Concrete Interpretation of Chess
(©Rolf Rolles

Mobius Strip Reverse Engineering

February 26, 2018

A Static Analysis of Chess

O M~ O 1O T O N -

> We analyze the game of chess exactly how we analyze

computer programs: by abstract interpretation.

» Chess allows us to introduce most of the concepts in a simpler

and highly visual context.

State Space

Description of a Moment in a Game

H N WA OO N

» Any point during a game is characterized by:
1. Whose turn it is;

> Let's call this pc, for player color.
» Define a set PC = { White, Black}
> Now pc € PC.

2. Where each piece is, or whether it has been captured.

» This is the board configuration, written o.

» Hence (pc, o) describes a moment in the game.

Representing State Spaces

How to Describe Board Configurations

» Define a variable for every piece. Vars =

Pawnyy 1 Pawnyy > Pawnyy 3
Pawnyy 5 Pawnyy ¢ Pawny 7
ROOkW71 ROOkW’Q KnightW71
Bishopw 1 Bishopw > Queeny
PawnBJ PawnB,g PawnB,3
Pawng 5 Pawng ¢ Pawng 7
ROOkBA ROO/{BQ KnightB’l
| Bishopg1 Bishopg, Queeng

Pawny 4
Pawnyy g
Knl'ghtW’g
Kingw
Pawng 4
Pawng g
KnightBQ
Kingg J

» Define the set of squares, plus a special captured square.
» Squares = {al,...,a8,...,hl, ... h8, Captured}

> A state (board configuration) is a function

State : Vars — Squares.

Representing State Spaces

Storing Chess Boards on a Computer

Square Bits Square Bits Square Bits Square Bits

al 0000000 a2 0000001 a3 0000010 a4 0000011
ab 0000100 ab 0000101 a7 0000110 a8 0000111
bl 0001000 b2 0001001 b3 0001010 b4 0001011
b5 0001100 b6 0001101 b7 0001110 b8 0001111
cl 0010000 c2 0010001 c3 0010010 c4 0010011
c5 0010100 c6 0010101 c7 0010110 c8 0010111
dl 0011000 d2 0011001 d3 0011010 d4 0011011
d5 0011100 d6 0011101 d7 0011110 d8 0011111
el 0100000 e2 0100001 e3 0100010 e4 0100011
e5 0100100 €6 0100101 e7 0100110 e8 0100111
f1 0101000 f2 0101001 f3 0101010 fa 0101011
f5 0101100 f6 0101101 f7 0101110 f8 0101111
gl 0110000 g2 0110001 g3 0110010 g4 0110011
g5 0110100 g6 0110101 87 0110110 g8 0110111
hl 0111000 h2 0111001 h3 0111010 h4 0111011
h5 0111100 h6 0111101 h7 0111110 h8 0111111

Captured 1000000

» There are 65 locations where a piece might be located. This
can be represented by 7 bits.

» 64 squares, plus the Captured location.

» There are 32 pieces.
> Hence, 7 *x 32 = 224 bits per board.

> No claim of optimality is being made.

Initial States

Initial Board Configurations

» The game starts from the initial configuration. (Other
systems may have more than one initial configuration).

White,

Table: The initial configuration, o

Piece Square Piece Square Piece Square Piece Square
Pawnyy 1 a2 Pawnyy o b2 Pawnyy 3 c2 Pawnyy 4 d2
Pawnyy 5 e2 Pawnyy ;6 f2 Pawnyy ;7 g2 Pawnyy g h2
Rookyy 1 al Rookyy 2 hl Knightyy 1 bl Knightyy 2 gl

Bishopyy 1 cl Bishopyy 2 f1l Queenyy dl Kingy el
Pawng 1 a7 Pawng > b7 Pawng 3 c7 Pawng 4 d7
Pawng s e7 Pawng ¢ f7 Pawng 7 g7 Pawng g h7
Rookg 1 a8 Rookg > h8 Knightg 1 b8 Knightg > g8
BishopB" 1 c8 Bishopg > f8 Queeng d8 Kingg e8

The Alphabet

All Possible Board Configurations

The alphabet X' is the set of all possible states.

abcdefgh abcdefgh

State Transitions
Describing Changes to the Board Configuration

Figure: oipje[Pawny 5 — e4]

» Moves are characterized as state updates.

