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1 INTRODUCTION 

Broadening access to learning experiences about artificial intelligence (AI) is increasingly important as AI becomes more 
integrated into our everyday lives. Individuals who have little knowledge of AI or how it works are engaging with an 
increasing number of commercially available AI devices and technologies. Growing concerns about AI’s role in 
misinformation [3,37], data privacy breaches [43], and bias/discrimination [7] suggest that technology users need new 
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skills to be able to engage with AI critically and thoughtfully. This skillset has been referred to in the literature as AI 
literacy (i.e. “a set of competencies that enables individuals to critically evaluate AI technologies; communicate and 
collaborate effectively with AI; and use AI as a tool online, at home, and in the workplace” [34]).  

There has been a recent surge in AI learning interventions for individuals without a computing background, with a 
focus on K-12 audiences (c.f. [34,53]). However, few efforts to date have focused on museums as venues for AI education, 
even though museums and science centers have historically played an important role in public science education [45]. 
We are investigating how to provide learning experiences in museums that can foster public AI literacy, both by 
developing novel AI education exhibits and by adapting existing AI research projects into educational experiences 
through which learners have the opportunity to interact with authentic cutting-edge research in the field.  

Prior work suggests that certain design features—collaboration, creativity, and embodied interaction—can help 
facilitate effective learning experiences in museums. Embodied interaction is an intuitive way to engage with exhibits 
and can aid in concretizing abstract concepts [23–25,31,41,44]. We explore designs that utilize full-body interaction, 
tangible user interfaces, and spatial metaphors. Most visitors come to museums in groups [21], making collaboration an 
important part of the museum experience that contributes to learning and motivation [13,25,26]. We define collaboration 
in this paper as encompassing both shared dialogue and working together to achieve a shared goal. Finally, creative 
interactions have been shown to contribute to prolonged engagement at exhibits and can lead to personally-relevant 
meaning-making [4,18,26]. In this paper, we use the term creativity to refer to designs that encourage learners to generate 
personally creative (i.e. P-creative, or novel to the individual [5]) ideas by expressing themselves through activities like 
dance or generating novel artifacts and combinations of ideas. Research suggests that embodied interaction, 
collaboration, and creativity may also be effective at facilitating learning about computing [10,15,20,35,46,54]. 

Our hypothesis is that interactions with embodied, collaborative, and/or creative AI learning activities in informal 
learning spaces lead to interest development in AI and improved understanding of AI. In this paper, we test this 
hypothesis by exploring two core research questions: 1) How can embodiment, collaboration, and creativity be 
used in museum exhibits to encourage interest development in and learning about AI? and 2) What design 
features contribute to engagement with activities that increase interest in and improve understanding of AI 
in informal learning spaces? To address the first question, we designed three AI literacy exhibits—Knowledge Net, 
Creature Features, and LuminAI—that each incorporate collaboration, creativity, and/or embodied interaction to varying 
degrees. We explore how to develop AI literacy exhibits “from scratch” with Knowledge Net and Creature Features. The 
third exhibit (LuminAI) explores how to adapt and augment an existing AI research project to facilitate an educational 
experience about/with authentic AI technology. To investigate the second research question, we conducted remote user 
studies with 14 family groups (38 participants) with two study sessions. The first session of users engaged with an early 
iteration of our prototypes, and the second session interacted with a later iteration of the same prototypes. We present 
results from these studies, focusing primarily on an analysis of participant surveys (supplemented with qualitative 
observations when relevant). Our analysis assesses the degree to which the exhibits supported collaboration, creativity, 
and embodied interaction, and explores the relationship of these design features to AI learning and interest development. 

2 RELATED WORK 

There is a growing body of research investigating how to design AI-related learning experiences for novice audiences. 
Researchers are developing curricula for both K-12 audiences [2,48,50] and non-CS majors at universities [6,19,46]. 
Others are developing courses, interactive online tools, and programming platforms that can engage novice audiences 
in learning about AI (e.g. [1,15,30,54]). The exhibit designs presented in this paper are grounded in two recently published 
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frameworks related to AI literacy. The first framework presents five “big ideas” that define areas of AI that are important 
for K-12 audiences to understand: 1) perception; 2) representation and reasoning; 3) learning; 4) natural interaction; and 
5) societal impact [48]. The second framework is a set of AI literacy competencies and design considerations we 
developed based on a review of AI education literature [34]. The competencies are high-level ideas about AI intended 
for novice audiences, and the design considerations are intended to guide the development of AI literacy learning 
interventions. We used both of these frameworks to guide the design of the prototypes presented in this paper. 

