located in Sectiona 9, 10, and 15. Tornanlp 29 Solieb.
Rance 16 Eact, Pimellan County. Florica. being more particuiarly deactibed as 10110vo:

Begin at the Southeant corner of azid Section 9: Run thone*
N.09-29.sj-v., mang the South boundary of ada.Section 9. diatance of 1316. BO leet to the Southweat corner of the Southeart $1 / 1$ of the Southenet $1 / 1$ of asid Section 9 : thence $\mathrm{K} .00 \cdot 00^{\circ} 59^{\circ} \mathrm{E}$. . Elong the Vene boundary of the Southesat $1 / 4$ of the Southeart $1 / 4$ of ald Section 9 ta polnt on the wen hiagi voter line of Cooper'a Boyou adjacent to Bayohore Boulevard; thonce Hortheagerly along the atan high vater lifne of adid Cooper'a deyou ko a polnt on in' Horth boundary of the Southeont. $1 / 1$ of the-Southoant :14 or inala Sce:son 9: thence 5.89.27.02•E.. ilong tsé Horth boundory of the Southese $1 / 4$ of the Southeat $1 / 4$ of aaid Section 9 to the Kírtheant cornef of the. Soueheast. :/4 dil chif Southeaet $1 / 4$ of anid Section 9. alno beling the Southreal corner of Goverhment Lot 3 of anid. Section 10: thence H. 00.01'36.E., along the Keoc baundary of eald Coverrment Lok 3 . Alatance of. 1329.40 feet to the Korehvest corner of Governoent Lot 3 of said Secelon 10 ; thence Ease along the Korth Doundary of anid Governaent Lat 3 to a point on the nean high vater. llne on the Morthuesterly ahoce of Cooper'a Point on Cooper'a Bayou: thence . sontinue along ere Horth. boundary of said Governaent Lot 3 to. polnt on the aesn hign viter line on the Kortheasterly ehore of Cooper'apoint on Old rape Day: thence foutherty along the mean hagh vater flae of aala old fasps bay to a point on the Eanterly projection of the Koren boundary of Covernment Lot 4 o: Section 16. Tovnohip 29 South. Range 16 Eado, Plnellan Councy.. Ploriday enence H. 89. 32.08'Y.. along the Horth boundary of the projection of eaza Government Lot 4. to polat on the Veat boundary of aida Secizon is, thence K. WJ.01.ja'E. atong the vest boundary of dald Section 15 tatance of 1520. 27 feet to the point of 0eginning.
(the "Property")

PARCEL NO. 2

Governacic Ioc 3. Section 10, Township 29 South, Range 16 East, Pincllas Eounty Florida.
PARCEL NOS. 1 AND 2 MAY ALSO BE DESCRIBEDI AS FOLLOWS:
A parcel of land located $1 n$ Sectiona 9; 10, and 15 . Torninip 29 Solith, Range 16 Eart, Pinellan County, Florida, belng kore particularly deacribod as follova:

Begin at the Southeant corner of ald Section 9: Run thenee K. 09.29.53:Y.. along the South boundary of ada.Section 9, a datante of 1315. 80 leet to the Southreat corner of-the Southeart $1 / 4$ of the Southenst $1 / 4$ of aaid Section 9 : thence $1.00^{\circ} 00^{\circ} 59^{\prime \prime}$ E., along the Yeat boundary of the . . Southedat 1/4 of the Southeast 1/4 of asid Section 9 to a point on the mean higin voter Line ol Cooper'a Doyou adjacent to Bayohore boulevard: tisence Kortheacterly along the aean high vater line of add Cooper's Beyou to maint on zinc Morth boundary of the Sautheoatil/4 of the-Southoait $1 / 4$ of axid Sce:ion 9: thence S.89. 27.02'E., ilong thic Korthi boundory of the Southeagt 1/4 of the Southeart $1 / 4$ of anid Section 9 to the Kortheant corner of the. Soucheast, $/ / 4$ oif the Southeagt $1 / 4$ oifaald Section 9. aleo being the.Southrast corner of Goverpmeni Lot 3 of eaid. Section 10: thence K. 00.01'SG.E. e elong the Keat boundary of aida Government Lot J. a diatance of.1329. 40 leet to the. Korthresc corner of Góvernment Lot 3 oi said Section 10 : thence Eat along the Horih boundary of aaid Government tot ξ to point on the mean high vater. Ilne on the Horthvesterly ahore of Cooper'a Paint on Cooper'a Bayou: thence. ronthnue along the Koreh. bounoary of said Gowernment Lot 3 lo point on the mean hrgn water line. on the Northeasterly ahore of Cooper'apoint on old Yasa
 a point on the Eaaterly projectaon of the Korth boundary of Government Lat 4 O: Section 16; Tovnahip 29 South, Range 16 East. Pincilas County, Fiorida: thencs $\mathrm{H} .89 .32 .08^{\circ} \mathrm{K}$. . along the Korth boundory of the projection of azid Governaent Lot 4. to a point on the Yeat boundary of oadd Section is: thence K. $10.01 .38 \cdot E .$, along the yest boundary ot eald Section 15 a diatance of 13:0. 27 feet to the pozne of Beginning.
(the "Property") and CITY OF CIEARNATER, FIORTRA, a municipal corporation, as to an undivided onethird (1/3nd) interest, and PINEIIAS CONNTY, FLORIDA, a political subdivision of the State of Florida, as to an undivided two-thirds (2/ 3rds) Interest, as tenants in common Home address is: 315 Court Street, Clearwater. Attn: Gen. Servicesof tho County of Pinellas. and Slate of Florida 34616 . party of tho second part, Wilnesseth, that the said party of the first part, for and in consideration of
 in hand paid by the said party of the second part, the receipt ichereof is hereby acknoutedged, has remised, released and quitclaimed, and by these presents does remise. reloass and quitclaim unto the saint party of the second part all the right, title, interest cham and demand which the said party of the first part has in and to the following described lot , piece or parcel of land, situate lying and being in the County of Pinellas State of Florida, ta wit:

SEE EXIIBIT " $\wedge^{\prime \prime}$ NTTNGIED YIETETO AND MADE A PART HEREOF.

To Have and to Hold tho same, together with all and singular the appertonancos thereunto bolonging or in anywise appertaining, and all the state, right, thlfo interest and claim whatsoever of the said party of the first part, either in. law or equity, to the only proper use, benofit and behoof of tho said party of thasecond part.

In Witness Whereof; tho aid party of the first part has harounto sethis hand and seal the day and year first above written. Signed, Sealed and Dptiveged in Our Presence:

State of Florida,
 County of pIneilas

I HEREBY CERTIFY. That on this day personally appeared before me, an offer
 as Vice President of Sembler Equities, Inc., a Florida corporation, gene al abrupt of COOPER'S POINT PARTNERS, LTD., a Florida limited partrieratip.

N11 the right, title, intcrest, claimind demand which seller has in and to the ditch and ditch rights, reservoir and reservoir rights, stock and other interast in irrigation or ditch companies, and all water and water rights including alf submerged lands under the waters of Tampa Bay whatsoever which Seller may own hold or be entitled to in the following Sections. situate lying.and being in the county of pinellas, state of Florida, to wit:

South $1 / 2$ of the North $1 / 2$ of Section 10 , Township 29 South, Range 16 East;

South $1 / 2$ of Section 10 , Township 29 South, Range 16 East:

North $1 / 2$ of the North $1 / 2$ of Section 15. Township 29 South. Range 16 East; and

That part of the Southeast $1 / 4$ of the Southeast $1 / 4$ of Section 9. Township 29 South, Range 16 East: which is Southeasterly of the mean high water ilne abutting Bayshore Boulevard.
AND

Easement Tract A

That part of Government Lot 4 in the Northeast $1 / 4$ of Section 16 . Township 29 South, Range 16 East, in Pinellas County, Florida, lying 12.5 feet on either side of a line descriped as follows: Begin at the Northeast corner of sald Qovernment Lot 4, and'run thence along the East line of the sald Lot 4 , South $00^{\circ} 02^{\prime} 42^{\prime \prime}$ West for a distance of 216.29 feat to the POINT QF DEGINNING; thence run South $41^{\circ} 29^{\prime} 04^{\prime \prime}$ West for 35.70 foot; thence llang the arc of a curve to the right having a redfus of 50.00 foet, delta $18^{4} 49^{\prime} 30.5^{\text {n }}$, an are length of 13.81 feet, a chord length of 13.77 teet, and a chord bearing South $49^{\circ} 23^{\prime \prime} 49.3^{\prime \prime}$ West; thence South $57^{\circ} 18^{\prime \prime}$ 34.6" West for 90.04 foet; thence along the are of a curve to the left having a radius of 50.00 feet, delte $15^{8} \mathbf{4 9}^{1} 30.6^{\prime \prime}$, an are length of 13.81 feet, a thord length of 13.77 feet, and a chord bearing South $4993^{\prime 4} 49.3^{\prime \prime}$ West;-thence South $41^{\circ} 29^{\prime} 04^{\prime \prime}$ West for 119.14 feet; thence siong the aro of a oupve to the left having a radius of 50.00 feet, delta $08^{\circ} 56^{\prime} 56^{\prime \prime}$, an are length of 7.81 feet, a chord length of 7.80 feet, and a chord bearing South $37^{\circ} 00^{\circ} 36^{\prime \prime}$ West; thence South $32^{\circ} 32^{\prime} 08^{\prime \prime}$ West for 174.39 feat; thence along the arc of a curve to the right having a radius of 50.00 feet, delta 08° $56^{\prime} 56^{\prime \prime}$, an arc length of 7.81 feet, a chord length of 7.80 feet, and a chord bearing South $37^{\circ} 00^{\prime} 36^{n}$ West; thence South $41^{\circ} 29^{\prime} 04^{\prime \prime}$ West for 450.02 feet to the POINT OF ENDINO.

