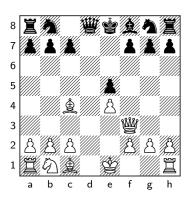
Concrete Interpretation of Chess ©Rolf Rolles

Möbius Strip Reverse Engineering

February 26, 2018

A Static Analysis of Chess



- ► We analyze the game of chess exactly how we analyze computer programs: by **abstract interpretation**.
- Chess allows us to introduce most of the concepts in a simpler and highly visual context.

State Space

Description of a Moment in a Game

- Any point during a game is characterized by:
 - 1. Whose turn it is;
 - Let's call this **pc**, for **player color**.
 - Define a set PC = {White, Black}
 - Now $\mathbf{pc} \in PC$.
 - 2. Where each piece is, or whether it has been captured.
 - ▶ This is the **board configuration**, written σ .
- ▶ Hence $\langle \mathbf{pc}, \sigma \rangle$ describes a moment in the game.

Representing State Spaces

How to Describe Board Configurations

▶ Define a variable for every piece. *Vars* =

```
 \left( \begin{array}{cccccc} Pawn_{W,1} & Pawn_{W,2} & Pawn_{W,3} & Pawn_{W,4} \\ Pawn_{W,5} & Pawn_{W,6} & Pawn_{W,7} & Pawn_{W,8} \\ Rook_{W,1} & Rook_{W,2} & Knight_{W,1} & Knight_{W,2} \\ Bishop_{W,1} & Bishop_{W,2} & Queen_W & King_W \\ Pawn_{B,1} & Pawn_{B,2} & Pawn_{B,3} & Pawn_{B,4} \\ Pawn_{B,5} & Pawn_{B,6} & Pawn_{B,7} & Pawn_{B,8} \\ Rook_{B,1} & Rook_{B,2} & Knight_{B,1} & Knight_{B,2} \\ Bishop_{B,1} & Bishop_{B,2} & Queen_B & King_B \end{array} \right)
```

- ▶ Define the set of squares, plus a special *captured* square.
 - Squares = $\{a1, \ldots, a8, \ldots, h1, \ldots, h8, Captured\}$
- A state (**board configuration**) is a function $State: Vars \rightarrow Squares$.

Representing State Spaces

Storing Chess Boards on a Computer

Square a1 a5 b1 b5 c1 c5 d1 d5 e1 e5 f1	Bits 0000000 000100 0001000 0001100 0011000 0010100 0011100 0100000 010100 010100	Square a2 a6 b2 b6 c2 c6 d2 d6 e2 e6 f2	Bits 0000001 000101 0001001 0001001 001001 0010101 0011001 0100001 010010	Square a3 a7 b3 b7 c3 c7 d3 d7 e3 e7	Bits 0000010 0000110 0001010 0001110 001010 0010110 0011110 0100110 0100110 0101101	Square a4 a8 b4 b8 c4 c8 d4 d8 e4 e8	Bits 0000011 0000111 0001011 0001011 0010111 0010111 0011111 0100011 0100111
f1	0101000	f2	0101001	f3	0101010	f4	0101011
f5	0101100	f6	0101101	f7	0101110	f8	0101111
g1	0110000	g2	0110001	g3	0110010	g4	0110011
g5	0110100	g6	0110101	g7	0110110	g8	0110111
h1	0111000	h2	0111001	h3	0111010	h4	0111011
h5	0111100	h6	0111101	h7	0111110	h8	0111111
Captured	1000000						

- ► There are 65 locations where a piece might be located. This can be represented by 7 bits.
 - ▶ 64 squares, plus the *Captured* location.
- ► There are 32 pieces.
- \blacktriangleright Hence, 7*32=224 bits per board.
 - No claim of optimality is being made.



Initial States

Initial Board Configurations

► The game starts from the initial configuration. (Other systems may have more than one initial configuration).

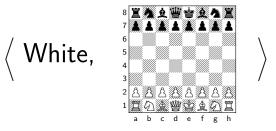


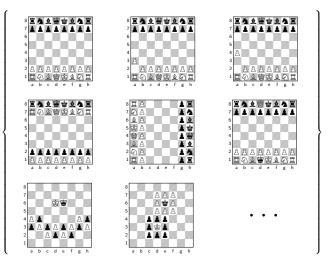
Table: The initial configuration, σ_{init}