» Given some existing state o, we write
o[P1 > {1,...,Pn— £,] for the state that is the same as o,
except each of the pieces P; has moved to locations /;.

Semantics of State Transitions

Describing Legal Piece Moves

Figure: Legal knight moves

» The laws of chess dictate which moves are valid.

» E.g., a knight can only move in an “L-shape”, and only if such
a move would stay within the boundaries of the board.

> We will specify the rules as state transitions.

Inference Rules

Individual Chess Moves

Figure: This move is formalized below as an inference rule.

k abbreviates Knightyy ;.
o (k) # Captured

Knighty, 1 — NWN — Move

> If the premises above the bar are true:

1. Knighty, 1 has not been captured

Inference Rules

Individual Chess Moves

Figure: This move is formalized below as an inference rule.

k abbreviates Knightyy ;.
o (k) # Captured file(o(k)) > b

Knighty, 1 — NWN — Move

> If the premises above the bar are true:

1. Knighty, 1 has not been captured
2. Knightyy 1 is in the bt file or above

Inference Rules

Individual Chess Moves

Figure: This move is formalized below as an inference rule.

k abbreviates Knightyy ;.
o (k) # Captured file(o(k)) > b rank(o(k)) < 6

Knighty, 1 — NWN — Move

> If the premises above the bar are true:

1. Knighty, 1 has not been captured

2. Knightyy 1 is in the bth file or above

3. Knightyy 1 is in the 6" rank or below

Inference Rules

Individual Chess Moves

Figure: This move is formalized below as an inference rule.

k abbreviates Knightyy ;.
o(k Captured file(o(k)) > b rank(o(k)) < 6 —occupied(o(k) + 2y + 1
(k) # (o(k) = (o(K) < (o(k) + 2y + 1w)

Knighty, 1 — NWN — Move

> If the premises above the bar are true:

1. Knighty, 1 has not been captured
2. Knightyy 1 is in the bth file or above

3. Knightyy 1 is in the 6™ rank or below
4. No piece is located at the red circle relative to Knightyy 1

Inference Rules

Individual Chess Moves

Figure: This move is formalized below as an inference rule.

k abbreviates Knightyy ;.
o(k Captured file(o(k)) > b rank(o(k)) < 6 —occupied(o(k) +25 +1
(k) # (o(k) = (o(k) < (o(k) + 2y +1w)
olk — o(k) + 2y + 1y]

Knighty, 1 — NWN — Move

> If the premises above the bar are true:

1. Knighty, 1 has not been captured
2. Knightyy 1 is in the bth file or above

3. Knightyy 1 is in the 6™ rank or below
4. No piece is located at the red circle relative to Knightyy 1

» Then the conclusion below the bar is true:

P Moving to the location described in 4 is valid.

Operational Semantics
All Chess Moves

_>PawnW71—N _>PawnW71—NN _>PawnW,2—N _>PawnW,2—NN
7 Knightyy 1—NWN —7Knighty 1—WNW —7Queeny—N1 —7Queeny —N2
_>QueenW—N3 _>QueenW—W1 —>QueenW—E1 —>QueenW—51
_>QueenW7NW1 _>QueenW7NE1 _>QueenW75E1 _>QueenW75W1
— Kingw—N — Kingyw —W —Kingw—E

Figure: Partial listing of all legal chess moves

> Write by —(pove) b2 if applying (Move) to board b yields
board bs.

» The collection of all legal chess moves as inference rules is
called the operational semantics of chess.