AND ${ }^{-}$

Easement Tract B

That part of the Northwest $1 / 4$ of Section 15 , Township 29 South, Range 16 East, In Pincllas County, Florida, lying 12.5 feet on elther side of a line described as follows: Begin at the Northeast corner of Government Lot 4 in the Nor theast $1 / 4$ of Section 16, Townshlp 29 South, Range 16 East, and run thence along the East une of the sald Lot 4 , South $00^{\circ} 02^{\prime} 42^{\prime \prime}$ West for a distance of 216.29 leet to the PONTT.OF BEGNNING; thence run North $22^{\circ} 36^{\prime} 56^{\prime \prime}$ East, 234 feet to a point on the easterly projection of the north line of Government Lot 4 and the PODNT OF ENDING.

And the and pest y of the Drat pert do es haroby tully warrant the tite to aeld land, and will detend the anda afalint the lawtal clajme of all persone whomeoner.
 mal Uhe day and ger Brrt above mitten.

\qquad
\qquad
\qquad (BEAL)
\qquad

STATE OF FLORDDA

COUNTY OF DUYAL 8.

Befors me personally appeared .. . K... B...Kimball.
yand \qquad
\qquad trathex to me wall known and. known to me to be the individunl.. deacribed in and who axeculad the forecolve Inatrument gnd