Piece	Square	Piece	Square	Piece	Square	Piece	Square
$Pawn_{W,1}$	a2	$Pawn_{W,2}$	Ь2	$Pawn_{W,3}$	c2	$Pawn_{W,4}$	d2
$Pawn_{W,5}$	e2	$Pawn_{W,6}$	f2	$Pawn_{W,7}$	g2	$Pawn_{W,8}$	h2
$Rook_{W,1}$	a1	$Rook_{W,2}$	h1	$Knight_{W,1}$	<i>b</i> 1	$Knight_{W,2}$	g1
$Bishop_{W,1}$	c1	$Bishop_{W,2}$	f1	$Queen_W$	d1	$King_{W}$	e1
$Pawn_{B,1}$	a7	$Pawn_{B,2}$	Ь7	$Pawn_{B,3}$	c7	$Pawn_{B,4}$	d7
Pawn _{B,5}	e7	Pawn _B ,6	f7	Pawn _{B,7}	g7	Pawn _{B.8}	h7
$Rook_{B,1}$	a8	$Rook_{B,2}$	h8	$Knight_{B,1}$	<i>b</i> 8	Knight _{B,2}	g8
$Bishop_{B,1}$	c8	$Bishop_{B,2}$	f8	Queen _B	d8	KingB	e8

The Alphabet

All Possible Board Configurations

The **alphabet** Σ is the set of all possible states.



State Transitions

Describing Changes to the Board Configuration

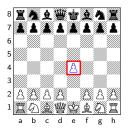


Figure: $\sigma_{init}[Pawn_{W,5} \mapsto e4]$

- Moves are characterized as state updates.
- Given some existing state σ , we write $\sigma[P_1 \mapsto \ell_1, \dots, P_n \mapsto \ell_n]$ for the state that is the same as σ , except each of the pieces P_i has moved to locations ℓ_i .

Semantics of State Transitions

Describing Legal Piece Moves

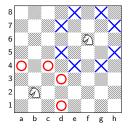


Figure: Legal knight moves

- The laws of chess dictate which moves are valid.
 - ► E.g., a knight can only move in an "L-shape", and only if such a move would stay within the boundaries of the board.
- We will specify the rules as state transitions.

Individual Chess Moves

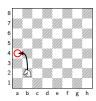


Figure: This move is formalized below as an inference rule.

 $\frac{\sigma(k) \neq \textit{Captured}}{\textit{Knight}_{W,1}}.$ Knight $_{W,1} - \textit{NWN} - \textit{Move}$

- ▶ If the **premises** above the bar are true:
 - 1. Knight_{W,1} has not been captured

Individual Chess Moves

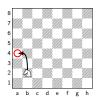


Figure: This move is formalized below as an inference rule.

```
\frac{\sigma(k) \neq \textit{Captured} \quad \textit{file}(\sigma(k)) \geq b}{\textit{Knight}_{W,1} - \textit{NWN} - \textit{Move}}
```

- ▶ If the **premises** above the bar are true:
 - 1. $Knight_{W,1}$ has not been captured
 - 2. $Knight_{W,1}$ is in the b^{th} file or above

Individual Chess Moves

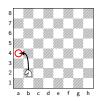


Figure: This move is formalized below as an inference rule.

```
\frac{\sigma(k) \neq \textit{Captured} \quad \textit{file}(\sigma(k)) \geq b \quad \textit{rank}(\sigma(k)) \leq 6}{\textit{Knight}_{W,1} - \textit{NWN} - \textit{Move}}
```

- ▶ If the **premises** above the bar are true:
 - 1. $Knight_{W,1}$ has not been captured
 - 2. $Knight_{W,1}$ is in the b^{th} file or above
 - 3. Knight_{W,1} is in the 6th rank or below

Individual Chess Moves

Figure: This move is formalized below as an inference rule.

```
\frac{k \text{ abbreviates } \mathit{Knight}_{W,1}}{\sigma(k) \neq \mathit{Captured}} \quad \mathit{file}(\sigma(k)) \geq b \quad \mathit{rank}(\sigma(k)) \leq 6 \quad \neg \mathit{occupied}(\sigma(k) + 2_N + 1_W)} \quad \mathit{Knight}_{W,1} - \mathit{NWN} - \mathit{Move}
```

- ▶ If the **premises** above the bar are true:
 - 1. Knight_{W.1} has not been captured
 - 2. $Knight_{W,1}$ is in the b^{th} file or above
 - 3. $Knight_{W,1}$ is in the 6th rank or below
 - 4. No piece is located at the red circle relative to $Knight_{W,1}$

