Can You Identify This Location?
Mystery Picture No. 12

Our latest mystery photo, number 12 as shown above, we expect may cause some discussions out along the railroad before a decision is reached as to the location. Note, as clues, the motor car siding, color light signal, a mile post and the rock ballasted roadbed.

Wiscasset was the location of Mystery Picture No. 11 in our December issue and correct answers have come in from the following readers: Eugene A. Reynolds, Traffic Manager for the Hyde Windlass Co. at Bath; Aaron Tucker, Jr., Baggage Master at Wiscasset who identifies the men standing on the station platform as Conductor Morris Johnson, Trainman Percy Bracket and Richard Reed, a local mail truck driver; M. W. Flynt, our Magazine Correspondent at Waterville Station who said, “I’ve pulled many truck loads of mail up that platform”; H. H. Howard of Portland who notes that the switch has been thrown for NR 2 to haul in on the Freight House Track; and retired agent Frank H. Gray who was Agent at Wiscasset from Nov. 5, 1908 to June 22, 1952.

Yarmouth Jet., which appeared as Mystery Picture No. 10, continues to bring in replies, including those from: Ralph Sawtelle of Augusta who was News Agent on trains 44 and 25 back in 1896 and a freight brakeman in 1901 on trains 28 and 41; retired conductor “Cy” Whittier of Readfield; Lloyd E. Neal of Somerville, Mass.; and Carl Stern, an Associate Professor at Randolph-Macon Women’s College, Lynchburg, Va., who was quite sure of the location even though it has been a long time since he has seen it.

But now, back to the business at hand — have you decided as yet just where the above pictured section of track is located? We shall be very interested in hearing from you!
Railroad Signaling

By John F. Stanford
Signal Engineer

THE Signal Department, a division of the Engineering Department, has the responsibility of installing and maintaining the signal, communication and electrical facilities along the line. Signaling, as the name of the Department implies, constitutes its major function. The total personnel of the Department comprises approximately 95 employees on both the Maine Central and Portland Terminal; of this number about 18 are employed exclusively in the electrical and communication fields. Signal Engineering is a highly technical branch of the electrical engineering field. Educational institutions do not provide all the necessary training and therefore it requires several years of experience to supplement this education before a person is sufficiently qualified to assume any of the major responsibilities.

A signal system is first engineered on the drafting board by a circuit designer, then traced by a draftsman, after which it is thoroughly checked by an assistant engineer, further revised and then checked by another engineer. The installation is then made in the field, and before being placed in service is given a very thorough and exhaustive series of tests, to be sure that the system will function reliably, and without interruption. These tests and inspections are conducted under the supervision of the office engineering force.

The construction on our railroad is performed by two boarding car crews with a normal complement of six to eight men each. The maintenance and minor construction is under supervision of two signal supervisors. Our signaled territory is divided into 16 sections, averaging about 20 miles, each of which is generally maintained by a signal maintainer and a helper. The Terminal is maintained by one foreman and six men. In addition there are two sections which main-
tain only automatic highway crossing protection on branch lines outside of signaled territory.

So much for the organization of the Department, now let's put together the article you were promised. Also, in order not to bore you, I will attempt to keep away from technical details and confine this article to history and development, particularly as it applies to the Maine Central and the Portland Terminal.

Railroad signaling came into being with the conversion of motive power from horses to steam locomotives. Signaling is considered to have its origin in England, in 1825, and consisted of a man with a red flag, riding a white horse, who preceded the train through the town to warn the villagers of approaching danger. This practice was followed in New York City along the waterfront, as late as 1925.

The first railway signal system in America, using fixed wayside signals was inaugurated in 1832, twelve years before the invention of the telegraph, on The New Castle and Frenchtown Railroad between New Castle, Delaware, and Frenchtown, Maryland, a distance of seventeen miles. It was designed to send information from terminal to terminal as to the movement of the train and consisted of fixed wayside signals located about three miles apart. When the train departed from the terminal the flagman hoisted a white ball to the top of a mast about 30 feet high. The flagman at the next station, observing the position of the signal at the terminal through a telescope, hoisted the white ball at his station to
within a few feet from the top of the mast. This operation was repeated at each station in succession so that the other terminal knew of the departure of the train a few minutes after it had left. If the train were delayed, a black ball was hoisted in place of the white ball. This signaling the movement of trains was an early method of dispatching but was limited to the dispatching or sending out of the trains, as no means were available for quickly reaching the train with instructions to direct its movement.