The Transition Relation, — cpess
Legal Chess Moves

H N WA OO N ©

Figure: A legal move: 01 — Chess 02

» If one configuration (07) can be obtained from another (o1)
by applying one valid state transition, we write:

1. 01 = Chess 02, OR
2. 7(01,02), or 01 T 02, of (01,02) € T.

State Transition Diagram

Graph of Legal Chess Moves

» Depicts every valid state transition.

Successor States post_,, ., Visualized

All Legal Chess Moves from a Given Position

Gbcdelfgh

e bcde fgoh

The successor relationship post_, ., yields the set of all states
that result from a given state under one application of the

transition relation (i.e. — Chess)-

Successor States post_,, .

All Legal Chess Moves from a Given Position

= N W R OO N

Figure: All possible opening moves

post_s,...(White, ojsit), all legal moves from (White, cinit):

Tinit[Pawnyy 1 +— a3] it [Pawnyy 1 +— a4] Tinit[Pawnyy 5 +— b3] Tinit[Pawnyy o +— b4]
oin;t[PawnWJ — c3] Tjnit[Pawnyy 3 +— c4] o-,-,,,vt[PawnWA — d3] o-,-,,,vt[PawnWA — d4]
U'inft[P-?W"W,S — e3] o',-,,,'[[PaWnWj — ed] o';,,,-t[Pawnw,é — £3] o';,,,-t[PawnW,é — f4]
Tinit[Pawnw 7 — g3] Tinit[Pawnyy 7 — g4] Tinit[Pawny g + h3] Tinit[Pawnw g > hd]

Tinit[Knightyy 1 +— a3] o init[Knighty 1 +— 3] Tinit[Knightyy 2 +— 3] Tinit[Knightyy 2 +— h3]

Successor States post_,, .

All Legal Chess Moves from a Given Position

» In any non-final state, at least one transition is possible; in
chess, often more than one.

» Let post_,., . (pc,o): PC x State — o(PC x State) denote
the set of all possible legal states after making one transition
from (pc,o).

» Formally,
post_ ¢, (pc, o) = {(pc’,0’) | (pc,) — chess (P’ 0”)}

» This is the set of successors of (pc,o) under — cpess-

Predecessor States pre_,, ., Visualized
All Legal Chess Moves Leading to a Given Position

— Chess

7 Chess

The predecessor relationship pre_, ., . yields the set of all states
that lead to a given state in one application of the transition
relation (i.e. — Chess)-

Predecessor States pre_, ..

All Legal Chess Moves Leading to a Given Position

© N~ © WL T MmN A

The boards below can transition to the one above.

© N~ © 1 S MmN

Predecessor States pre_, ..
All Legal Chess Moves Leading to a Given Position

» Let pre_,, . (pc,o): PC x State — p(PC x State) denote
the set of all possible legal states that lead to (pc, o) after
making one transition.

> Formally,

Pre—; e (P, 0) = {{pc’, 0") | {pc’, 0") = chess (pc, o)}

» This is the set of predecessors of (pc,o) under — cpess-

The Transitive Closure of — chess, —¢hecs

All Positions Reachable from a Given Position

7.

- Y
Chess /}&@//
,

~* Chess

» The transitive closure of — cpess, denoted —7¢ .., is the set
of all configurations reachable from some configuration via
one or more applications of — cpess.

Paths

Sequences of Valid Moves

© N~ © 1 MmN -

)

, 04

White

) {

(c

) (Black, o3)

Figure: A path of length 3.

(b

)

, 02

White

(

a)

(

> A path 7 of length i is a sequence of pairs

such that:

(pci, oj)

)

<,DC2, 0-2>7 <,DC3, O'3>, ..
1. 07 —Chess Tiy1-

9

pc1, Jl>

{

2. The pg;s alternate colors.

» Write |7| for the length, and =; for (pcj, 0;).

Traces

Games In Progress

1e4d

= N W A OO N

(c) (Black,o3)

Figure: A trace of length 3.

