Abstract Interpretation of Chess
(©Rolf Rolles

Mobius Strip Reverse Engineering

February 26, 2018

T<; is Uselessly

.

Large

‘ N - ‘ N

~ 10120

» The mathematician Claude Shannon estimated that there are
roughly 10120 different games of chess. l.e., | T</| ~ 10120,

» Recall that the universe has roughly 107° atoms.

» This is too big to fit into the memory of a physical computer.

Abstract Interpretation

v

abcdefgh

The objects that we have constructed hereinbefore constitute
the concrete interpretation of chess.

Unfortunately, they are too large to be practicable.

The framework of abstract interpretation allows us to
approximate the concrete interpretation into a more
manageable size, and still answer questions correctly.
However, in doing so, we lose information, and hence the

ability to answer questions with absolute certainty. Instead,
we will sometimes be forced to answer “l don't know”.

Order-Theoretic Approximation

» T<; is too big for us to compute.
P In program analysis, when some object is either:

1. Finite, but extremely large; or
2. Infinite; or
3. Not computable,

» We shall often employ order-theoretic approximation to

make the sizes of the objects tractable, and the computation
possible.

Order-Theoretic Approximation

» To illustrate, we will discuss order-theoretic approximations
in the contexts of sets.

> A set O overapproximates another set E if E C O.

» In particular, if O contains every element of E, as well as
possibly more elements, then O overapproximates E.

» In general, we will write E = O when O overapproximates E.
» |.e., we will also use this notation when E and O are not sets.

> C is called a partial ordering, and is pronounced “less than".

Order-Theoretic Approximation
k-Set Example

{1,3,37} C {1,3,5,37}

> Let E = {1,3,37}.

> Now E C {1,3,5,37}.
> £ {1,37).

> £ {1,4,37).

Order-Theoretic Approximation
Signs Example

{1,3,37} C Pos

> Let E = {1,3,37}.

» Notice that every element of E is a positive integer.
» Let Pos =N =1{1,2,3,...}.

» Hence, E C Pos.

Order-Theoretic Approximation
Parity Example

{1,3,37} C Odd

> Let E = {1,3,37}.

» Notice that every element of E is odd.
» Let Odd ={...,—-3,-1,1,3,... }.

» Hence, E C Odd.

Order-Theoretic Approximation

Interval Example

{1,3,37) C [1,37]

> Let E = {1,3,37}.

» Notice that every element of E is between 1 and 37.
> Let [1,37] :={1,2,...,36,37}.

» Hence, E C [1,37].

Order-Theoretic Approximation

Sets of Squares

H N WA OO N

H N WA O N

a b c d e f g h

» Given sets of squares O and E, we have that EC O if O
contains every square in E (and perhaps more).

Order-Theoretic Approximation

Sets of Traces

D
D

D

_%E L3
)

ERERE

L

—~ —~
— —
—~ |
;]

DDQ

» For sets O and E, we have that EC O if E C O.

» |l.e., O contains every element of E, and perhaps more.

The Collecting Semantics of Chess, CS[Chess]|

Figure: ¢, G, G5, and illustrated

» Since S[Chess] is too large, we compute an order-theoretic
approximation called the collecting semantics (also known
as the trace of sets), denoted CS[Chess].

» We define sets C; for 1 < j </, where C; contains all
configurations possible before move number j has been taken.

» Formally: C; = {o; | o € S[Chess],|a| > i}.

The Collecting Semantics of Chess

» (, the boards possible before move 1.

The Collecting Semantics of Chess

» (, the boards possible before move 1.

» (,, the boards possible before move 2.

The Collecting Semantics of Chess

» (, the boards possible before move 1.
» (,, the boards possible before move 2.

» (3, the boards possible before move 3.

The Collecting Semantics of Chess

(1, the boards possible before move 1.
(,, the boards possible before move 2.

(3, the boards possible before move 3.

vvyyypy

(4, the boards possible before move 4.

Approximating S[Chess] by CS[Chess]

> We relate sets of traces, and traces of sets, with two functions.

Ycs—s

as—Cs

» The abstraction function from S to CS, as_,cs, takes a set
of traces and produces a trace of sets.

» The concretization function from CS to S, vcs_,s, takes a
trace of sets and produces a set of traces.