Individual Chess Moves

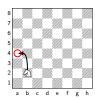


Figure: This move is formalized below as an inference rule.

```
k abbreviates Knight_{W,1}.
```

$$\frac{\sigma(k) \neq \textit{Captured} \quad \textit{file}(\sigma(k)) \geq b \quad \textit{rank}(\sigma(k)) \leq 6 \quad \neg \textit{occupied}(\sigma(k) + 2_N + 1_W)}{\sigma[k \mapsto \sigma(k) + 2_N + 1_W]} \quad \textit{Knight}_{W,1} - \textit{NWN} - \textit{Move}_{W,1} = 0$$

- ▶ If the **premises** above the bar are true:
 - 1. Knight_{W.1} has not been captured
 - 2. $Knight_{W,1}$ is in the b^{th} file or above
 - 3. $Knight_{W,1}$ is in the 6^{th} rank or below
 - No piece is located at the red circle relative to Knight_{W,1}
- ▶ Then the **conclusion** below the bar is true:
 - Moving to the location described in 4 is valid.

Operational Semantics

All Chess Moves

```
\rightarrow_{Pawn_{W}} _{1}-N
                                                                                                               \rightarrowPawn<sub>W,2</sub>-NN
                                      \rightarrowPawn<sub>W 1</sub>-NN
                                                                              \rightarrowPawn<sub>W 2</sub>-N
\rightarrow Knight<sub>W,1</sub>-NWN
                                      \rightarrow Knight<sub>W.1</sub>-WNW
                                                                              \rightarrow Queenw - N1
                                                                                                               \rightarrow Queen<sub>W</sub>-N2
\rightarrow_{Queen_W-N3}
                                                                                                               \rightarrow_{Queen_W-S1}
                                      \rightarrow Queenw - W1
                                                                              \rightarrow Queenw -E1
\rightarrow_{Queen_W-NW1}
                                      \rightarrow Queen<sub>W</sub> - NE1
                                                                              \rightarrow Queenw – SE1
                                                                                                               \rightarrowQueenw-SW1
                                                                              \rightarrow_{King_W-E}
\rightarrow_{King_W-N}
                                      \rightarrow_{King_W-W}
```

Figure: Partial listing of all legal chess moves

- ▶ Write $b_1 \rightarrow_{(Move)} b_2$ if applying (*Move*) to board b_1 yields board b_2 .
- ► The collection of all legal chess moves as inference rules is called the **operational semantics** of chess.

The Transition Relation, \rightarrow_{Chess}

Legal Chess Moves

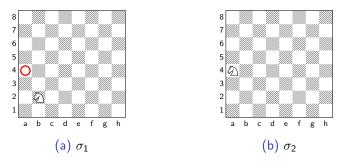
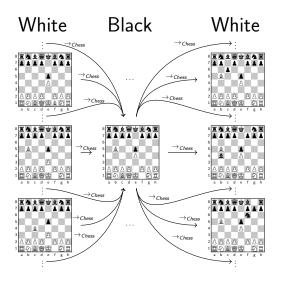


Figure: A legal move: $\sigma_1 \rightarrow_{Chess} \sigma_2$

- If one configuration (σ_2) can be obtained from another (σ_1) by applying one valid state transition, we write:
 - 1. $\sigma_1 \rightarrow_{Chess} \sigma_2$, OR
 - 2. $\tau(\sigma_1, \sigma_2)$, or $\sigma_1 \tau \sigma_2$, or $(\sigma_1, \sigma_2) \in \tau$.

State Transition Diagram

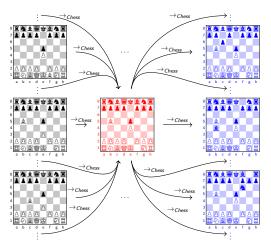
Graph of Legal Chess Moves



Depicts every valid state transition.

Successor States $post_{\rightarrow_{Chess}}$, Visualized

All Legal Chess Moves from a Given Position



The successor relationship $post_{\rightarrow Chess}$ yields the set of all states that result from a given state under one application of the transition relation (i.e. \rightarrow_{Chess}).