> A trace is a path that starts from an initial configuration.
» In particular, a trace is a path that is subject to the additional
requirement Ginjt — Chess O1-
» Note that the chess short-hand (pictured above the boards) is
simply an alternative way to describe a trace.

0~ © W1 S MmN~

0~ © WL S MmN~

Extending a Path

Making a Move

After m ~ (White, 04)

(b)

After a path 7

)

(a

> The act of extending a path by transitioning from its last

state is written m —~ (pc, o).

Prefixes and Suffixes

“Halves” of In-Progress Chess Games

Figure: Two prefixes and suffixes of the same trace

» Given a path (or trace) m:

.m;j is called a prefix.

» Any subsequence 7 ..

IX.

|7r|) is called a suff

.7 (where n

» Any subsequence ;. .

Termination of Traces
End of a Chess Game

a b cd e f g h

(a) Checkmate (b) Draw (Stalemate)

» Circumstances wherefrom no legal state transition (move)
follows are called final states. In chess:
1. Checkmate: game ends; one player wins.
2. Draw: game ends; neither player wins. E.g.:

2.1 Stalemate: player has no legal move.
2.2 Threefold repetition: board in same configuration three times.
2.3 Fifty-move rule: no capture or pawn move in the last 50 moves

Maximal Traces

Complete Games

» A trace that ends in a final state is called maximal.

Trace Properties

Questions about Chess Games

H N W A~ 0O N

> We can ask a number of questions, about all possible games
of chess (universal properties), or about specific games
(existential properties).
P> For example, is it possible to reach the above board?
» This is a reachability question.

Trace Properties

Further Questions about Chess Games

?

» What is the shortest (or longest) checkmate?
» Given a board:

» What sequence of moves might have lead there?

» What sequence of moves might have lead there, at a given
move number?

> Is it possible that a given player wins?

Must a given player always win?

» Which positions, reachable from that configuration, lead to a
given player always winning?

v

Trace Properties

Answers via the Execution Tree

» In order to answer these questions, we need to somehow
create an object that contains every chess game.

» Hence, we will now construct the execution tree for chess.

The Trace Extension Operator, move()

» The trace extension operator, move(r), takes as input a
trace 7, and produces as output all traces where one legal
state transition was made from the end of .

» Formally: move(n) = {m —~ o | o € post_,,..(7i), || =i}

The Trace Extension Operator, move()

3 THeEA
aiiad hiaaiid JaxaaTadyl

0 Ly T TETy
Jaiaaiadal [iaaaidl Jaxiaiiaal

| ‘eokssied

» The first boards represent the trace .

move(7) and Termination

—————— > (no moves remain)

» When a trace 7,5 has reached a final state, i.e., a checkmate
or draw position, no legal moves follow.

» Therefore, move(7fina) produces no traces, i.e. it returns the
empty set (.

move,,({7;}), the Pointwise Extension of move(r)

> The pointwise-extended trace extension operator,
move,,(7), takes as input one or more traces {;}, and
outputs the result of applying move(r;) for each j.

> l.e., it is simply move(w) applied to one or more traces.
» Formally: move,(X) = U move()
meX

» For simplicity, in the rest of the presentation, we will simply
write move in place of move,,.

» Slovenly, but less notation to remember.

move@({m, 72})

4

~
s cal
3 A
= = = = T
s e s e
5= 5= o= 5=
e £ 53)
s = s 5]
= €S = 1 e
e e lax e
P = P = 7
lox e lox e
5= 5= 4= 5=
b3 h3 1 5 >
o< b= « s 5 5
4= 1l 4= a=
o< e lax e
s s B s = v
a9
)

les e < e 5l
4= = < = 5= EN
b= P < b i
5l 53 < e N
4= - < - =
ex | Jes 2 “ole o fes :
s 1 R 7| P} 1 R 7|

= = 7
ox lox . o
= = a9
b - b2 - E|
] &] al 28
4= 4 4= g -
e s 5 2

= £ = o |

T;, All Traces of Length /

> Write T; to denote the set of traces of length /.