The Abstraction Function as_.cs

as—cs

> Let as_cs(X) = (G, Co, ..., Cp), where n = max(|7]),.cx
and C,':{7T,'|7TEX,|7T| > i}.

The Concretization Function ycs_.s

Ycs—s

as—Cs

> Let ’YCS%S(A) = {7T1 AT N N T |j< {7 € A,'}.
» |.e., the set of all traces of length ¢ or less, consisting of zero
moves having been taken, followed by one move, followed by
two moves, etc.

Concretization
Collecting Semantics Before Adding Edges

(EAZHEE X
Jhakakaay
b 2l
AARAR A AT
- 4o

The concretization adds edges from every state in one set to every
state in the next one, including edges that were not present in the
original set of traces.

Concretization
The Original Edges

The blue edges are the ones from T<,. In particular, every edge
from T<y is present.

Concretization
Edges Not Present in the Original

The red edges were not present in T<y. This is the price of
approximation: considering spurious traces that do not exist in the
semantics of ordinary chess.

Concretization

Figure: A spurious trace of length 3, induced by approximation

The Collecting Semantics Abstraction, Visualized

YCS—S

as_Cs

Galois Connections

1 i

P
O 0 k_\
FE

o ,
S

]
/ ‘ AN
‘Bo' ©

» A Galois connection is a tuple (C, «, A,~) where:

= |

oooao

» «: C — A, called the left adjoint, must be monotonic
» ~:A— C, called the right adjoint, must be monotonic
> a(c) C aif and only if ¢ C 7(a)
» In this situation, A is called an abstraction (or an
approximation) of C.

» (S, as_cs,CS,vcs—s) is a Galois connection.

Approximate Answers to Trace Properties

A Precise Answer

Is the above trace valid?

» S[Chess]: NO
» CS[Chess]: NO
We can answer this query precisely: if a trace is not contained in

CS[[Chess], then it cannot be contained in S[Chess], since the
former contains the latter.

Approximate Answers to Trace Properties

An Imprecise Answer

2.
abcdefgh

Is the above trace valid?

» S[Chess]: NO
» CS[Chess]: YES
Knowing that a trace is contained in CS[Chess] is not proof that

it exists in S[Chess]), since the former is bigger than the latter.
Therefore, we have to answer “l don’t know" .

Further Approximation

P It might be the case that the collecting semantics is still too
large or not computable.

» Thus, we employ further approximation, this time of the
collecting semantics.

» In particular, we establish a Galois connection between the C;
sets of states and some abstraction.

> We begin by exploring non-relational abstractions.

The Cartesian Abstraction Acartesian

» In the Cartesian abstraction Acatesian, €ach piece is
associated with the set of squares in which it may reside.

» All non-relational abstractions, i.e. those that do not
consider relationships between variables, are further
abstractions from Acartesian-

» Recall that:

» A state was defined as a function State : Vars — Squares.
> A set of boards is an element S € p(Vars — Sqaures).

» A Cartesian state is a function Cart : Vars — p(Squares).

» |.e., a piece maps to the set of all squares in which it was
located in the boards in S.

JC(PaWnWJ) JC(PaWnW12) JC(PaWnWﬁ)

JC(PaWnWA)

oC(PawnW“r,) oC(PawnWﬁ) oC(PawnWJ)

abecdefogh

a'C(KnightW,l)

3 77
abcdefogh abcdefogh abcdefgh

o-C(BishopW,l) o’C(Bishopw,z) € (Queenyy)
]

oC(Pawnwyg)

abcdefgh

a'C(KnightWJ)

2 bcdecfgh

o (Kingw)

The Cartesian Abstraction

Abstraction acs s Ac,an

Write A for Acartesian. Now:

OéCS—>A(

Table: Cartesian state, 0§

Piece ACartesian Piece Acartesian Piece ACartesian Piece ACartesian
Pawnyy 1 {al} Pawnyy 2 {b2, b3} Pawnyy 3 {c2} Pawnyy 4 {d2}
Pawnyy 5 {e2} Pawnyy ¢ {2} Pawnyy 7 {g2, g4} Pawnyy g {h2}
Rookyy 1 {al} Rookyy » {h1} Knightyy 1 {b1} Knightyy > {g1}
Bishopyy 1 {c1} Bishopyy > {f1} Queenyy {d1} Kingy {el}
Pawnp 1 {a7} Pawnp > {b7} Pawng 3 {c7} Pawnp 4 {d7}
PawnBY5 {e7} Pawan, {f7} PaWnB;7 {g7} PawnB’g {h7}
Rookg 1 {a8} Rookg > {h8} Knightp 1 {b8} Knightp > {g8}
Bishopg 1 {c8} Bishopg 2 {r8} Queeng {d8} Kingg {e8}

Formally, aics—Ac,en(S) = Av.{o(v) | o € S}.