Successor States $post_{\rightarrow Chess}$ All Legal Chess Moves from a Given Position

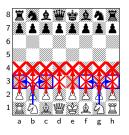


Figure: All possible opening moves

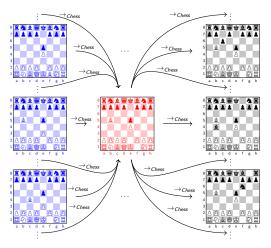
$post_{\rightarrow Chess}(White, \sigma_{init})$, all legal moves from $\langle White, \sigma_{init} \rangle$:

```
\sigma_{init}[Pawn_{W,1} \mapsto a3]
                                                  \sigma_{init}[Pawn_{W,1} \mapsto a4]
                                                                                                    \sigma_{init}[Pawn_{W,2} \mapsto b3]
                                                                                                                                                      \sigma_{init}[Pawn_{W,2} \mapsto b4]
\sigma_{init}[Pawn_{W,3} \mapsto c3]
\sigma_{init}[Pawn_{W,5} \mapsto e3]
\sigma_{init}[Pawn_{W,7} \mapsto g3]
                                                  \sigma_{init}[Pawn_{W,3} \mapsto c4]
                                                                                                    \sigma_{init}[Pawn_{W,4} \mapsto d3]
                                                                                                                                                      \sigma_{init}[Pawn_{W,4} \mapsto d4]
                                                  \sigma_{init}[Pawn_{W,5} \mapsto e4]
                                                                                                    \sigma_{init}[Pawn_{W,6} \mapsto f3]
                                                                                                                                                      \sigma_{init}[Pawn_{W,6} \mapsto f4]
                                                  \sigma_{init}[Pawn_{W,7} \mapsto g4]
                                                                                                    \sigma_{init}[Pawn_{W,8} \mapsto h3]
                                                                                                                                                      \sigma_{init}[Pawn_{W,8} \mapsto h4]
 \sigma_{init}[Knight_{W,1} \mapsto a3]
                                                  \sigma_{init}[Knight_{W,1} \mapsto c3]
                                                                                                    \sigma_{init}[Knight_{W,2} \mapsto f3]
                                                                                                                                                      \sigma_{init}[Knight_{W,2} \mapsto h3]
```

- ▶ In any non-final state, at least one transition is possible; in chess, often more than one.
- ▶ Let $post_{\rightarrow Chess}(pc, \sigma) : PC \times State \rightarrow \wp(PC \times State)$ denote the set of all possible legal states after making one transition from $\langle pc, \sigma \rangle$.
- ► Formally, $post_{\rightarrow_{Chess}}(pc, \sigma) = \{\langle pc', \sigma' \rangle \mid \langle pc, \sigma \rangle \rightarrow_{Chess} \langle pc', \sigma' \rangle \}$
- ► This is the **set of successors** of $\langle pc, \sigma \rangle$ under \rightarrow_{Chess} .

Predecessor States $pre_{\rightarrow Chess}$, Visualized

All Legal Chess Moves Leading to a Given Position



The predecessor relationship $pre_{\rightarrow Chess}$ yields the set of all states that lead to a given state in one application of the transition relation (i.e. \rightarrow_{Chess}).

Predecessor States $pre_{\rightarrow_{Chess}}$

All Legal Chess Moves Leading to a Given Position

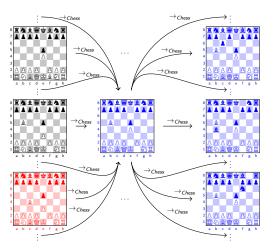
The boards below can transition to the one above.

All Legal Chess Moves Leading to a Given Position

- ▶ Let $pre_{\rightarrow_{Chess}}(pc, \sigma) : PC \times State \rightarrow \wp(PC \times State)$ denote the set of all possible legal states that lead to $\langle pc, \sigma \rangle$ after making one transition.
- ► Formally, $pre_{\rightarrow_{Chess}}(pc, \sigma) = \{\langle pc', \sigma' \rangle \mid \langle pc', \sigma' \rangle \rightarrow_{Chess} \langle pc, \sigma \rangle\}$
- ▶ This is the **set of predecessors** of $\langle pc, \sigma \rangle$ under \rightarrow_{Chess} .

The Transitive Closure of \rightarrow_{Chess} , \rightarrow_{Chess}^*

All Positions Reachable from a Given Position



The **transitive closure** of \rightarrow_{Chess} , denoted \rightarrow_{Chess}^* , is the set of all configurations reachable from some configuration via one or more applications of \rightarrow_{Chess} .

Paths

Sequences of Valid Moves

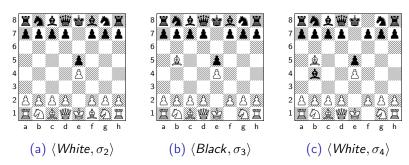


Figure: A path of length 3.