The Ball Signal, as a fixed signal, is in use today on the Maine Central and the Terminal, as well as other railroads, but only as a railroad grade crossing signal in non-signaled territory. The balls are painted red and are supplemented at night by lights. The Maine Central has one of these signals at Whitefield, which governs the use of the diamond crossing with the Boston and Maine. The Terminal has one just east of Portland Union Station, which governs the use of the crossing of the Union Branch with the passenger mains and leads to Yard No. 7.

The Semaphore Signal was introduced in England in 1841, and so completely met the requirements of railway signaling that in a short time it came into universal use in this country as well. However, power operation of the semaphore signal was not developed until nearly fifty years later and thus this signal was principally used at interlocking.

The "Smashboard" Signal came into use as a drawbridge signal in 1868. The stop indication was displayed by lowering a large red
board to a position over the track so that the top of the locomotive would strike and break the smash-board in case the engineer overran the signal. This type of signal is in service on the Carlton Drawbridge at Bath; however, it is supplementary to the regular interlocking signals.

The need for an automatic block signal system prompted the introduction of various enclosed disc-type signals which were electrically operated. There was also introduced one that was operated by a weight driven clockwork mechanism. Coincident with this development the closed track circuit was introduced in 1872, and marked the beginning of our present day automatic block signaling. The enclosed disc-type signal displayed only two indications, thus the development of a suitable electrically-operated semaphore signal was progressed that would display three indications. Such a signal was introduced in 1893, which was an early model of the lower quadrant semaphore signals as installed on the Maine Central. This installation started in 1908 and continued for the next few years until all lines having traffic to justify were completed.

The electric upper quadrant semaphore signal was introduced in 1908. However the installation of lower quadrant semaphore signals was completed before reliability of this signal had been generally proven and thus this signal was not used on the Maine Central.

The electrically operated semaphore signal of either type with its motor, gear train, operating arms and electric clutch mechanism required considerable maintenance and thus prodded the profession to develop a simpler method of conveying information to the engineer of track conditions ahead. The Color Light Signals resulted. The first of these were introduced on electric railways, in 1908, where sufficient power was available to provide an adequate light intensity. The Color Light Signal displays a colored light for day as well as night indications. This type of signal is still used almost exclusively for subway signaling. This signal did not come into extensive use on steam railroads until an improved optical system was developed so that adequate light intensity could be produced from low wattage signal lamps.

With the Semaphore Signal in mind there was developed the Position Light Signal in 1915. This signal simulated the positions of the semaphore arm by rows of lighted electric lights. In 1921 a combination of the color light and the position light signals was developed and called the Color-Position Light Signal. This signal simulated the position of the semaphore arm with rows of colored lights, the color of the lights corresponding to the color of the night indication of the semaphore signal.

These three earlier types of color light signals were not used extensively on the Maine Central, or on many other railroads, due to difficulty resulted from phantom indications. These phantom indications resulted from sunlight passing through the outer colored lens to the reflector in back of the signal, and being reflected out again through the colored lens, displaying an indication which it was difficult to distinguish from that displayed when signal was lighted. Various means were employed to reduce the intensity or eliminate the indication resulting from this external light, but to date an entirely satisfactory method has not been found. None of these signals remain in service on our properties.

Since it was not practicable to control the indication resulting from external light, and it was possible that such indication might be less restrictive than the track conditions ahead justified, the Searchlight type of color light signal came into general use in the early 1920s. The optical system of this signal is essentially the same as other color light signals, except for the introduction of the color. A low wattage electric lamp is located at the light center of a parabolic reflector which collects and redirects all the light generated toward the outer clear glass lens at the front of the signal. This clear glass lens deflects the light rays and directs them into a narrow beam which is aimed along the track toward an approaching train and is visible at least 3000 feet in bright sunlight. The color is introduced in the searchlight signal by a color disc mounted in a moveable vane and located at the focal point of the reflector. The vane is moved by a relay-type mechanism so that the color disc corresponding to the track condition ahead will intercept all the light. Thus any indication displayed by the signal must come from the one optical system in the signal. Any external light being reflected back through the signal must pass through the one color disc in the optical system, and this disc is controlled to correspond with the track indications ahead. Thus, instead of controlling the amount of light reflected from an external source, the color of same is controlled.

In addition to being more reliable and simpler, the color light signals cost so much less than the semaphore signals that they have almost completely replaced them on new construction. Additionally, in many cases it is more economical to replace worn semaphore signals with new color light signals than to repair the old signals. Replacement of the old semaphore signals on the main line with searchlight signals was started in the early Forties, and with the installation last year between Tomah and Vanceboro, is completed except in the territory around Waterville. Semaphore sig-
Interlocking is defined by the Signal Section of the Association of American Railroads as “An arrangement of signals and signal appliances so interconnected that their movements must succeed each other in proper sequence and for which interlocking rules are in effect. It may be operated manually or automatically.” Interlockings are used in terminals, at junction points, at drawbridges and at railroad grade crossings.