> T = < White,

H N WA OO N ©

» |.e., the initial board before any moves have been made.
» Now Ty = move(Ty_1) for k > 2.

> |.e., all traces of length k.

> T, = move(Ty)

> T3 = move(T,) = move(move(T;)) = move?(Ty)
> ...

move(Ty) and Ty 1, Visualized

> 71, all traces of length 1.

move(Ty) and Ty 1, Visualized

> 71, all traces of length 1.
» T, = move(Ty), all traces of length 2.

move(Ty) and Ty 1, Visualized

> 71, all traces of length 1.
» T, = move(Ty), all traces of length 2.
» T3 = move(T>), all traces of length 3.

move(Ty) and Ty 1, Visualized

e <
5= S
b e
B3)
o= e
(€. LS|
PPy &l

= S
e <)
fetw &
ln=)
) &3
et <
e &
e = & o

e <
fata e
[n <5
e <3
fot <
e a4
e s

= B4
e

fata &

[p)
e a5
fot <)
e i
e = e

> 71, all traces of length 1.

» T, = move(Ty), all traces of length 2.

> T3
> 74

move(T2), all traces of length 3.

move(T3), all traces of length 4.

move(Ty), Tk+1, and Termination

> When a trace reaches a final state, the branch stops growing.

» Black has checkmated down the left branch. Thus, no traces
extend on the left.

» The right branch does not correspond to a final state, and so
continues extending.

T<k, All Traces up to k in Length

» We define T< to be the set of traces of length k or less.

k
» Formally, T<) = | | T;.
i=1
Value Result Description
T<q T1 The initial board
T<o TLU T, The initial board plus all traces of length 2
T23 TTUT,UTs The initial board plus all traces of lengths 2 and 3
TSJ' HuT,U---UT; 1 UT; All traces of length up to j

traces’(()), a Generator for T;

» Define a function, traces(X) = move(X)U Ty.
» Write traces(X) for traces(traces=1(X)).

» Now examine traces*(()) for various k.

Table: The iterates of traces/(())

Value Result
— =
traces” () T<1
traces®(0) T<,
traces®(0) T<s3
traces! (0) T<;

> Hence traces’()) generates T<;.

T<x and traces(()), Visualized

» T<1 = traces'(()), all traces up to length 1.

T<x and traces(()), Visualized

» T<1 = traces'(()), all traces up to length 1.
» T<p = traces®(()), all traces up to length 2.

T<x and traces(()), Visualized

» T<1 = traces'(()), all traces up to length 1.
» T<p = traces?(()), all traces up to length 2.
» T3 = traces3(()), all traces up to length 3.

T<x and traces(()), Visualized

T<1 = traces!(f), all traces up to length 1.

T<3 = traces3(0), all traces up to length 3.

vvyyvyy

)

T<2 = traces?(0), all traces up to length 2.
(0)
)

T<4 = traces*(), all traces up to length 4.

T<x, traces®(()), and Termination

The Execution Tree
p

X

Figure: The execution tree, of height ¢
» Due to the laws of chess, all games terminate.
» In particular, there is a longest chess game, say of length £.
> Therefore, T<;, = traces’()) contains all possible chess games.
P> The tree in which every branch has reached a terminal state is
called the execution tree.

T<x, traces®(()), and Termination
Fixed Points

|
/‘\ _ /‘\
) =

¢
traces(-

» Because terminated traces cannot be extended, we have that:

> T<pi1 = traces (D) =
> traces(traces‘(())) =
> traces(T<y) =
> TSE
» In conclusion, traces(T<;) = T<y.
» For a function f, a value x such that f(x) = x is called a
fixed point of f.

» Hence, T<; is a fixed point of traces.

The Least Fixedpoint Trace Semantics

Definition and Notation

S[Chess] = Ifp~traces = T,

» T<y is the smallest set that is a fixed point of traces; hence it
is the least fixed point.

» Smallest as in, if S = traces(S), then T<, C S.
» Ty is called the least fixed point trace semantics.
> We write S[Chess] = IfpS traces = T<.