- ▶ A path π of length i is a sequence of pairs $\langle pc_1, \sigma_1 \rangle, \langle pc_2, \sigma_2 \rangle, \langle pc_3, \sigma_3 \rangle, \dots, \langle pc_i, \sigma_i \rangle$ such that:
 - 1. $\sigma_i \rightarrow_{Chess} \sigma_{i+1}$.
 - 2. The pc_i s alternate colors.
- ▶ Write $|\pi|$ for the length, and π_j for $\langle pc_j, \sigma_j \rangle$.

Traces

Games In Progress

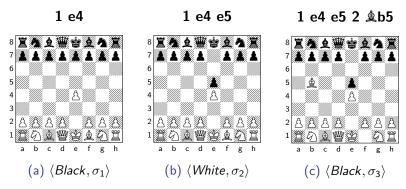


Figure: A trace of length 3.

- ► A **trace** is a path that starts from an initial configuration.
 - ▶ In particular, a trace is a path that is subject to the additional requirement $\sigma_{init} \rightarrow_{Chess} \sigma_1$.
- Note that the chess short-hand (pictured above the boards) is simply an alternative way to describe a trace.

Extending a Path

Making a Move

(a) After a path π

(b) After $\pi \frown \langle White, \sigma_4 \rangle$

► The act of **extending** a path by transitioning from its last state is written $\pi \frown \langle pc, \sigma \rangle$.

Prefixes and Suffixes

"Halves" of In-Progress Chess Games

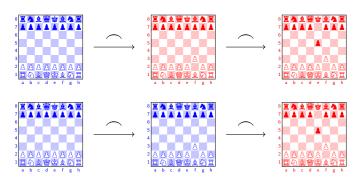


Figure: Two prefixes and suffixes of the same trace

- ▶ Given a path (or trace) π :
 - Any subsequence $\pi_1 \dots \pi_i$ is called a **prefix**.
 - Any subsequence $\pi_i \dots \pi_n$ (where $n = |\pi|$) is called a **suffix**.

Termination of Traces

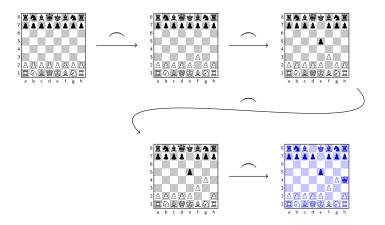
End of a Chess Game

(b) Draw (Stalemate)

- Circumstances wherefrom no legal state transition (move) follows are called **final states**. In chess:
 - 1. Checkmate: game ends; one player wins.
 - 2. Draw: game ends; neither player wins. E.g.:
 - 2.1 Stalemate: player has no legal move.
 - 2.2 Threefold repetition: board in same configuration three times.
 - 2.3 Fifty-move rule: no capture or pawn move in the last 50 moves

Maximal Traces

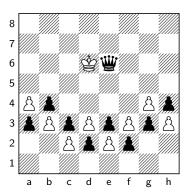
Complete Games



A trace that ends in a final state is called maximal.

Trace Properties

Questions about Chess Games



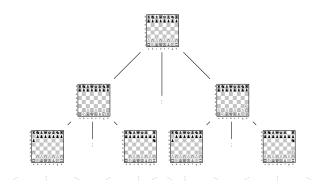
- We can ask a number of questions, about all possible games of chess (universal properties), or about specific games (existential properties).
- For example, is it possible to reach the above board?
 - ► This is a **reachability** question.

?

- What is the shortest (or longest) checkmate?
- Given a board:
 - What sequence of moves might have lead there?
 - ► What sequence of moves might have lead there, at a given move number?
 - Is it possible that a given player wins?
 - Must a given player always win?
 - Which positions, reachable from that configuration, lead to a given player always winning?

Trace Properties

Answers via the Execution Tree



- ► In order to answer these questions, we need to somehow create an object that contains every chess game.
- Hence, we will now construct the execution tree for chess.

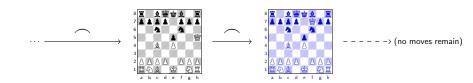
The Trace Extension Operator, $move(\pi)$

- The **trace extension operator**, $move(\pi)$, takes as input a trace π , and produces as output all traces where one legal state transition was made from the end of π .
- ► Formally: $move(\pi) = \{\pi \frown \sigma \mid \sigma \in post_{\rightarrow Chess}(\pi_i), |\pi| = i\}$

The Trace Extension Operator, $move(\pi)$

▶ The first boards represent the trace π .

$move(\pi)$ and Termination



- When a trace π_{final} has reached a final state, i.e., a checkmate or draw position, no legal moves follow.
- ► Therefore, $move(\pi_{final})$ produces no traces, i.e. it returns the empty set \emptyset .

