Abstract Interpretation of Chess ©Rolf Rolles

Möbius Strip Reverse Engineering

February 26, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$T_{\leq \ell}$ is Uselessly Large

The mathematician Claude Shannon estimated that there are roughly 10¹²⁰ different games of chess. I.e., |T_{<ℓ}| ≈ 10¹²⁰.

Recall that the universe has roughly 10⁷⁹ atoms.

This is too big to fit into the memory of a physical computer.

Abstract Interpretation

- The objects that we have constructed hereinbefore constitute the concrete interpretation of chess.
- Unfortunately, they are too large to be practicable.
- The framework of abstract interpretation allows us to approximate the concrete interpretation into a more manageable size, and still answer questions correctly.
- However, in doing so, we lose information, and hence the ability to answer questions with absolute certainty. Instead, we will sometimes be forced to answer "I don't_know".

Order-Theoretic Approximation

• $T_{\leq \ell}$ is too big for us to compute.

In program analysis, when some object is either:

- 1. Finite, but extremely large; or
- Infinite; or
- 3. Not computable,
- We shall often employ order-theoretic approximation to make the sizes of the objects tractable, and the computation possible.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Order-Theoretic Approximation

- To illustrate, we will discuss order-theoretic approximations in the contexts of sets.
- A set *O* overapproximates another set *E* if $E \subseteq O$.
 - In particular, if O contains every element of E, as well as possibly more elements, then O overapproximates E.
- ▶ In general, we will write $E \sqsubseteq O$ when O overapproximates E.
 - I.e., we will also use this notation when E and O are not sets.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 \blacktriangleright \sqsubseteq is called a **partial ordering**, and is pronounced "less than".

Order-Theoretic Approximation *k*-Set Example

$\{1,3,37\} \sqsubseteq \{1,3,5,37\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Let $E := \{1, 3, 37\}$.
- Now $E \sqsubseteq \{1, 3, 5, 37\}$.
- ► *E* ⊈ {1,37}.
- ► $E \not\sqsubseteq \{1, 4, 37\}.$

Order-Theoretic Approximation Signs Example

$\{1,3,37\} \sqsubseteq \textit{Pos}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Let
$$E := \{1, 3, 37\}$$
.

▶ Notice that every element of *E* is a positive integer.

• Let
$$Pos := \mathbb{N} = \{1, 2, 3, \dots\}.$$

Order-Theoretic Approximation Parity Example

$\{1,3,37\} \sqsubseteq \textit{Odd}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Let
$$E := \{1, 3, 37\}$$
.

Notice that every element of E is odd.

• Let
$$Odd := \{\ldots, -3, -1, 1, 3, \ldots\}.$$

Order-Theoretic Approximation

$\{1,3,37\} \sqsubseteq [1,37]$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Let
$$E := \{1, 3, 37\}$$
.

Notice that every element of E is between 1 and 37.

• Let
$$[1, 37] \coloneqq \{1, 2, \dots, 36, 37\}.$$

• Hence, $E \sqsubseteq [1, 37]$.

Order-Theoretic Approximation Sets of Squares

Given sets of squares O and E, we have that E ⊆ O if O contains every square in E (and perhaps more).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Order-Theoretic Approximation

For sets *O* and *E*, we have that $E \sqsubseteq O$ if $E \subseteq O$.

▶ I.e., *O* contains every element of *E*, and perhaps more.

イロト 不得 トイヨト イヨト

The Collecting Semantics of Chess, **CS**[[Chess]]

Figure: C_1 , C_2 , C_3 , and C_4 illustrated

- Since S[[Chess]] is too large, we compute an order-theoretic approximation called the collecting semantics (also known as the trace of sets), denoted CS[[Chess]].
- We define sets C_i for 1 ≤ i ≤ ℓ, where C_i contains all configurations possible before move number i has been taken.

• Formally:
$$C_i = \{\sigma_i \mid \sigma \in \mathbf{S}[[Chess]], |\sigma| \ge i\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• C_1 , the boards possible before move 1.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- C_1 , the boards possible before move 1.
- C_2 , the boards possible before move 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- \triangleright C₁, the boards possible before move 1.
- C₂, the boards possible before move 2.
- C_3 , the boards possible before move 3.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- \triangleright C₁, the boards possible before move 1.
- C₂, the boards possible before move 2.
- C_3 , the boards possible before move 3.
- C₄, the boards possible before move 4.