\qquad Ouyal., Countr and State aformald

```
KARLEEN F. DĖPLAKER, CLERK
        JIN A. 1990 5:01PM

Parcel No．：
\(09 / 29 / 16 / 00000 / 310 / 01000\)

PES SIMPLE DEED
 Q \({ }^{j 2}\) Whose address is 300 west Vine street，Lexington，Kentucky 40507 （＂Granter＂）and KAPOK PAVILION I，LTD．，a Florida limited partnership，whose address is 11505 Carrollwood Drive，Tampa， Florida 33618，（＂Grantee＂）．

WITNESSETH：That Granter，for and in consideration of the sum of Ten Dollars（ \(\$ 10.00\) ），and other good and valuable consideration， to it in hand paid by the Grantee，the receipt whereof is hereby acknowledged，has granted，bargained，sold，aliened，remised， released，conveyed and confirmed，and by these presents does grant， bargain，sell，alien；remise，release，convey and confirm unto Grantee，and his heirs and assigns forever，all that certain parcel of land situate，lying and being in the county of pinellas and State of florida，and more particularly described on Exhibit A attached hereto（the＂Land＂）．

TOGETHER with all the tenements，hereditaments and appurtenances， with every privilege，right，title，interest and estate，reversion， remainder and easement thereto belonging or in anywise appertaining．

TO HAVE AND TO HOLD the same in fee simple forever．
IN WITNESS WHERFOF，Granter has caused these presents to be executed in its name by its proper offices the day and year flat above－written．

Signed，sealed and delivered in the presence of：



KENTUCKY CENTRALISE INSURANCE COMPANY，a Kentucky corporation By：\(\frac{1}{\text { Gif．Rampuly，init as its }}\)

Address： 300 West Vine sitrgat ． Lexington，Ky，4050ス
（NOTARY ACKNOWLEGGEMEN＇I ON AT＇YACHED PAGE）


PC，今， \(3,4,3\)
｜am plat，jus｜

\section*{EXGINIT "A"}

\section*{LEGAL DESCRIPTION: Parcel I}

LOTS 1\%, 18, 31 through 36. Inclusive, 44 through 46 , Inclusive, 51 and \(a\) portion of 52; DEL ORO CARDENS. at recorded in Plat Book 45. page 74, of. the Public Recorda of Pinallai County, Florida, lying in Section 9. Tounship 29 Souch, Range 16 Eact, Pinellas County, Florida, sald portion of LOT 52 being more particulerly deseribed ea follovet

Comence at she Southueat corner of eaid LOT 52 as Point of Deginning, thence \(\mathrm{M} 40^{\circ} 18^{\circ} 44^{\prime \prime} \mathrm{E}, 172.05\) feer to point on the South right-of-way line of San Jose sereet, chence along a curve. (eald curve having a radius of 45 fect, - chord bearing of \(N 48^{\circ} 42^{\prime} 04^{\prime \prime} \mathrm{W}\), and a chord distance of 1.55 feet), 1.55 feet chrough a central angle of \(01^{\circ} 38^{\prime} 25^{\circ \prime \prime}\). thence \(N 89^{\circ} 22^{\circ} 10^{\prime \prime} \mathrm{H}_{\text {, }} 109.74\) feer to a point on the West line of sald Lor S2, thetice \(S 00^{\circ} 10^{\circ} 42^{\prime \prime} \mathrm{H}\). alang sald Heat Ifne. 133.42 faet to the Point of Beginning.

LESS chat part of aid LOT 17, deeded for Right-of-Way in O.R. Book 6334 page 1844. Pinellan Councy Recorde.

\section*{TOCETHER HITH:}

The West One halif of the Norchwesc Quarcer (N.W. K) of the Northeast quarcer (N.E.k) of the Souchwear quarter (S.W. K). Less che North 200 feet thereal. Section 9, Tomship 29 South, Range 16 Eat. Pinellas County, Florida. Lees Rosd Right-of-way.


\title{
Right-of-Way Affidavits of Maintenance
}


Section \(\qquad\)

State Road No. \(\qquad\) 593

Pinellas COUNTY

\section*{AFFIDAVIT}

\section*{STATE OP FLORIDA}

COUNTY OF Pinellas

Before me, the undersigned authority, personally appeared L. R. Shone whose address is 7250 10th Avenue North, St. Petersburg, Florida, who after being sworn, deposes and says:

That he has been employed by the Florida Department of Transportation (formerly the State Road Department) for the past 16 years, and ia now employed by said Florida Department of Transportation ab Highway Maintenance Supervisor I The deponent knows and verily bays that the florida Department of Transportation (formerly the State Road Department) through its employees and contractors, has maintained State Road No. \(593 \quad\), in Pinellas_County for the continuous width as measured at right angles to the road cencerline, viz:

and that much maintenance by said Florida Department of Transportation (formerly
the State Road Department) hae been continuous for the period of time from
August, 1955, to December, 1970.


\title{
\({ }_{\text {or }} 3461\) mag 792
}

MALNIENANCE AFFIDAVIT


Section_15130
State Road No. 593
Pinellas COUNTY

AEFIDAVIT

STATE OF RLORIDA
COUNTY OF Pinellas

Before me, the undersigned authority, personally appeared Whasher whose adrese is 3601 63rd Way North, St. Patereburg, Florida, who after being sworn, deposes and bayo:

That he has been employed by the Florida Deparment of Transportation (formerly the State Road Departuent) for the past 18 yeara, and is now employed by ardd Florici Deparcment of Tranaporiacion as Absistant Maintenance Enginear, The deponent knows and verily gayo that che Florida Deparment of Tranaportacion (Eormerly the State Road Deparcment) through its employees and contractors, has gaincalned State Road No. 593 in Pinellas County for the continuous widthe as measured at righs angles to the road centerline, viz:
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { From } \\
& \text { Seation } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { To } \\
& \text { Station }
\end{aligned}
\] & Widch Maintained & Location with Reference co Existing Rosd Cent. \\
\hline M. P. 0.750 & M.P. 0.950 & \(34^{\circ}\) & East of Centerline \\
\hline M.P. 0.750 & M.P. 0.950 & \(29^{\prime}\) & West of Ceaterline \\
\hline M.P. 0.00 & at the & interse & 60 and SR 593 \\
\hline M.P. 1.00 & at the Townsh & East-Wes ip 29 Sou & ion line, Section 9, 6 East \\
\hline
\end{tabular}
and that auch maintenance by asid Plorida Department of Trarsportation (formarly the state Road Department) has been concinuous for the period of time from August, 1955, to December, 1970.

Appendix A

\section*{Basic Map Compilation \\ Steps to Compiling an Ownership Map}
1.) Locate section corners
a. use medium with 1000 ft grid ticks
b. if no grid ticks use edge of paper as a guide for true North
c. start at the lower left corner of the paper
2.) Draw section lines
a. use state plane coordinates
b. use bearings and distances if available
3.) Break down section into quarters
a. determine how much of the section is going to be drafted: will this be a full section or a half section map?
b. create 40 Ac and 10 Ac lines
4.) Locate Subdivision perimeters
a. Label and/or number for reference using green pencil
5.) Draw rights-of-way in Subdivisions
6.) Plot out deeds of record for metes and bounds
a. add annotation/acreage
7.) Using right-of-way plans for any major roads draw in recorded road takes.
8.) Draw lot lines in subdivisions/add annotation
9.) Draw in water lines using aerial photos
10.) Draw in any recorded vacations
11.) Draw in any easements if needed
12.) Add annotation where needed.

\section*{Assessment maps are composed of both physical and non-physical information.}

Physical information includes streets, roads, streams, fences, buildings, trees, and any other natural or cultural features that can be located and seen on the ground.

Non-physical information includes property lines, road and railroad rights-of-way, city limits, county and state lines, subdivision lines and boundaries, and taxing district boundaries.

\section*{Assessment maps also contain identification information and} measurement.

Identification includes parcel numbers, subdivision lot numbers, and the names of streets, roads, railroads, natural features, cultural features, subdivisions, and administrative jurisdicitions.

Measurement includes property line dimensions, parcel acreages, and rights-of-way widths.

The assessment mapping base provides a physical framework on which non-physical information can be plotted and displayed.