$move_{\wp}(\{\pi_i\})$, the Pointwise Extension of $move(\pi)$

- The pointwise-extended trace extension operator, $move_{\wp}(\pi)$, takes as input one or more traces $\{\pi_i\}$, and outputs the result of applying $move(\pi_j)$ for each j.
 - ▶ I.e., it is simply $move(\pi)$ applied to one or more traces.
- Formally: $move_{\wp}(X) = \bigcup_{\pi \in X} move(\pi)$
- For simplicity, in the rest of the presentation, we will simply write move in place of move_ω.
 - ► Slovenly, but less notation to remember.

 $move_{\wp}(\{\pi_1, \pi_2\})$

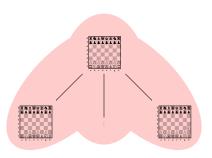
T_i, All Traces of Length i

▶ Write T_i to denote the set of traces of length i.

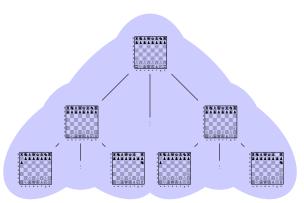
$$T_1 \coloneqq \left\{ \left\langle \begin{array}{c} \text{White,} \\ \\ \\ \text{White,} \\ \\ \text{White,} \\ \\ \text{White,} \\ \\ \text{White,} \\ \\ \text{White,$$

- I.e., the initial board before any moves have been made.
- Now $T_k = move(T_{k-1})$ for $k \ge 2$.
 - ▶ I.e., all traces of length k.
 - $ightharpoonup T_2 = move(T_1)$
 - $T_3 = move(T_2) = move(move(T_1)) = move^2(T_1)$
 - **.**..

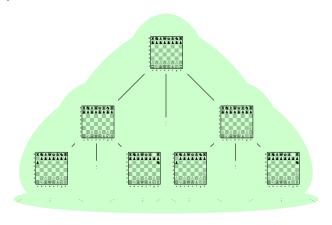
 $ightharpoonup T_1$, all traces of length 1.



- $ightharpoonup T_1$, all traces of length 1.
- ▶ $T_2 = move(T_1)$, all traces of length 2.

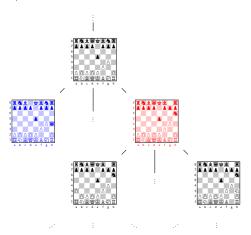


- $ightharpoonup T_1$, all traces of length 1.
- $ightharpoonup T_2 = move(T_1)$, all traces of length 2.
- ▶ $T_3 = move(T_2)$, all traces of length 3.



- $ightharpoonup T_1$, all traces of length 1.
- $ightharpoonup T_2 = move(T_1)$, all traces of length 2.
- ▶ $T_3 = move(T_2)$, all traces of length 3.
- $ightharpoonup T_4 = move(T_3)$, all traces of length 4.

$move(T_k)$, T_{k+1} , and Termination



- When a trace reaches a final state, the branch stops growing.
- ▶ Black has checkmated down the left branch. Thus, no traces extend on the left.
- ► The right branch does not correspond to a final state, and so continues extending.

$T_{\leq k}$, All Traces up to k in Length

▶ We define $T_{\leq k}$ to be the set of traces of length k or less.

$$\blacktriangleright \text{ Formally, } T_{\leq k} = \bigcup_{i=1}^k T_i.$$

Value	Result	Description
$T_{\leq 1}$	T_1	The initial board
$T_{\leq 2}^-$	$T_1 \cup T_2$	The initial board plus all traces of length 2
$T_{\leq 1}$ $T_{\leq 2}$ $T_{\leq 3}$	$T_1 \cup T_2 \cup T_3$	The initial board plus all traces of lengths 2 and 3
$T_{\leq j}$	$T_1 \cup T_2 \cup \cdots \cup T_{j-1} \cup T_j$	All traces of length up to j

$traces^{j}(\emptyset)$, a Generator for $T_{\leq j}$

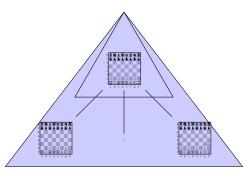
- ▶ Define a function, $traces(X) = move(X) \cup T_1$.
- ▶ Write $traces^k(X)$ for $traces(traces^{k-1}(X))$.
- Now examine $traces^k(\emptyset)$ for various k.