Approximating **S**[[Chess]] by **CS**[[Chess]]

We relate sets of traces, and traces of sets, with two functions.

- The abstraction function from S to CS, α_{S→CS}, takes a set of traces and produces a trace of sets.
- The concretization function from CS to S, γ_{CS→S}, takes a trace of sets and produces a set of traces.

The Abstraction Function $\alpha_{S \rightarrow CS}$

► Let
$$\alpha_{\mathbf{S}\to\mathbf{CS}}(X) = (C_1, C_2, \dots, C_n)$$
, where $n = max(|\pi|)_{\pi\in X}$
and $C_i = \{\pi_i \mid \pi \in X, |\pi| \ge i\}$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ・ 今 Q ()・

The Concretization Function $\gamma_{CS \rightarrow S}$

- Let $\gamma_{\mathsf{CS}\to\mathsf{S}}(A) = \{\pi_1 \frown \pi_2 \frown \cdots \frown \pi_j \mid j \leq \ell, \pi_i \in A_i\}.$
 - ► I.e., the set of all traces of length l or less, consisting of zero moves having been taken, followed by one move, followed by two moves, etc.

Concretization

Collecting Semantics Before Adding Edges

The concretization adds edges from *every* state in one set to *every* state in the next one, *including edges that were not present in the original set of traces*.

Concretization The Original Edges

The blue edges are the ones from $T_{\leq \ell}$. In particular, every edge from $T_{<\ell}$ is present.

Concretization

Edges Not Present in the Original

The red edges were not present in $T_{\leq \ell}$. This is the price of approximation: considering spurious traces that do not exist in the semantics of ordinary chess.

Concretization

Figure: A spurious trace of length 3, induced by approximation

The Collecting Semantics Abstraction, Visualized

Galois Connections

- A Galois connection is a tuple $\langle C, \alpha, A, \gamma \rangle$ where:
 - α : C → A, called the left adjoint, must be monotonic
 γ : A → C, called the right adjoint, must be monotonic
 α(c) ⊑ a if and only if c ⊑ γ(a)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

- In this situation, A is called an abstraction (or an approximation) of C.
- ► $\langle \mathbf{S}, \alpha_{\mathbf{S} \rightarrow \mathbf{CS}}, \mathbf{CS}, \gamma_{\mathbf{CS} \rightarrow \mathbf{S}} \rangle$ is a Galois connection.

Approximate Answers to Trace Properties A Precise Answer

Is the above trace valid?

- ► **S**[[*Chess*]]: **NO**
- ► CS[[Chess]]: NO

We can answer this query precisely: if a trace is not contained in CS[Chess], then it cannot be contained in S[Chess], since the former contains the latter.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Approximate Answers to Trace Properties An Imprecise Answer

Is the above trace valid?

- ► S[[Chess]]: NO
- CS[Chess]: YES

Knowing that a trace is contained in CS[[Chess]] is not proof that it exists in S[[Chess]], since the former is bigger than the latter. Therefore, we have to answer "I don't know".

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Further Approximation

- It might be the case that the collecting semantics is still too large or not computable.
- Thus, we employ further approximation, this time of the collecting semantics.
- In particular, we establish a Galois connection between the C_i sets of states and some abstraction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We begin by exploring non-relational abstractions.

The Cartesian Abstraction A_{Cartesian}

- In the Cartesian abstraction A_{Cartesian}, each piece is associated with the set of squares in which it may reside.
 - All non-relational abstractions, i.e. those that do not consider relationships between variables, are further abstractions from A_{Cartesian}.
- Recall that:
 - ► A state was defined as a function State : Vars → Squares.
 - A set of boards is an element $S \in \wp(Vars \rightarrow Sqaures)$.
- A Cartesian state is a function $Cart : Vars \rightarrow \wp(Squares)$.
 - I.e., a piece maps to the set of all squares in which it was located in the boards in S.