The base map thus provides the skeleton on which all other data are compiled, a complete, graphic (and visual if a photo base) record of all real property (ex: taxroll) in the jurisdiction.

\section*{Basic Map Compilation}

\section*{Coordinate List}
1. \(\mathrm{Y}=1323532.43 \quad \mathrm{X}=272548.93\)
2. \(\mathrm{Y}=1323634.25 \quad \mathrm{X}=274774.43\)
3. \(\mathrm{Y}=1323546.94 \quad \mathrm{X}=271223.96\)
4. \(\mathrm{Y}=1322474.86 \quad \mathrm{X}=270275.98\)
5. \(\mathrm{Y}=1322203.91 \quad \mathrm{X}=272077.23\)
6. \(\mathrm{Y}=1321594.60 \quad \mathrm{X}=271217.34\)
7. \(\mathrm{Y}=1321582.83 \quad \mathrm{X}=272505.89\)
8. \(\mathrm{Y}=1322848.15 \quad \mathrm{X}=274427.86\)
9. \(\mathrm{Y}=1322595.54 \quad \mathrm{X}=273824.69\)

\section*{Proportioning}

To determine how much each lot should increase or decrease when proportioning a subdivision:

Divide the recorded lot size ( \(\mathbf{r}\) ) by the Recorded overall width ( \(\mathbf{R}\) ) to get a factor ( \(\mathbf{f}\) ). Then multiply the factor ( \(\mathbf{f}\) ) by the Measured overall width (MW) to solve for the Proportioned lot size ( \(\mathbf{P}\) )
\[
\begin{aligned}
(\mathrm{MW}) & =155 \\
(\mathbf{R}) & =150
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline (P) 51.666661 & (-P) 41.333323 & (P) 62.0000 \\
\hline ( r ) 50 & (r) 40 & (r) 60 \\
\hline Lot \(A\) & Lot B & Lot C \\
\hline
\end{tabular}
\(\operatorname{Lot} A(\mathbf{r}) \underline{50}\)
Recorded Width (R) \(150=.3333333\) (f)
\[
\begin{aligned}
& .3333333(\mathbf{f}) \\
& \text { factor }
\end{aligned} \quad \underset{\begin{array}{c}
\text { overall width }
\end{array}}{155(\underline{\mathrm{MW}})} \quad=\underset{\text { Proportioned lot size }}{51.666661(\mathbf{P})}
\]
\[
\begin{aligned}
& \text { Lot B (r) } \quad 40 \\
& \text { Recorded Width ( R ) } 150=.2666666 \text { (f) } \\
& .2666666(\mathbf{f}) \mathrm{x} \quad 155(\underline{\mathrm{MW}})=41.333323(\mathbf{P}) \\
& \text { factor overall width Proportioned lot size }
\end{aligned}
\]
\(\operatorname{Lot} C(\mathbf{r}) \underline{60}\)
Recorded Width (R) \(150=.4000000(\mathbf{f})\)
\[
\begin{array}{llc}
.4000000(\mathbf{f}) & \mathrm{x} & 155(\underline{\mathrm{MW}}) \\
\text { factor }
\end{array} \quad=\begin{gathered}
62.00000(\mathbf{P}) \\
\text { overall width }
\end{gathered}
\]

To prove: factors ( f ) added together will total \(\mathbf{1}\) (one). (P) lot sizes will total measured o/a (MW) width.
***********
To proportion lots within a subdivision without factoring in the right-of-ways the following formula is to be used:

Subtract the width of the right-of -way (R/W) from the measured overall width (MW) and the Recorded overall width ( \(\mathbf{R}\) ) to get the adjusted overall width ( \(\mathbf{( \mathbf { A }}\) ).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\[
\begin{gathered}
(\mathbf{R})=280 \\
(\underline{M})=289
\end{gathered}
\]} \\
\hline \multicolumn{3}{|l|}{(P)31.227 (P)41.636 (P)52.045} & & \multicolumn{2}{|l|}{(P)52.045 (P) 52.045} \\
\hline (r)30 & ( r ) 40 & ( r ) 50 & 60 & ( r ) 50 & ( r ) 50 \\
\hline A & B & C & & D & E \\
\hline
\end{tabular}
( \(\mathbf{R}\) ) \(280 \quad-\quad(\mathrm{R} / \mathrm{W}) 60=\)
recorded o/a width right-of-way
\[
\text { (M) } 289-(\mathrm{R} / \mathrm{W}) 60=
\]
measured o/a width right-of-way
(AR) 220
adjusted recorded o/a width

Then use the previous method to solve for the factor and proportioned lot sizes.

\section*{Sample solution:}
\[
\text { Lot A (r) } \underline{30}
\]
adjusted o/a recorded width ( \(\underline{\mathbf{A} R}\) ) \(220=.1363636(\mathbf{f})\) factor
\begin{tabular}{cccc}
\(.1363636(\mathrm{f})\) & x & \(229(\underline{\mathbf{A M}})\) \\
factor
\end{tabular}\(\quad=\quad\)\begin{tabular}{c}
\(31.227264(\underline{\mathbf{P}})\) \\
adjusted measured o/a width
\end{tabular}

Chapter 1 - Mathematics

To find Delta (Central Angle) when Chord Length and Radius are known:
Find Angle D: Chord length: \(60.27 \quad\) Radius: 40