Interlocking is of English origin and dates back to 1867, when Saxby disclosed patents on what became the Saxby & Farmer interlocking machine. This machine was introduced in this country in 1870, but extensive installations were not made until 1877-78. Switches were connected to the levers of the interlocking machine by pipes and the signals by wires. It is noteworthy that the later models of this machine are not materially changed in principal from the original design except in the development of the mechanical locking.

As the mechanical interlocking came into general use, various improvements were made to provide the security demanded by the increase in speed and traffic. Switch and lock mechanisms were replaced by separate levers, one to operate the switch and the other to lock it in position. Track circuits were introduced and signals were controlled through the track circuits. Detector bars at the switches were replaced by electric locks on the interlocking machine levers to extend the protection of the trains against the changing of the route ahead of the train.

The first interlocking on our property was of the Saxby & Farmer type and was installed at Waterville in 1911. These were modified starting in 1917 to meet the requirements of heavier trains and higher speeds. Modifications consisted of adding an electrical control section to the machine for the control of signals; thus the machines became what is known as Electro-Mechanical. At the same time the mechanical signals were replaced by electric power operated semaphore signals, and improvements were made in the advance locking of the switches in the route of the train. Four of these plants remain in service and are located at Rigby, Tower 2; Brighton Avenue, Tower 5; Royal Junction and Waterville, Tower A. The remaining have either been replaced with modern plants, have been made remotely controlled, have been removed through abandonment of line or have been discontinued due to decrease in traffic handled at that location.

On many roads the mechanical type of interlocking did not adequately meet the requirements at all locations; layouts extended over distances too long to be controlled by one machine or too many men were required to operate the levers. This lack stimulated the development of the power operated interlockings which permitted operating switches and signals over greater distances and decreased the time required to position the switches and signals for the movement of trains, thus improving the operating efficiency of the system.

The first such machine was a pneumatic plant installed in 1876, employing compressed air to control as well as operate both the switches and the signals. This system involved high installation costs and so the search continued for a less costly system. Hydraulic and hydro-pneumatic systems were introduced but they developed serious defects and thus were abandoned; however, eighteen such plants were installed on six railroads between 1884 and 1891. In 1891 the electro-pneumatic system was developed which basic system is still used. Another group was working on the fully electric system. Their first machine was built in 1889, and the basic system is much the same today. The need for these machines was not present on our properties and none were installed.

Both the mechanical and the power interlocking machines depend upon mechanical locking to insure proper correlation between the operation of the levers so that only one train is given authority to occupy a given route at one time. Mechanical locking is expensive to construct and, in addition, makes alterations and additions to an existing plant expensive and difficult. The life of these plants when properly maintained is very long; numerous plants have been in service over fifty years.

The “All-Relay” type of interlocking was developed around the middle twenties to overcome this inflexibility. It also decreased the cost of the interlocking. This system applies equally well to electrically or pneumatically operated switches and signals. The development of this system definitely brought the cost of signaling down so that it could produce many economies in railroad operation as well as to provide reliable signals for safe operation of trains. This has, needless to say, presented a new challenge to the signaling profession and brought with it the attendant responsibilities.

This system made possible the control of remote interlocking layouts, resulting in the consolidation of the control of two or more layouts under one operator. This decreased operating expenses as well as improved operating efficiency inherent with such control. The natural development was to control long sections of railroad from one point by signal indications without the use of train orders. This system is known as Centralized Traffic Control, which is usually used in the abbreviated form CTC, or, if one is artistically minded, cTe.

The first system of remote control, applicable to CTC, was developed and placed in service in 1926. This system required one wire per controlled unit to operate functions and to indicate the field conditions to the operator. Since approximately one wire is required per unit from the control point to the controlled unit, the distance factor enters strongly into the cost of installation and maintenance. This made about twenty-five miles the economical limit to be controlled. This system of control was installed at power switch on the Back Road controlled from Royal Junction in 1945, and at Waterville controlling old Tower “B” in 1951. The Royal Junction layout did not employ CTC operation of trains.