The Cartesian Abstraction A_{Cartesian}

996

The Cartesian Abstraction

Abstraction $\alpha_{cs \rightarrow A_{Cartesian}}$

Write A for A_{Cartesian}. Now:

Table: Cartesian state, σ_S^C

Piece	ACartesian	Piece	ACartesian	Piece	ACartesian	Piece	ACartesian
Pawn _{W,1}	$\{a1\}$	Pawn _{W,2}	{ <i>b</i> 2, <i>b</i> 3}	Pawn _{W,3}	{ <i>c</i> 2}	Pawn _{W,4}	{d2}
Pawn _{W,5}	{e2}	Pawn _{W,6}	{f2}	Pawn _{W,7}	$\{g2, g4\}$	Pawn _{W,8}	{ <i>h</i> 2}
Rook _{W,1}	$\{a1\}$	Rook _{W,2}	${h1}$	Knight _{W.1}	{ <i>b</i> 1}	Knight _{W.2}	{g1}
$Bishop_{W,1}$	$\{c1\}$	Bishop _{W,2}	${f1}$	Queen _W	{d1}	King _W	{e1}
Pawn _{B,1}	{a7}	Pawn _{B,2}	{ <i>b</i> 7}	Pawn _{B.3}	{c7}	Pawn _{B,4}	{d7}
Pawn _{B,5}	{e7}	Pawn _{B.6}	{f7}	Pawn _{B,7}	{g7}	Pawn _{B.8}	{h7}
Rook _{B,1}	{ <i>a</i> 8}	Rook _{B,2}	{ <i>h</i> 8}	Knight _{B.1}	{ <i>b</i> 8}	Knight _{B.2}	{g8}
$Bishop_{B,1}$	{ <i>c</i> 8}	$Bishop_{B,2}$	{ <i>f</i> 8}	QueenB	{ <i>d</i> 8}	King _B	{ <i>e</i> 8}

Formally,
$$\alpha_{CS \to A_{Cartesian}}(S) = \lambda v. \{\sigma(v) \mid \sigma \in S\}$$

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ 今々ぐ

The Cartesian Abstraction

Concretization $\gamma_{A_{Cartesian}} \rightarrow cs$

Piece	A _{Cartesian}	Piece	A _{Cartesian}	Piece	A _{Cartesian}	Piece	ACartesian
Pawn _{W,1}	$\{a1\}$	Pawn _{W,2}	$\{b2, b3\}$	Pawn _{W,3}	{c2}	Pawn _{W,4}	{d2}
Pawn _{W,5}	{e2}	Pawn _{W,6}	{f2}	Pawn _{W,7}	$\{g2, g4\}$	Pawn _{W,8}	{ <i>h</i> 2}
Rook _{W,1}	{a1}	Rook _{W,2}	${h1}$	Knight _{W,1}	$\{b1\}$	Knight _{W,2}	{g1}
$Bishop_{W,1}$	$\{c1\}$	$Bishop_{W,2}$	${f1}$	QueenW	$\{d1\}$	KingW	{e1}
Pawn _{B,1}	{a7}	Pawn _{B,2}	{ <i>b</i> 7}	Pawn _{B.3}	{c7}	Pawn _{B,4}	{d7}
Pawn _{B,5}	{e7}	Pawn _{B,6}	{f7}	Pawn _{B,7}	{g7}	Pawn _{B.8}	{ <i>h</i> 7}
Rook _{B,1}	{ <i>a</i> 8}	Rook _{B,2}	{ <i>h</i> 8}	Knight _{B.1}	{ <i>b</i> 8}	Knight _{B.2}	{g8}
$Bishop_{B,1}$	{c8}	$Bishop_{B,2}$	{f8}	QueenB	{d8}	KingB	{e8}

The Cartesian Abstraction, Visualized

Representing the Cartesian Abstraction Bit Sets

► Given any finite set S, we can represent an element of ℘(S) with |S| bits.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- ▶ Bit 1: whether element #1 is present
- Bit 2: whether element #2 is present
- Bit |S|: whether element #|S| is present

Example:

► ...

•
$$S := \{a, b, c\}$$

• $|S| = 3 (3 \text{ bits})$
• $T = \{b, c\}$
• $Bits(T) = \underbrace{0}_{a} \underbrace{1}_{b} \underbrace{1}_{c}$

Representing the Cartesian Abstraction

Representing Square Sets

• |Squares| = 65: 64 squares, plus the *Captured* location.