D \(=\) Delta (Central Angle)
\(a=1 / 2\) Central Angle
\(\mathrm{R}=\) Radius length
\(c=1 / 2\) Chord length
Formula: \(\frac{\mathrm{c}}{\mathrm{R}}=\) Sine a
30.135 ( c )
\(40(\mathrm{R})=.75337\) (Sine a)
[Use calculator or Formula Book]
60.27

Angle a \(=48\) deg 53' \(0{ }^{\prime \prime}\)
(Central Angle) \(D=97\) deg \(46^{\prime} 0^{\prime \prime}\)

To find Arc Length when Central Angle (Delta) and Radius are known:
Central Angle: 97 deg 46' 0 " Radius: 40
Formula: \(\underline{\text { PixdxD }}\)
\[
\begin{aligned}
& \mathrm{Pi}=3.1416 \\
& \mathrm{~d}=\text { Diameter }(2 \times \text { Radius }) \\
& \mathrm{D}=\text { Central Angle (Delta) }
\end{aligned}
\]

You will need to convert the Central Angle (97deg 46' 0 ") to a whole number:
Divide \# of seconds by 3600
Divide \# of minutes by 60
\[
\text { Ex: } \frac{46}{60}=\begin{array}{r}
.7666 \\
+97.0000 \\
97.7666
\end{array}
\]

Add to number of degrees
\begin{tabular}{l}
\(3.1416 \times 80 \quad \times \quad 97.7666\) \\
\hline
\end{tabular}
\[
360=68.25 \text { (Arc Length) }
\]

\section*{Appendix B}

\section*{Addition of Angular Measurements}

\section*{Solutions:}

> 1. \begin{tabular}{rrr} 72 & 25 & 49 \\ 34 & 59 & 59 \\ \hline 106 & 84 & 108 \\ & +1 & -60 \\ \hline 106 & 85 & 48 \\ +1 & -60 & \\ \hline \(\mathbf{1 0 7}\) & \(\mathbf{2 5}\) & \(\mathbf{4 8}\) \end{tabular}
3. \(22 \quad 58 \quad 59\)
\(46 \quad 56 \quad 58\)
68114117
\(\begin{array}{r}+1-60 \\ \hline 88115-57\end{array}\)
6811557
\(+1-60\)
695557
4. \(\quad 39 \quad 45 \quad 24\)
\begin{tabular}{llll}
\(68 \quad 45 \quad 58\) \\
\hline
\end{tabular}
\(107 \quad 90 \quad 82\)
\(\begin{array}{r}+1 \quad-60 \\ \hline\end{array}\)
1079122
\(+1-60\)
1083122
5. \(\quad 33 \quad 22 \quad 44\)
\begin{tabular}{lll}
28 & 10 & 02 \\
\hline 61 & 32 & 46
\end{tabular}
6. \(\quad 44 \quad 25 \quad 36\)
\begin{tabular}{lll}
46 & \(56 \quad 58\) \\
\hline 90 & 81
\end{tabular}
\(\begin{array}{lll}90 & 81 & 94\end{array}\)
\begin{tabular}{lrrr} 
& +1 & -60 \\
\hline 90 & 82 & 34 \\
+1 & -60 & \\
\hline \(\mathbf{9 1}\) & \(\mathbf{2 2}\) & \(\mathbf{3 4}\)
\end{tabular}
8. \(\quad \begin{array}{llll}56 & 05 & 14\end{array}\)
\begin{tabular}{lll}
10 & 12 & 10 \\
\hline \(\mathbf{6 6}\) & \(\mathbf{1 7}\) & \(\mathbf{2 4}\)
\end{tabular}
7. \(\quad 39 \quad 45 \quad 24\)
\begin{tabular}{lll}
\(45 \quad 34 \quad 24\) \\
\hline 84 & 79 & 48
\end{tabular}
\(+1-60\)
\(\begin{array}{lll}85 & 19 & 48\end{array}\)

\section*{Conversion of Angles to Bearings Solutions:}
1. \(\quad 132 \quad 43 \quad 55\)
\begin{tabular}{lll}
78 & 22 & 32 \\
\hline 54 & 21 & 23
\end{tabular}
2. \(\quad 111 \quad 22 \quad 14\)
\begin{tabular}{lll}
\(36 \quad 24 \quad 56\) \\
\hline \(74 \quad 57 \quad 18\)
\end{tabular}
3. \(104 \quad 25 \quad 36\)
\begin{tabular}{lll}
72 & 32 & 12 \\
\hline 31 & 53 & 24
\end{tabular}
4. \(\quad 46 \quad 17 \quad 38\)
\begin{tabular}{llll}
35 & \(21 \quad 55\) \\
\hline
\end{tabular}
813893
\(\begin{array}{r}+1-60 \\ \hline 81+39\end{array}\)
813933
5. \(\quad 76 \quad 11 \quad 54\)
\(48 \quad 58 \quad 02\)
\(124 \quad 6956\)
\(+1-60\)
\(125 \quad 09 \quad 56\)
\(17959 \quad 60 \quad\) Subtract from \(180^{\circ}\)
\begin{tabular}{l}
\(125 \quad 09 \quad 56\) \\
\hline 5450
\end{tabular} \(54 \quad 50 \quad 04\)

Subtract one from the other Ans: N54 \({ }^{\circ}\) 21' 23"E

Subtract one from the other
Ans: S74 \({ }^{\circ}\) 57' 18"E

Subtract one from the other
Ans: S31 \(^{\circ} 53^{\prime}\) 24"E

Add together
(Falls in same quadrant)

Ans: S89 \(^{\circ} 39^{\prime} 33^{\prime \prime} \mathrm{E}\)

Add together

Ans: N54 \(^{\circ}\) 50' 04"E

\section*{Conversion of Bearings to Angles Solutions:}
1. \(\quad 179 \quad 59 \quad 60\)
\begin{tabular}{ll}
\(78 \quad 11 \quad 35\) \\
\hline
\end{tabular}
1014835
\(101 \quad 48 \quad 35\)
\(41 \quad 23 \quad 23\)
\(142 \quad 7148\)
\(+1-60\)
\(143 \quad 1148\)

2A. \(36 \quad 01 \quad 02\)
\begin{tabular}{lll}