The Cartesian Abstraction

Concretization vac,,un—CS

Piece AcCartesian Piece ACartesian Piece Acartesian Piece AcCartesian
Pawnyy 1 {al} Pawnyy > {b2, b3} Pawnyy 3 {c2} Pawnyy 4
Pawnyy 5 {e2} Pawnyy 6 {f2} Pawnyy 7 {g2, g4} Pawnyy g {h2}
Rookyy 1 {al} Rookyy 2 {h1} Knightyy 1 {b1} Knightyy 2 {g1}
Bishopyy 1 {c1} Bishopyy » {f1} Queenyy {d1} Kingy {el}
Pawng 1 {a7} Pawng > {b7} Pawng 3 {c7} Pawng 4 {d7}
Pawnpg 5 {e7} Pawng ¢ {f7} Pawng 7 {g7} Pawng g {h7}
Rookg 1 {a8} Rookg > {h8} Knightg 1 {b8} KnightB,Z {g8}
Bishopg 1 {c8} Bishopg > {r8} Queeng {d8} Kingg {e8}

’VA%CS(O'g) =

The Cartesian Abstraction, Visualized

YA—CS

acs—A

Representing the Cartesian Abstraction
Bit Sets

» Given any finite set S, we can represent an element of ©(S)
with |S] bits.

» Bit 1: whether element #1 is present
» Bit 2: whether element #2 is present
>

> Bit |S|: whether element #|S] is present

> Example:

> S:={ab,c}
> |S| =3 (3 bits)
> T ={b,c}
> Bits(T)=_0 1 1
—~ ==

a b c

Representing the Cartesian Abstraction

Representing Square Sets

0

~—

Captured

, plus the Captured location.

» |Squares| = 65: 64 squares

» |Vars| = 32.

> Hence, 32 %« 65 = 2080 bits per Cartesian board.

Abstract Interpretation

» Abstractions of the collecting semantics involve two pieces:

1. Approximations of the state space;
2. Concomitant approximations of the semantic transformers.

» These two items are intertwined: the approximation of a
semantic transformer is tied to the abstraction of the state
space.

All Moves for Pawny 3, — pawn, -

(b) Initial move forward two ranks

(a) Move forward one rank

(d) En passant capture

(c) Capture diagonally by one square

Commonality: move at most two ranks and/or one file.

All Moves for Pawny 3, — pawn, -

5y
n i
m %/
_

%/
/;%7///7
.
///

= N W a0 N

» For each transformer and each board position, there is a set of
squares describing where a given piece residing at that
location could potentially move.

Overapproximating Transformers

(a) Postimage of (b) A relatively fine (c) A coarser
— Pawnyy 3 approximation approximation

» An overapproximation for a transformer such as —paun,, 5
overapproximates the set of squares to where a given piece
could potentially move.

Abstracting the State Space

Abstraction by Rank

Abstract State

Set of Concrete States

O~NOOOBHEWN =

{ al,bl,cl,dl,el, f1,g1,h1}
{ a2,b2,c2,d2, €2, f2,g2,h2 }
{ a3,b3,c3,d3,e3,f3,g3,h3 }
{ a4, b4, c4,d4, el f4, g4, h4 }
{ a5, b5, c5, d5, €5, £5, g5, h5 }
{ a6, b6, c6, d6, €6, {6, g6, h6 }
{ a7,b7,c7,d7,e7,f7,g7,h7 }
{ a8, b8, c8, d8, €8, 8, g8, h8 }

Abstracting the State Space
Abstraction by Rank Set, Ags

» The board above illustrates the set of positions described by
the rank set Pawny 4 — {2,4} € Ags.