► Hence, 32 * 65 = 2080 bits per Cartesian board.

Abstract Interpretation

- Abstractions of the collecting semantics involve two pieces:
 - 1. Approximations of the state space;
 - 2. Concomitant approximations of the semantic transformers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

These two items are intertwined: the approximation of a semantic transformer is tied to the abstraction of the state space.
All Moves for $Pawn_{W,3}$, $\rightarrow_{Pawn_{W,3}}$

(a) Move forward one rank

(b) Initial move forward two ranks

(c) Capture diagonally by one square(d) En passant captureCommonality: move at most two ranks and/or one file.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ・ ○へ⊙

All Moves for $Pawn_{W,3}$, $\rightarrow_{Pawn_{W,3}}$

For each transformer and each board position, there is a set of squares describing where a given piece residing at that location could potentially move.

Overapproximating Transformers

► An overapproximation for a transformer such as →_{Pawn_{W,3}} overapproximates the set of squares to where a given piece could potentially move.

Abstraction by Rank

Abstract State	Set of Concrete States
1	$\{a1, b1, c1, d1, e1, f1, g1, h1\}$
2	$\{a2, b2, c2, d2, e2, f2, g2, h2\}$
3	$\{a3, b3, c3, d3, e3, f3, g3, h3\}$
4	{ a4, b4, c4, d4, e4, f4, g4, h4 }
5	$\{a5, b5, c5, d5, e5, f5, g5, h5\}$
6	$\{a6, b6, c6, d6, e6, f6, g6, h6\}$
7	{ a7, b7, c7, d7, e7, f7, g7, h7 }
8	$\{a8, b8, c8, d8, e8, f8, g8, h8\}$

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣ん(で)

Abstraction by Rank Set, ARS

The board above illustrates the set of positions described by the rank set Pawn_{W,4} → {2,4} ∈ A_{RS}.

Figure: 8-bit representation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Abstracting the Semantic Transformers

 $\rightarrow_{Pawn_{W,3}}^{RS}$ for the Rank Set Abstraction

Consider the rank set {2,4}.

- If a pawn is on rank 2, it can either:
 - 1. Stay in rank 2,
 - 2. Move to rank 3,
 - 3. Move to rank 4.

Similarly, from rank 4 it can move to { 4, 5, 6 }.

- Therefore, $\{2,3\} \mapsto \{2,3,4,5,6\}$.
- ► Formally, $\rightarrow_{Pawn_{W,3}}^{RS}(S) = \{x, x+1, x+2 \mid x \in S\}.$

Abstraction by Rank Interval, ARI

▶ The board above illustrates the set of positions described by the rank interval $Pawn_{W,4} \mapsto [2,4] \in A_{RI}$.

Figure: 6-bit representation

Abstracting the Semantic Transformers

 $\rightarrow_{Pawn_W}^{RI}$ for the Rank Interval Abstraction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Consider the rank interval [2, 4].
- ▶ [2, 4] \mapsto [2, 6]. ▶ Formally, $\rightarrow_{Pawn_{W,3}}^{RI}$ ([*I*, *h*]) = [*I*, *h* + 2].

Relative Precision of Abstractions

Any rank interval can be represented by a rank set.

► E.g., [2, 4] describes the same squares as {2, 3, 4}.

- The best representation of any set of squares as a rank set is always a subset of its best representation as a rank interval.
- Hence, A_{RS} is more precise than A_{RI} .

Abstraction by File

Abstract State	Set of Concrete States
а	{ a1, a2, a3, a4, a5, a6, a7, a8 }
b	$\{ b1, b2, b3, b4, b5, b6, b7, b8 \}$
С	$\{ c1, c2, c3, c4, c5, c6, c7, c8 \}$
d	$\{ d1, d2, d3, d4, d5, d6, d7, d8 \}$
е	{ e1, e2, e3, e4, e5, e6, e7, e8 }
f	{ f1, f2, f3, f4, f5, f6, f7, f8 }
g	$\{ g1, g2, g3, g4, g5, g6, g7, g8 \}$
h	$\{ h1, h2, h3, h4, h5, h6, h7, h8 \}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Abstraction by File Set, AFS

The board above illustrates the set of positions described by the file set Pawn_{W,4} → {c, e} ∈ A_{FS}.