In order to control 300 and 400...
mile long sections of railroad, various systems of coded type of control were developed. These systems operate on either two or three wires, which will control any practicable number of units. The two-wire systems have the added advantage that telephone circuits may be superimposed upon the control wires providing communication as well as signal controls on the same pair of wires. The undesirable limitation on the earlier coded systems was the delay in getting information relative to conditions in the field to the operator. This time could, and did on particularly long installations, run into minutes and any dispatcher will tell you this is too long. There are now available systems which will reduce this time to a matter of seconds. These systems are also applicable to remote control and are economically justified over the unit wire type for distance varying from one-half to two or three miles, depending upon the number of units. A high speed type of this system, called "Synchrostep" was used in Tower "X" Portland, both for remote control and for CTC.

The closed track circuit, as stated previously, marked the beginning of automatic block signaling; it is also the backbone or foundation of all present day signal systems. This has motivated the enormous energy expended in improving its operation. The track circuit is not evident to the casual observer but is important to the signal system that I am obliged to become technical long enough to describe it and tell how it operates. The track circuit consists of a section of track electrically insulated from the adjacent track by inserting insulating material between the splice bars and the rails at a rail joint to electrically separate one section of track from another. At one end of this section of track electric energy, such as a battery, is connected to each rail so that the rails provide an electrical connection to a relay at the other end. A relay is an electro-magnetically operated contactor which, through its contacts, opens or closes other electrical control circuits. When energy is allowed to flow unrestricted, the relay is energized thus closing its front contacts. However, when an engine or car enters the section of track controlling the relay, the wheels and axles provide a low resistance path for the electrical energy, diverting it away from the relay, causing it to become de-energized, opening its front contacts and closing its back contacts. Any signal permitting a train to proceed requires that front contacts of all vital control relays be closed, i.e., electrical energy flowing. This is referred to as the "Fail Safe Principal" since loss of energy by any means will cause the signals to display their proper restrictive indications.

The track circuit principal was developed in 1872, and is still used in all track circuits today; however, there have been numerous improvements in energy used, in electrical connection of rails and in design of the relay. The developments in any of the above fields could each consume a good-sized book. The Maine Central has and still is attempting to keep pace with these developments. Track circuits are generally named for the type of energy used, namely, Direct Current, Alternating Current or Coded.

Direct current track circuits were the first developed as primary battery was the only form of energy available. Direct current energy from batteries is still the most commonly used on electric railroads; however, the development of batteries has been extensive. The original gravity type of primary battery was replaced completely by the copper-oxide types which are, in an improved form, the most used type of primary battery today. There is a new type using carbon and zinc elements which we have tried out at a few locations. Storage batteries are used extensively; their justification is limited to heavy traffic territories or installations requiring high currents. The batteries in common use are lead-acid or nickel-iron types. The selection depends upon the requirements of the battery. The nickel-cadmium battery has become available and we have made a few installations at highway crossings to test and observe its performance.

Alternating current is used principally by electric railroads to separate signal energy from the propulsion energy. The cost of this system is more than that of the direct current and is therefore used on other railroads only to overcome special conditions. A.C. energy used in conjunction with a rectifier to utilize direct current relays, was installed at a highway crossing signal on the Maine Central last year. This energy was used to provide improved train shunting sensitivity. Reserve energy is provided by storage battery which, in event of failure of the commercial power supply, will operate a vibrator type of inverter. This will supply an uninterrupted alternating current to the track. When the power is restored, the load will be automatically transferred back to the commercial power which will also automatically recharge the batteries to be ready for the next power interruption.

The Coded track circuit is the newest development in this field and has great possibilities. It uses direct current energy which is coded (interrupted) at predetermined rate or rates. It has a higher sensitivity to train shunt, can be operated over a longer section of track, and, by use of three different code rates, can transmit signal controls without the use of line wires. The first systems developed required a high level of energy and, due to continuous operation of equipment, required frequent replacement of operating parts.

Within the past year a new system has been developed which requires less energy and decreases the operating rates, and thus will require less frequent replacement of moving parts. The earlier type was used in connection with the Fore River Bridge project to decrease the number of wires across the bridge and on the Mountain Sub-Division where the pole line is not adjacent to the tracks. The later type is being considered in connection with a CTC installation that is being studied by us at present.

To stimulate your thoughts, and possibly bring to light a new Thomas Edison, the introduction of light weight, self-propelled
equipment having off tread brakes, such as Budd Cars, have taxed the improvement possibilities of the present track circuits to the utmost. Present experiments are with the use of check-in and check-out devices to supplement the present conventional track circuit. However, the end result of these studies can very possibly result in an entirely new system which could replace the present track circuit.