0 1 0 1 0 0 0 O
R R e Ny N Nl S
1 2 3 4 5 6 7 8

Figure: 8-bit representation

Abstracting the Semantic Transformers

—>,§fw,,wv3 for the Rank Set Abstraction

a b c d e f g h

» Consider the rank set {2,4}.
» If a pawn is on rank 2, it can either:
1. Stay in rank 2,
2. Move to rank 3,
3. Move to rank 4.
Similarly, from rank 4 it can move to { 4, 5, 6 }.
Therefore, {2,3} — {2,3,4,5,6}.
Formally, —>§§WHW’3 (S)={x,x+1,x+2| xS}

vYyy

Abstracting the State Space

Abstraction by Rank Interval, Ags

a b c d e f g h

» The board above illustrates the set of positions described by
the rank interval Pawny 4 — [2,4] € Agy.

010 100
@
e

low high

Figure: 6-bit representation

Abstracting the Semantic Transformers

—>,§LW,,W'3 for the Rank Interval Abstraction

» Consider the rank interval [2, 4].
> [2,4] — [2,6].
» Formally, —>§‘/9WHW3 ([1,h])) = 1[I, h+ 2].

Relative Precision of Abstractions

a b c d e f g h

(a) A piece set (b) Best representation (c) Best representation
as a rank set, {2,4} as a rank interval, [2, 4]

» Any rank interval can be represented by a rank set.
> E.g., [2,4] describes the same squares as {2, 3, 4}.
P> The best representation of any set of squares as a rank set is
always a subset of its best representation as a rank interval.

> Hence, Agrs is more precise than Agy.

Abstracting the State Space

Abstraction by File

Abstract State

Set of Concrete States

o0 -0 Q0 T

{ al, a2, a3, a4, ab, a6, a7, a8 }
{ b1, b2, b3, b4, b5, b6, b7, b8 }
{ cl,c2,c3,c4,c5,c6,c7,c8 }
{ d1,d2, d3, d4, d5, d6, d7, d8 }
{ el,e2,e3,e4,eb5,e6,e7,e8 }
{ 1,2, 3,4, f5, 6, f7,8 }
{&1,82,83,84,85,86,87,88 }
{ h1, h2, h3, h4, h5, h6, h7, h8 }

Abstracting the State Space

Abstraction by File Set, Ars

a b c d e f g h

» The board above illustrates the set of positions described by
the file set Pawny 4 — {c,e} € Ars.

0 0 1 0 1 0 0 0
o N e N
a b c d e f g h

Figure: 8-bit representation

Abstracting the State Space

Abstraction by File Interval, Ag

a b c d e f g h

» The board above illustrates the set of positions described by
the file interval Pawny 4 — [c,e] € AFy.

010 10
© (@

low high

Figure: 6-bit representation

Abstracting the State Space

Abstraction by Quadrant

Abstract State

= N W R OO N

Set of Concrete States

{ a8, a7, a6, a5, b8, b7, b6, b5, c8, c7, cb, c5, d8, d7, d6, d
{ e8,e7,e6,eb5,f8,f7,f6,5,g8,g7,g6, g5, h8, h7, h6, h
{ a4, a3, a2, al, b4, b3, b2, b1, c4, c3,c2,cl,d4,d3,d2,d
{ ed,e3,e2,el,f4,f3,f2,f1,g4,g3,82,g1,h4, h3,h2, h

Abstracting the State Space

Abstraction by Quadrant Set, Ags

H N WA OO N ©

» The board above illustrates the set of positions described by
the quadrant set Queeny, — {ql,q4} € Ags.

1 0 0 1
A e S
gl g2 g3 qg4

Figure: 4-bit representation

Abstracting the State Space

Abstraction by Hexadectant

Abstract State

H N WA OO N

Set of Concrete States

Abstract State

Set of Concrete States

{ a8, a7, b8, b7 }
{ e8,e7,f8,f7 }
{ a6, a5, b6, b5 }
{ e6,e5,76,f5 }
{ a4, a3, b4, b
{ e4,e3,f4,f
{ a2,al,b2, b

f'

3
3
1
{ e2,el,f2,f1

}
}
}
}

{ ¢8,c7,d8,d7 }
{ g8,g7,h8,h7 }
{ ¢6,¢5,d6,d5 }
{ g6,g5, h6, h5 }
{ c4,c3,d4,d3 }
{ g4,83,h4,h3 }
{ c2,cl,d2,d1 }
{&g2,81,h2,h1 }

Abstracting the State Space

Abstraction by Hexadectant Set, Ans

a b c d e f g h

» The board above illustrates the set of positions described by
the hexadectant set Queeny — {h5,hA} € Ays.