\(56 \quad 43 \quad 22\) \\
\hline
\end{tabular}
924424

2B. \(56 \quad 43 \quad 22\)
\(22 \quad 11 \quad 34\)
\(78 \quad 5456\)
\(359 \quad 5960\)
\(78 \quad 54 \quad 56\)
2810504
3. 1) \(93^{\circ} \mathbf{4 6} \mathbf{0 6 \prime}\)
2) \(136^{\circ} 14^{\prime} 05^{\prime \prime}\)
3) \(137^{\circ} 02^{\prime} 48^{\prime \prime}\)
4) \(103^{\circ} 57^{\prime} 43^{\prime \prime}\)
5) \(141^{\circ} 22^{\prime} 40^{\prime \prime}\)
6) \(107^{\circ} 36^{\prime} 38^{\prime \prime}\)

Subtract angle in SE quadrant from \(180^{\circ}\)

Add angles together

Ans: \(\mathbf{1 4 3}^{\circ} 111^{\prime \prime} 48^{\prime \prime}\)

Add together
Ang A: 92 \({ }^{\circ}\) 44' 24"

Add together

Subtract from \# of degrees in a circle
Ang B: \(281^{\circ} 0{ }^{\prime}\) 04"

\section*{Subtraction of Angular Measurements Solutions:}

> 1. \begin{tabular}{rrr} 48 & 02 & 12 \\ & -1 & +60 \\ 48 & 01 & 72 \\ \hline-1 & +60 & \\ \hline 47 & 61 & 72 \\ \hline-29 & 45 & 32 \\ \hline \(\mathbf{1 8}\) & \(\mathbf{1 6}\) & \(\mathbf{4 0}\) \end{tabular}
2. \(\quad 59 \quad 12 \quad 03\)
\begin{tabular}{lll}
26 & \(22 \quad 32\) \\
\hline
\end{tabular}
324931
6. \(\quad 89 \quad 59 \quad 60\)
\begin{tabular}{lll}
42 & \(25 \quad 24\) \\
\hline
\end{tabular}
\(47 \quad 34 \quad 24\)
7. \begin{tabular}{rrr}
78 & 12 & 31 \\
& 32 & 45 \\
\hline \(\mathbf{4 5}\) & \(\mathbf{2 7}\) & \(\mathbf{2 1}\)
\end{tabular}
8. \(\quad 95 \quad 31 \quad 12\)
\begin{tabular}{lll}
56 & 56 & 56 \\
\hline \(\mathbf{3 8}\) & \(\mathbf{3 4}\) & \(\mathbf{1 6}\)
\end{tabular}
4. \(\quad 42 \quad 18 \quad 36\)
\begin{tabular}{lll}
\(26 \quad 22 \quad 18\) \\
\hline
\end{tabular}
155618
5. \begin{tabular}{rll}
78 & 01 & 02 \\
& \(\mathbf{5 8}\) & 01 \\
03 \\
\hline \(\mathbf{1 9}\) & \(\mathbf{5 9}\) & \(\mathbf{5 9}\)
\end{tabular}
\begin{tabular}{ccc}
78 & 01 & 02 \\
58 & 01 & 03 \\
\hline \(\mathbf{1 9}\) & \(\mathbf{5 9}\) & \(\mathbf{5 9}\)
\end{tabular}
10. \(\quad 112 \quad 10 \quad 43\)
\begin{tabular}{lll}
\(01 \quad 22 \quad 43\) \\
\hline
\end{tabular}
1104800

\section*{SOLUTIONS TO INTERIOR ANGLES}


\section*{Basic Map Compilation}

\section*{Coordinate List}
1. \(\mathrm{Y}=1323532.43 \quad \mathrm{X}=272548.93\)

Del Oro Groves - SW cor Lot 300
2. \(\mathrm{Y}=1323634.25 \quad \mathrm{X}=274774.43\)

Del Oro Groves - NW cor Lot 365
3. \(\mathrm{Y}=1323546.94 \quad \mathrm{X}=271223.96\)

Del Oro Gardens - NW cor Lot 33
4. \(\mathrm{Y}=1322474.86 \quad \mathrm{X}=270275.98\)

Kapok Terrace First Add - SW cor Lot1 Blk N
5. \(\mathrm{Y}=1322203.91 \quad \mathrm{X}=272077.23\) Bordeaux Estates - NE cor of "Park"
6. \(\mathrm{Y}=1321594.60 \quad \mathrm{X}=271217.34\)

Bordeaux Estates - SW cor Lot 23
7. \(\mathrm{Y}=1321582.83 \quad \mathrm{X}=272505.89\)

Bordeaux Estates - SE cor Lot 4
8. \(\mathrm{Y}=1322848.15 \quad \mathrm{X}=274427.86\)

Del Oro Place - NE cor Lot 4
9. \(\mathrm{Y}=1322595.54 \quad \mathrm{X}=273824.69\)

Del Oro Place - SW cor Lot 1

\section*{Formulas}
```


[^0]: Basic Map Compilation
 Chapter 3 - Interpretation of Real Property Descriptions

[^1]: Basic Map Compilation
 Chapter 3 - Interpretation of Real Property Descriptions

[^2]: 1 International Association of Assessing Officers (IAAO), Standard on Cadastral Maps and Parcel Identifiers, 1988

[^3]: 2 International Association of Assessing Officers, (IAAO) Standards on Cadastral Maps and Parcel Identifiers, 1988

[^4]: 4 Elements of Cartography, Fourth Edition, John Wiley \& Sons, Inc., 1978

[^5]: 5 Multipurpose Land Information Systems: THE GUIDEBOOK, October, 1989, Federal Geodetic Control Committee, Chapter 13

[^6]: 6 Multi Purpose land Information Systems: THE GUIDEBOOK, October, 1989, Federal Geodetic Control Committee, Chapter 19

[^7]: 8 International Association of Assessing offices, 1988, Standard on Cadastral Maps and Parcel Identifiers, page 10

[^8]: 9 Federal Geographic Data Committee, Cadastral Standards for the National Spatial Data Infrastructure