Highway crossing protection has become increasingly active due to the increase in speed and volume of highway traffic. No one will question the desirability of protecting grade crossings but the railroad should not stand the entire expense. The general policy has been to have a government agency order the railroad to make the installation, which agency had no power to make provision for reimbursing the railroad for any portion of either the installation or the maintenance. The State of Maine and the Federal Government have recognized this and are accordingly providing partial payment of the cost of installation. To date Town and City Governments have not recognized this and the railroad is still, in those instances, required to provide protection entirely at its own expense. The minimum cost of such an installation, i.e. on non-signaled single track in open country without switches in the vicinity, is about $5,000, and about $400 annually to maintain. More elaborate installations will run as high as $25,000, with comparable increase in maintenance costs.

In the days of horse-drawn vehicles the standard crossbuck provided adequate warning except in very busy areas in cities where manual gates or watchmen were provided. The first automatic signals were audible warning bells; with the common use of closed vehicles this was supplemented by oscillating banners displaying a visual warning to stop. As the speed of the vehicles was increased, oscillating lights were added to these banners. Highway vehicle speeds continued to increase and a longer range signal was needed in many instances, thus the modern Flashing Light Signals were developed. The highway traveling public, being in a terrific rush, began to ignore these warning signals and insisted upon driving on the track ahead of a second train with the warning signal still operating. To preclude this possibility, where heavy highway traffic existed, automatic crossing gates came into use. Highway crossing protection, with its unpredictable quantity, the public, requires the utmost in engineering and ingenuity in its design and is thus a most interesting phase of signaling.

As you must already be aware, the developments in the signal field are so rapid that oftentimes before an installation is engineered and installed there is a new and improved system already on the market. Just to stimulate your thoughts to the future, the New Haven is reported to be experimenting with full automatic control of a train from a fixed point, i.e. Robot Control.

John Lyden's warning, in the September issue, to never start dispatching unless you want to spend the rest of your life railroading, applies equally to signaling, because the same fascination applies, and, as John said, "you are hooked."

New gold service pins, designating 25 and 50 year Maine Central employees are now appearing in ever greater numbers from one end of our Railroad to the other as a result of the general distribution of the emblems now under way.

Late in November President E. Spencer Miller presented the first of the pins to employees representing the two groups. Accepting the first pin for those employees having 25 or more years service was Miss Doris Thomas, a stenographer in the Freight Claim Department. At the same time Daniel E. Cony, veteran engineer now handling the "Pine Tree" between Portland and Bangor, received a 50 year pin to represent his group, those having over 50 years of service.

Employees from all sections of the road who have the qualifying years of service are receiving their pins by mail with a congratulatory message from President Miller. Requests should be sent to G. H. Hill, Publicity and Advertising Manager, Maine Central Railroad, 222 St. John Street, Portland, stating name, service dates, present work and address to which the pin should be sent.

— o —

Appointments

Announced by Horace N. Foster, Comptroller and Treasurer, and effective on December 29, 1955 were the following appointments.
for the Maine Central Railroad and the Portland Terminal Co.:

John F. Gerity, appointed Auditor Disbursements;

Sidney C. Foster, appointed Assistant to Auditor Disbursements in charge of Timekeeping and Payrolls;

Robert G. Clarke, appointed Assistant to Auditor Disbursements in charge of Vouchers and Accounts Payable;

John Michaels, appointed Assistant to Auditor Disbursements in charge of Roadway, Mechanical, Car Repair and Stores Account.

The above appointments constitute one of the final steps in the establishment of Maine Central’s Accounting Department, a more detailed and descriptive account of which will appear in a future issue of the Magazine.

Also in the Accounting Department and announced by George H. Ellis, Auditor Revenue, were the following appointments which were made effective on November 1, 1955:

Benjamin B. Braasch, appointed Credit Examiner;

Donald H. Svenson, appointed Traveling Accountant.

In the Freight Department, C. H. Loveitt, formerly Chief Rate Clerk for the Maine Central, was appointed Chief Division Bureau effective December 1, 1955, with headquarters at Portland, according to an announcement by R. C. Merrow, Asst. Freight Traffic Manager.

— o —

Scheme "Q"

Not to be outdone by our Armed Forces with their variously named “Operations”, our Engineering Department has come up with a series of proposals and projects one of which is now in effect and was completed under the name of Scheme “Q”.

Scheme “Q” involves a completely new installation at Rigby Engine House — a sand drying, storage and diesel locomotive sanding facility — the first installation of its type on the Maine Central. Automatic, except for manually operated valves, the equipment requires one man to operate it.