~—~ ~—~
h0 hl h2 h3 h4 h5 h6 h7 h8 h9 hA hB hC hD hE hF

Figure: 16-bit representation

Abstracting the State Space

Abstraction by Square Color

H N WA OO N

Abstract State Set of Concrete States
W { a8, c8, e8, g8, ab, cb, eb, g6, ad, cl, ed, g4,a2,c2,e2,g2)
b7,d7,f7,h7,b5,d5, f5, h5, b3,d3,f3,h3,b1,d1,f1 hl
B { b8, d8, 8, h8, a7, c7,e7,g7, bb,d6, 6, h6, a5, c5, €5, g5

b4, d4, f4, h4, a3, c3,e3,g3,b2,d2,f2,h2,al,cl el gl 4

Abstracting the State Space

Abstraction by Square Color Set, Acs

» The board above illustrates the set of positions described by

the square color set Kingyw — {W} € Acs.

Figure: 2-bit representation

Hierarchy of Abstractions

CIT

ACartesian

/}/ACartesian_>CS g])aCS_}ACartesian
]

m '

i

i

Yes—s |] as—cs

O
o .
O

SN
ErEEE

Product Constructions, Visualized

abcdefgh abcdefogh

Table: Product of {ql,q4} € Ags with {W} € Acs

abocde fgh

Table: Product of {c,e,f} € Agrs with [2,4] € Ag

Product Constructions

Direct Product

© N~ © W1 MmN~

<

a b c d e f g h

[2,4]7 [C,E]> € Agr; X Af

Figure: (

» The direct product of two abstractions A; and Ay is written

A1 x Ay and contains one element from each abstraction.

Product Constructions
Reduced Product

Figure: The reduced product Ags ® Acs

» The reduced product of two abstractions A; and As is
written A; ® A refers to a new abstraction that incorporates
the information from both.

Hierarchy of Product Abstractions
? B

A Cartesian

Precision of Abstractions

For This Particular Example

Abstraction # Bits # Squares % Spurious Squares
Afl 6 40 92.5%
Ari 6 32 90.6%
Acs 2 32 90.6%
Ars 8 24 87.5%
ARrs 8 24 87.5%
Ags 4 16 81.3%
Acs X Ags 6 16 81.3%
AQS X ARS 12 12 75.0%
AFS X AQS 12 12 75.0%
ACS X ARS 10 12 75.0%
AFS X ACS 10 12 75.0%
AFS X ARS 16 9 66.7%
ACS X AQS X ARS 14 6 50.0%
Afrs X Acs X AQS 14 6 50.0%
A[:s X AQS X ARS 20 5 40.0%
AFS X ACS X ARS 18 5 40.0%
AFS X ACS X AQS X ARS 22 3 00.0%

» There is a space and precision trade-off.
» More bits in the representation is correlated with higher
precision (i.e., fewer states induced due to overapproximation).

Relational Abstractions

> Relational abstractions consider relationships between the

variables.
> They are not derived from the Cartesian abstraction, as the

previous examples were.

Relational Abstractions
File Equalities, Ar_

SN

N
S

8\

S\8\
L

= N W R OO N
N\

7 AU /@/

Figure: |file(Pawnyy 4) — file(Pawnw »)| = 2, when file(Pawny 4) = d

R\
o

o

%

)

-

[}

>

» This domain consists of relationships of the form
|file(x) — file(y)| = k.
» |.e., piece y is k files away from piece x.

P Note that, since Ag_ does not track in which file x or y reside, it describes more
board configurations than the figure shows.

Relational Abstractions

2 € A

Pawnyy 4) — file(Pawnw)

|file(

%%%M%M

S

x/a/ﬁéz

%ZZE

////,.,////,.m..,///ﬂd

IR /A,_
%%Z/a

l//// t//// /////

mfﬁ., M//, mr//

%.%.m..y////

//// YO .////m

/4/4/4
ST m T e

”

S m K mr//fimr/ﬁ.
///.%.///.M

L

=d

) file(Pawnyy 4)

(d

=cC

(b) file(Pawny 4) = b (C) fite(Pawnyy 4)

(a) file(Pawnyy 4) = a

////

&X mﬂ X w/,m
//// o) S ////
QIR /4

g

/ZZZ% y

ORO00000 -

ZZZ% -
///// ,z/// 9// ,////

r// r// r/ r//

"

® ~ © b ™ o =

YRS
FIRIEIRIE) =

RN

Q0 /4 %.%Of

.