Table: The **iterates** of $traces^{j}(\emptyset)$

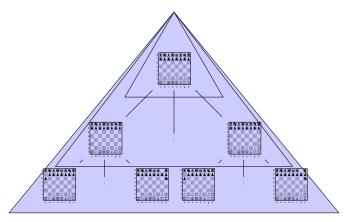
Value	Result
$traces^{1}(\emptyset)$	$T_{\leq 1}$
$traces^2(\emptyset)$	$T_{\leq 2}^-$
$traces^3(\emptyset)$	$T_{\leq 3}^-$
$traces^{j}(\emptyset)$	$T_{\leq j}$

▶ Hence $traces^{j}(\emptyset)$ generates $T_{\leq j}$.

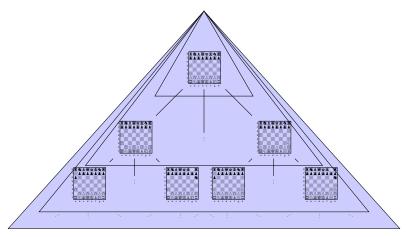
▶ $T_{\leq 1} = traces^1(\emptyset)$, all traces up to length 1.



- ▶ $T_{\leq 1} = traces^1(\emptyset)$, all traces up to length 1.
- ▶ $T_{\leq 2} = traces^2(\emptyset)$, all traces up to length 2.



- ▶ $T_{\leq 1} = traces^1(\emptyset)$, all traces up to length 1.
- ▶ $T_{\leq 2} = traces^2(\emptyset)$, all traces up to length 2.
- ► $T_{\leq 3} = traces^3(\emptyset)$, all traces up to length 3.



- ▶ $T_{\leq 1} = traces^1(\emptyset)$, all traces up to length 1.
- ▶ $T_{\leq 2} = traces^2(\emptyset)$, all traces up to length 2.
- ▶ $T_{\leq 3} = traces^3(\emptyset)$, all traces up to length 3.
- ▶ $T_{<4} = traces^4(\emptyset)$, all traces up to length 4.

$T_{\leq k}$, traces^k(\emptyset), and Termination

The Execution Tree

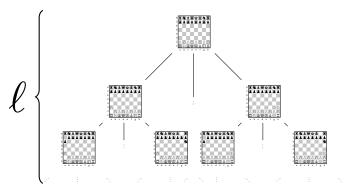


Figure: The **execution tree**, of height ℓ

- ▶ Due to the laws of chess, all games terminate.
- lacktriangle In particular, there is a longest chess game, say of length $\ell.$
- ▶ Therefore, $T_{\leq \ell} = traces^{\ell}(\emptyset)$ contains all possible chess games.
- ► The tree in which every branch has reached a terminal state is called the **execution tree**.

$T_{\leq k}$, $traces^k(\emptyset)$, and Termination Fixed Points

$$traces($$
 ℓ

- Because terminated traces cannot be extended, we have that:
 - $T_{\leq \ell+1} = traces^{\ell+1}(\emptyset) = 0$
 - ightharpoonup traces(traces $^{\ell}(\emptyset)$) =
 - ightharpoonup traces($T_{\leq \ell}$) =
 - $ightharpoonup T_{\leq \ell}$
- ▶ In conclusion, $traces(T_{<\ell}) = T_{<\ell}$.
- For a function f, a value x such that f(x) = x is called a fixed point of f.
- ▶ Hence, $T_{<\ell}$ is a fixed point of *traces*.

The Least Fixedpoint Trace Semantics

Definition and Notation

$$S[Chess] = Ifp^{\subseteq} traces = T_{\leq \ell}$$

- ▶ $T_{\leq \ell}$ is the *smallest* set that is a fixed point of *traces*; hence it is the **least fixed point**.
 - ▶ *Smallest* as in, if S = traces(S), then $T_{\leq \ell} \subseteq S$.
- T_{≤ℓ} is called the least fixed point trace semantics.
- ▶ We write $S[Chess] = Ifp^{\subseteq} traces = T_{<\ell}$.
 - S[Chess]: the semantics of chess, also called the set of traces.
 - ▶ **Ifp** \subseteq *traces*: the least fixed point of the *traces* function.

The Least Fixedpoint Trace Semantics

Computation

We can compute the least fixed point of *traces* as follows:

- 1. Traces := \emptyset
- 2. $Traces_{new} := traces(Traces)$
- 3. If $Traces_{new} \neq Traces$ then
 - ► Traces := Traces_{new}
 - ► Go to 2
- 4. Return Traces

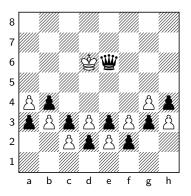
Note that this computation does not depend upon knowing what ℓ is; it terminates after ℓ steps automatically.