To get an idea of the process, let’s follow it step by step:

Wet sand (which means sand that may range from slightly damp to actually wet) is unloaded from gondola cars by crane and dumped into a 100 ton capacity storage tank, the cover or lid of which is first lifted off by the crane.

As it is needed the wet sand is allowed to flow by gravity from the storage tank into the drying apparatus in a shed directly below. This apparatus consists of a revolving drum operated by electric power which is set on a slight end to end pitch and heated by a fuel oil fired burner. As the sand dries it is kept moving through the drum by the slant or pitch on the drum until, as the drying is finished, it emerges from the drum and passes through a screen for size. Drying is at the rate of two to three tons per hour.

The fine sand obtained from the screening runs by gravity into an elevating tank; when this tank is full the access valve on it is closed, compressed air is turned on and the sand blown up into the dry sand storage tank which has a capacity of 200 tons and is also located directly over the drying shed.

Locomotives being sanded are serviced from a 10 ton capacity service tank built over the nearby sanding station track. To fill this service tank sand is allowed to flow by gravity into a second elevating tank in the shed after which it is lifted by compressed air to the service tank.

As a last step, gravity flow feeds the sand into the locomotives.

The facility now serves one track only but it has been set up to cover the future possibility of a two track sanding station.

Dry sand is very important to the top performance of a locomotive. Without it the tractive effort of the engine may be greatly decreased due to wheel slippage on the rails caused, for example, by snow or ice accumulations, a light rain or frost; with sand traction improves and, of course, so does the locomotive’s ability to haul heavy tonnage.

An average of one car a month, 50 tons of sand, is used at Rigby to supply engines serviced there. Probably two-thirds of this amount is actually used during the winter months however, Sand amounts used by any particular locomotive
unit depend on several factors such as the weather, length of the run and area through which the run is made.

- o -

New Dispatching System
For "Lower Road"

The Maine Central Railroad in conjunction with the New England Telephone and Telegraph Company has inaugurated a new type of train dispatching system unlike any other system in its field. It makes use of existing telephone trunk cables and local wires, includes new and specialized equipment and is truly a “first” for both companies involved!

Approximately a year's time was required for Telephone Company engineers to design and develop the equipment and another period of about two months was needed for testing and adjusting the lines before the railroad officially accepted the system for use.

The Telephone Company provides, services and maintains the circuit and equipment necessary for the dispatching system. Used is a high grade four-wire voice frequency line which provides high quality transmission at all times. Uninterrupted service during any commercial power failure is insured by standby electric power supplies and top priority is given to maintenance or repair work by telephone crews. Rental and service charges are made at a specified monthly rate.

At 12:01 a.m. on November 21, 1955, the new circuit was placed in service between Portland and Bangor by way of Brunswick and Augusta. It has replaced the familiar Morse Code telegraph system and now handles all dispatching of orders issued to cover train movements over our Railroad's Lower Road main line.

Master control for the new circuit is located at the Train Dispatcher’s desk in Portland. Here is installed a dial, very similar to the dial on our telephones, a loud speaker and a speaking unit that hangs from around the Dispatcher's neck thus leaving both hands free for other work. A dial and regular handset telephone instrument are also located at the Chief Dispatcher's desk and in the Superintendent's office.

Cut into the line are 22 wayside stations including passenger stations, signal towers and yard offices. Each of these locations is equipped with a telephone instrument, a bell and a four-pedal type of push-to-talk switch. Thus, by means of a system of individual code numbers, the Dispatcher may dial any of the wayside stations. By use of group code numbers several of the stations may be called at one time. All stations on the circuit may be rung at any one time from one of the three dialing stations by use of a special code number. This latter is used, for example, when all stations are contacted for the 7:15 a.m. and the 12:15 p.m. broadcasts, at which time the location and expected movements of all trains on the line are given as information, this being especially useful to section men and others working on the railroad right of way.

In addition to the above wayside stations, there are two further telephone installations, one at South Gardiner and the other at Vassalboro Section House. These are call-in stations only, that is, the Dispatcher can not call them but when necessary local personnel may unlock the phone boxes and contact the Dispatcher.

Under the new system the number of Dispatchers on duty at any one time remains the same; the territories they handle have been changed however. One man now controls train movements by means of the new telephone line over the entire distance from Portland to Bangor, plus the Foxcroft and Harmony Branches. Formerly the main line territory was controlled in two sections, Portland to Waterville and Waterville to Bangor.

J. P. Scully Named to Maine Board

Maine Central’s Industrial, Real Estate and Tax Department Mana-

ger, John P. Scully, was recently appointed to a 3 year term as a member of the Advisory Board, Department of Development and Commerce by Governor Edmund S. Muskie.