Figure: 8-bit representation

Abstraction by File Interval, AFI

► The board above illustrates the set of positions described by the file interval Pawn_{W,4} → [c, e] ∈ A_{FI}.

Figure: 6-bit representation

Abstraction by Quadrant

Abstract State

Set of Concrete States

q1	$\{a8, a7, a6, a5, b8, b7, b6, b5, c8, c7, c6, c5, d8, d7, d6, d5\}$
q2	{ e8, e7, e6, e5, f8, f7, f6, f5, g8, g7, g6, g5, h8, h7, h6, h5 }
q3	{ a4, a3, a2, a1, b4, b3, b2, b1, c4, c3, c2, c1, d4, d3, d2, d1 }
q4	$\{ e4, e3, e2, e1, f4, f3, f2, f1, g4, g3, g2, g1, h4, h3, h2, h1 \}$

Abstraction by Quadrant Set, AQS

▶ The board above illustrates the set of positions described by the quadrant set $Queen_W \mapsto \{q1, q4\} \in A_{QS}$.

Figure: 4-bit representation

Abstraction by Hexadectant

Abstract State	Set of Concrete States	Abstract State	Set of Concrete States
h0	$\{a8, a7, b8, b7\}$	h1	{ c8, c7, d8, d7 }
h2	{ e8, e7, f8, f7 }	h3	{ g8, g7, h8, h7 }
h4	{ a6, a5, b6, b5 }	h5	$\{ c6, c5, d6, d5 \}$
h6	$\{ e6, e5, f6, f5 \}$	h7	$\{ g6, g5, h6, h5 \}$
h8	{ a4, a3, b4, b3 }	h9	{ c4, c3, d4, d3 }
hA	{ e4, e3, f4, f3 }	hB	$\{g4, g3, h4, h3\}$
hC	{ a2, a1, b2, b1 }	hD	$\{ c2, c1, d2, d1 \}$
hE	$\{ e2, e1, f2, f1 \}$	hF	$\{ g2, g1, h2, h1 \}$

Abstraction by Hexadectant Set, A_{HS}

▶ The board above illustrates the set of positions described by the hexadectant set $Queen_W \mapsto {\mathbf{h5}, \mathbf{hA}} \in A_{HS}$.

0 0 0 1 0 0 0 1 0 0 0 0 0 h2 h6 h7 h8 h h1 h3 h4 h5 h9 hA hB hC hD hĒ hF Figure: 16-bit representation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Abstraction by Square Color

Abstract State	Set of Concrete States		
w	$\{a8, c8, e8, g8, a6, c6, e6, g6, a4, c4, e4, g4, a2, c2, e2, g2 \\ b7, d7, f7, h7, b5, d5, f5, h5, b3, d3, f3, h3, b1, d1, f1, h1 \}$		
В	$ \left\{ \begin{array}{l} a8, c8, e8, g8, a6, c6, e6, g6, a4, c4, e4, g4, a2, c2, e2, g2 \\ \left\{ \begin{array}{l} b7, d7, f7, h7, b5, d5, f5, h5, b3, d3, f3, h3, b1, d1, f1, h1 \\ \left\{ \begin{array}{l} b8, d8, f8, h8, a7, c7, e7, g7, b6, d6, f6, h6, a5, c5, e5, g5 \\ b4, d4, f4, h4, a3, c3, e3, g3, b2, d2, f2, h2, a1, c1, e1, g1 \end{array} \right\} $		

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Abstraction by Square Color Set, A_{CS}

▶ The board above illustrates the set of positions described by the square color set $King_W \mapsto \{W\} \in A_{CS}$.

Figure: 2-bit representation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hierarchy of Abstractions

Product Constructions, Visualized

Table: Product of $\{q1, q4\} \in A_{QS}$ with $\{W\} \in A_{CS}$

Table: Product of $\{\mathbf{c}, \mathbf{e}, \mathbf{f}\} \in A_{FS}$ with $[\mathbf{2}, \mathbf{4}] \in A_{RI}$

Product Constructions

Direct Product

► The direct product of two abstractions A₁ and A₂ is written A₁ × A₂ and contains one element from each abstraction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Product Constructions

Reduced Product

Figure: The reduced product $A_{QS} \otimes A_{CS}$

► The reduced product of two abstractions A₁ and A₂ is written A₁ ⊗ A₂ refers to a new abstraction that incorporates the information from both.