The Maximal Trace Semantics

Set of all Terminated Chess Games

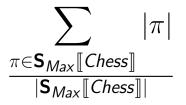
$S_{Max}[Chess]$

- ▶ The maximal trace semantics $S_{Max}[Chess]$ is a subset of S[Chess] that contains only the maximal (terminated) traces.
 - ▶ **S**[[Chess]] also contains all prefixes of maximal traces.
- ▶ Formally: $S_{Max}[Chess] = \{T \mid T \in S[Chess], T \text{ is maximal }\}$



Now that we have constructed S[Chess] and $S_{Max}[Chess]$, we can use them to answer the questions about traces that we have previously posed.

Average Game Length



- ► To find the average game length, we simply divide the sum of the lengths of the individual games by the number of games.
- Similarly, we can find the length of the average checkmate or draw by restricting our attention to those games only.

Lengths of Checkmates

Figure: The shortest and longest of a set of checkmating traces

Shortest and longest checkmate:

- ▶ Checkmate = $\{T \mid T \in \mathbf{S}_{Max}[\![Chess]\!], T \text{ checkmates }\}.$
 - ▶ I.e., the set of all games that checkmate.
- $Check_{min} = \min_{T \in Checkmate} |T|$
- $\qquad \qquad \mathsf{Check}_{\mathsf{max}} = \max_{T \in \mathsf{Checkmate}} |T|$

Reachability at a Move

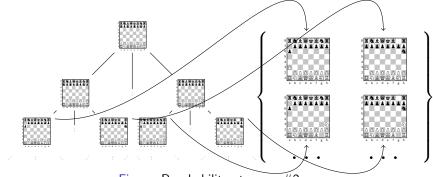


Figure: Reachability at move #2.

A board *b* is reachable at move #n if $b \in \{\sigma_n \mid \sigma_1 \dots \sigma_n \in \mathbf{S}[\![Chess]\!] \}$.

Reachability Generally

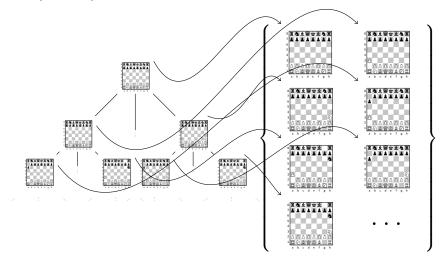


Figure: Reachability at any move.

A board *b* is reachable if $b \in \{\sigma_i \mid \sigma_1 \dots \sigma_i \in \mathbf{S} \| Chess \| \}$.

All Suffixes

- Suffixes $(\pi) = \{\pi_i \dots \pi_n \mid 1 \le i \le |\pi|, |\pi| = n\}$
 - All suffixes from one trace.
- Suffixes $_{\wp}(X) = \bigcup_{\pi \in X} Suffixes(\pi)$
 - All suffixes from a set of traces; called the pointwise extension of the Suffixes function.

All Prefixes

- ► *Prefixes*(π) = { $\pi_1 ... \pi_i | 1 \le i \le |\pi|$ }
 - All prefixes from one trace.
- $Prefixes_{\wp}(X) = \bigcup_{\pi \in X} Prefixes(\pi)$
 - All prefixes from a set of traces; called the pointwise extension of the *Prefixes* function.

All Suffixes of Complete Games

$$Suffixes_{\wp} \ (\mathbf{S}_{Max}[\![Chess]\!]) =$$

► All suffixes of complete games.

All Maximal Suffixes Beginning with a Board

$$SuffixBeginsWith () =$$

All maximal games beginning with some board.

White Can Win, an Existential Property

$$\exists \pi \in SuffixBeginsWith ()$$

Wins (
$$\pi$$
 , White) ?

► The formula is true if there exists a complete game beginning from the indicated board where *White* wins.

White Always Wins, a Universal Property

$$AlwaysWinFrom () =$$

$$\forall \pi \in SuffixBeginsWith ()$$

Wins (
$$\pi$$
 , White) ?

► The formula is true if for all complete games beginning from the indicated board, *White* wins.

Can Reach a Position Where One Player Always Wins

CanAlwaysWin (
$$\pi$$
) = $\exists \varpi \in \textit{Reachable}$ (π) \cdot

AlwaysWinFrom (
$$\varpi$$
 , White) ?

The formula is true if, given a game-in-progress π , there exists some reachable board ϖ such that White always wins.