Indicative of the scope of the department's work are the three divisions of which it is composed: Research and Planning, Development and Recreational Promotion. And, indicative of Scully's qualifications for membership on the Board, is his experience in the Engineering, Traffic and Operating departments of the railroad in addition to the duties of his present office.

Railway Clerks to Install
By ERNESTINE V. MILLER

Remember the date! Get out your best "bib and tucker!" The fifth annual Joint Installation-Banquet-Dance of the Railway Clerks will be held Saturday, January 14, 1956, at Vallee's Steak House, Dunstan (Scarborough). A steak dinner will be served at 6 P.M. sharp, weather permitting arrival of out-of-town guests by that time. There will be a cocktail hour from 4 to 5:45 P.M. Dancing, featuring Bob Percival's Orchestra, will follow the installation of officers.

Transportation will be furnished for those desiring it. A chartered bus will leave the Eastland Hotel at 4 P.M., Union Station at 4:15 — a later bus will leave the Eastland at 5, and Union Station at 5:15. The return trips from Vallee's will be at 9:30 and midnight. For regular bus service, see Boston & Maine bus time tables.

Members of Lodge No. 374 in good standing as of January 1, 1956, will be furnished free tickets upon request to S. J. Conley Jr., J. S. Murray, or Ernestine Miller. Guests may be invited at $3.00 per ticket. ALL personnel in the building, relatives and friends will be welcome.

The deadline for banquet reservations is positively January 10.
As we begin this NEW YEAR, I find myself wishing that I could tell each of "US GIRLS" personally how much I wish for you all the good things of Life in 1956.

Just think — we have three hundred and sixty-five days ahead of us, God willing, and it is up to us to make of them what we will. Did you ever stop to think that each morning as we get up we have the privilege of determining what our day shall be like? We have the choice of looking on the bright side of life, or the dark; whether we are to be happy or unhappy; kind or unkind; courteous or discourteous; tolerant or intolerant; charitable or greedy; have positive or negative thoughts. Our free will allows us the choice — and although sometimes the forces within us pull one way and then the other — good vs. bad — we are nevertheless Masters of our Fates, and we, and we alone, have the power to make each of these three hundred and sixty-five days what we would have them be.

It really is important then, isn't it, to weigh very carefully each morning what we desire our day to be, so that, when we take stock at night, although we may have failed in some way, we know our objectives were sound and good and from that we can gather strength for the new day to come.

And now that we have decided to take each day and live it in the best way possible, important things first, and all good, why not go all the way and be good to ourselves vanity-wise. "Us Girls" know there is nothing more exhilarating than to get showered, all curled up, scented and dressed up for a big party — we love it — but we know too we can never be beautiful by fussing over ourselves now and then. It takes steady practice and faithful use of cleansing and night creams, hair care, nail care, exercise, diet — in fact, everything that makes for good grooming, to keep us looking well — but it's worth all the time and bother, isn't it, because we know if we take the time to be as lovely as possible every day we can gather strength for the new day to come.

So in this Year of 1956, instead of hoarding that special perfume and those bath luxuries because they are packaged so prettily you just hate to open them and they do look so nice on your dresser, go all out and use them each day, not just those special occasions that are spaced so far apart, and you know something, you will feel so luxurious you will be delighted for doing so.

"By now and a HAPPY NEW YEAR TO YOU!"
The distribution of the 25 year service buttons among the men who have applied for them has been completed. The general consensus is very favorable as to their appearance and they are being returned to the fold. John Casey, wife of Retired Station Baggage Master, was a patient at the Mercy Hospital, Conductor and Mrs. George McLearn made a visit to their son, Raymond, and his family who reside in Bangor. Raymond is connected with the Burroughs Adding Machine Company. Engineer and Mrs. Frichard were guests of their son and his family over the Holidays. They reside in Manchester, Conn.

The Maine Association of Railroad Veterans held their annual Christmas Party Dec. 18, at the Woodland Restaurant. Gifts were exchanged. Solos were by John Gurney, Philip Earles and Eugene Winslow, accompanied by Mrs. John J. Keating.

Correction from the December issue: Mrs. John Cady. should have read Mrs. John Casey.

Conductor Y. C. Neilson, George Green, Gilbert Fournier, Fred Eaton, Wayland Bennett and Engineer Harry Pettingill have all been off duty on account of illness. At this writing all were back on duty except Harry Pettingill who is still confined at home.