» S[Chess]: the semantics of chess, also called the set of
traces.
> prg traces: the least fixed point of the traces function.

The Least Fixedpoint Trace Semantics

Computation

We can compute the least fixed point of traces as follows:
1. Traces =10
2. Tracespen = traces(Traces)
3. If Tracespew # Traces then

» Traces := Tracespen
» Goto?2

4. Return Traces

Note that this computation does not depend upon knowing what £
is; it terminates after £ steps automatically.

The Maximal Trace Semantics

Set of all Terminated Chess Games

S viax | Chess]|

» The maximal trace semantics Sy, [Chess] is a subset of
S[Chess]| that contains only the maximal (terminated) traces.

» S[Chess] also contains all prefixes of maximal traces.

» Formally: Spjax[Chess] = {T | T € S[Chess], T is maximal }

0 N~ © 1 T O N -

Deciding Trace Properties

» Now that we have constructed S[Chess] and Spjax [Chess],

we can use them to answer the questions about traces that we

have previously posed.

Deciding Trace Properties
Average Game Length

>, I

TES \ax [Chess]
|SMax [[Chess]] |

» To find the average game length, we simply divide the sum of
the lengths of the individual games by the number of games.

» Similarly, we can find the length of the average checkmate or
draw by restricting our attention to those games only.

Deciding Trace Properties
Lengths of Checkmates

\) ’ Y,

Figure: The shortest and longest of a set of checkmating traces

Shortest and longest checkmate:
» Checkmate = {T | T € Spax][Chess], T checkmates }.

» |.e., the set of all games that checkmate.

» Checkmin = min | T|
T € Checkmate

» Checkmax = _ max |T]|
T € Checkmate

Deciding Trace Properties

Reachability at a Move

Figure: Reachability at move #2.

A board b is reachable at move #n if

be{o,|o1..

.0n € S[[Chess] }.

Deciding Trace Properties

Reachability Generally

Raiaiaidi

Figure: Reachability at any move.

A board b is reachable if b € {0 | 01...0; € S[Chess]}.

All Suffixes
#1 #2 #3 #4 #5

71 92 93 4 #5 #2 #3 #4 #5
i e i e g e B i i g i R
#3 #4 #5 #4 #5 #5
-0~ -0

» Suffixes(w) ={m;...mp | 1 < i <|m|,|n| = n}
» All suffixes from one trace.
> Suffixes,(X) = U Suffixes()
TeX

» All suffixes from a set of traces; called the pointwise
extension of the Suffixes function.

All Prefixes
#1 #2 #3 #4 #5

#1 #1 #2 #1 #2 #3
-0 i e g

#1 #2 #3 #4 #1972 #3 #4 #5
i e N i i e g i R

» Prefixes(m) ={m... 7 | 1 <i<|x|}
» All prefixes from one trace.
> Prefixes,(X) = U Prefixes(r)
TeX

» All prefixes from a set of traces; called the pointwise
extension of the Prefixes function.

All Suffixes of Complete Games

Suffixes, (Swax[|Chess]) =

» All suffixes of complete games.

All Maximal Suffixes Beginning with a Board

N

th

SuffixBeginsWi

> All maximal games beginning with some board.

Deciding Trace Properties
White Can Win, an Existential Property

CanWinFrom (

Wins (™ > White) 7

» The formula is true if there exists a complete game beginning
from the indicated board where White wins.

Deciding Trace Properties
White Always Wins, a Universal Property

AlwaysWinFrom (

Vm € SuffixBeginsWith (

Wins (™ > White) 7

» The formula is true if for all complete games beginning from
the indicated board, White wins.

Deciding Trace Properties
Can Reach a Position Where One Player Always Wins

CanAlwaysWin (™) =
dww € Reachable (T)

AlwaysWinFrom (@ » White) ?

» The formula is true if, given a game-in-progress m, there exists
some reachable board w such that White always wins.