Hierarchy of Product Abstractions

Precision of Abstractions

For This Particular Example

Abstraction	# Bits	# Squares	% Spurious Squares
A _{FI}	6	40	92.5%
A _{RI}	6	32	90.6%
A _{CS}	2	32	90.6%
A _{FS}	8	24	87.5%
A _{RS}	8	24	87.5%
A_{QS}	4	16	81.3%
$A_{CS} imes A_{QS}$	6	16	81.3%
$A_{QS} imes A_{RS}$	12	12	75.0%
$A_{FS} imes A_{QS}$	12	12	75.0%
$A_{CS} imes A_{RS}$	10	12	75.0%
$A_{FS} imes A_{CS}$	10	12	75.0%
$A_{FS} imes A_{RS}$	16	9	66.7%
$A_{CS} imes A_{QS} imes A_{RS}$	14	6	50.0%
$A_{FS} imes A_{CS} imes A_{QS}$	14	6	50.0%
$A_{FS} imes A_{QS} imes A_{RS}$	20	5	40.0%
$A_{FS} imes A_{CS} imes A_{RS}$	18	5	40.0%
$A_{FS} imes A_{CS} imes A_{QS} imes A_{RS}$	22	3	00.0%

- There is a space and precision trade-off.
- More bits in the representation is correlated with higher precision (i.e., fewer states induced due to overapproximation).

- Relational abstractions consider relationships between the variables.
- They are not derived from the Cartesian abstraction, as the previous examples were.

File Equalities, $A_{F_{=}}$

Figure: $|file(Pawn_{W,4}) - file(Pawn_{W,2})| = 2$, when $file(Pawn_{W,4}) = d$

This domain consists of relationships of the form |file(x) - file(y)| = k.

▶ I.e., piece *y* is *k* files away from piece *x*.

Note that, since A_{F=} does not track in which file x or y reside, it describes more board configurations than the figure shows.

 $|file(Pawn_{W,4}) - file(Pawn_{W,2})| = 2 \in A_{F_{=}}$

File Inequalities, $A_{F_{<}}$

Figure: $|file(Pawn_{W,4}) - file(Pawn_{W,2})| \le 2$, when $file(Pawn_{W,4}) = d$

► This domain consists of relationships of the form |*file*(x) - *file*(y)| ≤ k.

I.e., piece y is at most k files away from piece x.

Note that, since $A_{F_{\leq}}$ does not track in which file x or y reside, it describes more board configurations than the figure shows.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $|\mathit{file}(\mathit{Pawn}_{W,4}) - \mathit{file}(\mathit{Pawn}_{W,2})| \leq 2 \in A_{F_{<}}$

Rank Equalities, $A_{R_{=}}$

Figure: $|rank(Pawn_{W,4}) - rank(Pawn_{W,2})| = 2$, when $rank(Pawn_{W,4}) = 4$

This domain consists of relationships of the form |rank(x) - rank(y)| = k.

I.e., piece y is k ranks away from piece x.

Note that, since A_{R₌} does not track in which rank x or y reside, it describes more board configurations than the figure shows.

Rank Inequalities, $A_{R_{<}}$

Figure: $|rank(Pawn_{W,4}) - rank(Pawn_{W,2})| \le 2$, when $rank(Pawn_{W,4}) = 4$

This domain consists of relationships of the form |rank(x) − rank(y)| ≤ k.

I.e., piece y is at most k ranks away from piece x.

Note that, since A_R does not track in which rank x or y reside, it describes more board configurations than the figure shows.

Products of Relational Abstractions

The Basic Framework of Abstract Interpretation

Compute the semantics of the transition system.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Approximate it by collecting semantics.
- Apply further, specialized approximation.
 - Approximate the state space.
 - Approximate the state transitions.

Differences Between Chess and Programs

- Each program has its own transition system.
- Chess has move numbers, programs have locations.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Programs can have infinite traces.
- State space can be infinite.
 - Or, at least, be modelled that way.