Engineer A. J. Robinson has received a citation for 40 years of service in railroading from the Brotherhood of Locomotive Engineers. He has been awarded the "Badge of Merit" by the Nation's oldest railroad union. He is secretary to the senior Brotherhood's Division No. 50, at Bangor.

Engineer's sympathy is extended to Agent George McLaury at Freeport on the death of his wife, who died Dec. 7.

Conductor and Mrs. George McLearn made a visit to their son, Raymond, and his family who reside in Bangor. Raymond is connected with the Burroughs Adding Machine Company.

Engineer and Mrs. Frichard were guests of their son and his family over the Holidays. They reside in Manchester, Conn.

The Maine Association of Railroad Veterans held their annual Christmas Party Dec. 18, at the Woodland Restaurant. Gifts were exchanged. Solos were by John Gurney, Philip Earles and Eugene Winslow, accompanied by Mrs. John J. Keating.

Correction from the December issue: Mrs. John Cady. should have read Mrs. John Casey.

Conductor Y. C. Neilson, George Green, Gilbert Fournier, Fred Eaton, Wayland Bennett and Engineer Harry Pettingill have all been off duty on account of illness. At this writing all were back on duty except Harry Pettingill who is still confined at home.

Engineer A. J. Robinson has received a citation for 40 years of service in railroading from the Brotherhood of Locomotive Engineers. He has been awarded the "Badge of Merit" by the Nation's oldest railroad union. He is secretary to the senior Brotherhood's Division No. 50, at Bangor.

Engineer's sympathy is extended to Agent George McLaury at Freeport on the death of his wife, who died Dec. 7.

Conductor and Mrs. George McLearn made a visit to their son, Raymond, and his family who reside in Bangor. Raymond is connected with the Burroughs Adding Machine Company.

Engineer and Mrs. Frichard were guests of their son and his family over the Holidays. They reside in Manchester, Conn.

The Maine Association of Railroad Veterans held their annual Christmas Party Dec. 18, at the Woodland Restaurant. Gifts were exchanged. Solos were by John Gurney, Philip Earles and Eugene Winslow, accompanied by Mrs. John J. Keating.

Correction from the December issue: Mrs. John Cady. should have read Mrs. John Casey.
Blacksmith Johnny Buckman is a patient at a local hospital with pneumonia. His Apprentice Howard Hunt, who has been soking up wisdom under the wing of the Passenger Room Book of Knowledge has absorbed a skin full and is now under the eye of Dr. Car Builder Howard L. Badger.

Helper Bill Witham has returned from a 22 day stay on Goose Pen. There he found his rounds being basketed by a snow blower. The goose's car has been dug up and track 35 beyond the Goose Pen has been removed.

Swing Shift Brian Lent has retired. He was relieved by former MCT chief By 'STEVE'.

Goose Pen has been dug up and track 35 beyond the Goose Pen has been removed.

Swing Shift Brian Lent has retired. He was relieved by former MCT chief By 'STEVE'.

Goose Pen has been dug up and track 35 beyond the Goose Pen has been removed.

Swing Shift Brian Lent has retired. He was relieved by former MCT chief By 'STEVE'.

Goose Pen has been dug up and track 35 beyond the Goose Pen has been removed.

Swing Shift Brian Lent has retired. He was relieved by former MCT chief By 'STEVE'.

Goose Pen has been dug up and track 35 beyond the Goose Pen has been removed.

Swing Shift Brian Lent has retired. He was relieved by former MCT chief By 'STEVE'.

Goose Pen has been dug up and track 35 beyond the Goose Pen has been removed.

Swing Shift Brian Lent has retired. He was relieved by former MCT chief By 'STEVE'.

Goose Pen has been dug up and track 35 beyond the Goose Pen has been removed.

Swing Shift Brian Lent has retired. He was relieved by former MCT chief By 'STEVE'.

Goose Pen has been dug up and track 35 beyond the Goose Pen has been removed.

Swing Shift Brian Lent has retired. He was relieved by former MCT chief By 'STEVE'.

Goose Pen has been dug up and track 35 beyond the Goose Pen has been removed.

Swing Shift Brian Lent has retired. He was relieved by former MCT chief By 'STEVE'.

Goose Pen has been dug up and track 35 beyond the Goose Pen has been removed.

Swing Shift Brian Lent has retired. He was relieved by former MCT chief By 'STEVE'.

Goose Pen has been dug up and track 35 beyond the Goose Pen has been removed.

Swing Shift Brian Lent has retired. He was relieved by former MCT chief By 'STEVE'.
POLIO isn't licked yet!

Join the MARCH OF DIMES

January 3 to 31