87654321

M/Mm, m////; mfﬁ., m,//¢_
%.M.r///./////

ZZZ% °
///I //// ///l ////

abcd

..9///« .7///<

87654321

(g) file(Pawnyy 4) = & (h) file(Pawnyy 4) = h

() fite(Pawnyy 4) = £

(e) file(Pawnyy 4) = e

Relational Abstractions

File Inequalities, Ar_

@ /«/ /4/

%, m/// m////f m////«@

© N~ © WL T O N A

o
©

=d

when file(Pawnyy 4)

Figure: |file(Pawnyy 4) — file(Pawnw »)| < 2,

» This domain consists of relationships of the form

k.

\file(x) — file(y)| <

» |.e., piece y is at most k files away from piece x.

P Note that, since A,:< does not track in which file x or y reside, it describes

more board configurations than the figure shows.

(h) file(Pawnyy 4) = h

(g) file(Pawnyy 4) = &

f

Relational Abstractions

<2€Ar

2)|

>

Pawnyy 4) — file(Pawnw

|file(

= R
w I 3
?&/@%,@%/Q??@ - Y
%ﬁo a///e,.e e%.¢ azlﬂmw - W /ﬂ/m
'S 50 N4 50 N Z N
(TR © S
CERERER) :
>N \ Q
2
z
—~
O
—
{8}
Il
<
w/////// SYASYAS) N
(CIRIIRIIRIIR)
OSSO ON e OSR <
RUIRNIR) H
S SO &) a
S Q
=
\ <
S &
=
R -
NS 3)
N—r
VoS
- ,'//\V/Am
e =
I SRENEN
T BORRRER)-
W N SONT SO
e S
N : aNgs
NN 3
6/.«..@@@%@. &
) <
2
F
—
0
=
L
Il
—
.
<
3
Q
=
2
z
—~
(o]
SN—r

(f) file(Pawnyy 4)

(e) file(Pawnyy 4) = e

Relational Abstractions
Rank Equalities, Ar_

a b c d e f g h

Figure: |rank(Pawnw 4) — rank(Pawnw »)| = 2, when
rank(Pawny 4) = 4

» This domain consists of relationships of the form
|rank(x) — rank(y)| = k.
» |.e., piece y is k ranks away from piece x.

P Note that, since Ag_ does not track in which rank x or y reside, it describes
more board configurations than the figure shows.

Relational Abstractions

Rank Inequalities, Ar_

/}

/// ,,///
%.
r///// 9////
%.,. %.,
/'/ .Vm/
f/ o
%&
07/.

4,
/../.,. or/
////

//ﬁ-,

Figure: |rank(Pawnw 4) — rank(Pawnw 2)| < 2, when

rank(Pawny 4) = 4

» This domain consists of relationships of the form

< k.

|rank(x) — rank(y)|

» |.e., piece y is at most k ranks away from piece x.

> Note that, since AR< does not track in which rank x or y reside, it describes

more board configurations than the figure shows.

Products of Relational Abstractions

%%@f

IR

© N~ © WL T O N A

(b) Ar. ® Ar_

(a) Ar. ® Ar_

/5@ /5_@,,//5,
¢ %9, K

O

3
,///5 ,///5.
(ORI

/} ¢

() N
QB@Qﬁ
@ENEND
o////, o,v/

s

Na) N
é@@@a

Z

© ~ © W1 S O N o~

© ~ © W1 S O N -

(d) Ar. ® Ar_

(c) Ar. ® Ar_

The Basic Framework of Abstract Interpretation

» Compute the semantics of the transition system.
P> Approximate it by collecting semantics.
» Apply further, specialized approximation.

» Approximate the state space.
» Approximate the state transitions.

Differences Between Chess and Programs

» Each program has its own transition system.

» Chess has move numbers, programs have locations.
» Programs can have infinite traces.

> State space can be infinite.

» Or, at least, be modelled that way.