In the remainder of this section, we review several AI education projects that emphasize our key design 
considerations—collaboration, creativity, and embodied interaction. There are numerous existing platforms that are 
designed to engage learners in creative programming activities involving AI. Cognimates is an add-on for the Scratch 
programming environment that allows learners to incorporate AI technologies like image or voice recognition in their 
Scratch programs [14]. Similar tools exist for other coding platforms (e.g. [1,28,51]), allowing learners to incorporate AI 
in their creative multimedia projects. Others have developed activities to engage learners in creatively imagining 
alternative AI futures—like an AI ethics activity that engages middle school students in redesigning YouTube [2]. A 
recent paper outlined a set of design principles for introducing co-creative AI research projects in public spaces—while 
not explicitly focused on AI education, we draw on several of these principles in our work [33]. Research also suggests 
that having learners enact embodied simulations of algorithms (either on their own or by programming an embodied 
AI device [15,49]) can help them to concretize abstract concepts [15,46]. Other platforms engage learners in building 
machine learning (ML) models of physical gestures like dance or sports moves [8,54]. There are fewer existing projects 
that are focused on collaboration. However, recent papers suggest that facilitating social dialogue, particularly between 
adults and children, is important in AI learning contexts [16,34,50]. AI plugins on platforms like Scratch also facilitate 
social learning by allowing learners to share their work with a wide audience and “remix” others’ projects [40]. 

3 AI LITERACY PROTOTYPES 

In this section, we describe the iterative prototyping of three exhibits—Knowledge Net, Creature Features, and LuminAI. 
We provide a description of each exhibit, followed by a reflection on issues and successes with each prototype iteration. 
Exhibits were developed as “box-sized” versions of a real museum exhibit so they could be easily delivered to families’ 
homes for user-testing during COVID-191. We focused on designing to communicate AI competencies related to the 
third “big idea” of AI: “Agents maintain models/representations of the world and use them for reasoning,” because we 
found that this “big idea” was one of the most under-explored in existing work [48]. We were interested in particular in 
how concepts related to AI representations/reasoning could be communicated without requiring prerequisite coding 
knowledge, which can be a barrier to entry. We included perspectives on both machine learning and knowledge-based 
AI. Throughout this section, we refer to the AI literacy competencies (hereafter, C) and design considerations (hereafter, 
DC) from [34] to ground our design research in a theoretical framework. We mention results from our user studies in 
this section to explain the iterative design process, but discuss the majority of our findings in Results. 

3.1 Knowledge Net 

Knowledge Net (Figure 1, left)  is an exhibit prototype in which learners can use a tangible interface consisting of tiles 
and arrows to build semantic networks (a type of AI knowledge representation that is used to represent relationships 

 
1  We intended to evaluate exhibits by installing them as pop-up installations at the Museum of Science and Industry, Chicago (MSI). In March 2020, it 
became known that COVID-19 was circulating widely in the US. MSI was shut down and safety concerns arose regarding researcher travel and in-person 
user studies. We pivoted to designing “exhibits-in-a-box”: at-home learning experiences delivered to families’ doorsteps for them to interact with. We 
chose this method because embodiment and collaboration were central design considerations that were not easy to transfer to a virtual experience. 
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between objects and ideas) about topics of interest to them (e.g. family, animals, music). Learners connect object tiles 
(e.g. dog, cat, whiskers) with relationship arrows (e.g. is, has, likes dislikes) on a playmat to create a network (e.g. dog-
HAS-whiskers, cat-LIKES-dog). Once learners build their network, they can take a picture of their playmat, upload it to 
our website, and interact with an AI chatbot that uses their network as its knowledge base. Our algorithm parses the 
image by matching user placed tiles and cards with template images. The template with the highest similarity to a user-
placed tile is assumed to be the correct tile. After parsing the board, our program then input that data into a semantic 
network representation (adapted from [42]). Users can proceed to ask the network questions about the relationships 
between the tiles (e.g. “What does a dog have?). This input is matched to simple question templates (e.g. “What does a 
____have?”) to tell which relationship a user is querying. If a user’s query is answerable, an answer template was used 
to respond (e.g. “A ___ has ___”). Learners interacting with Knowledge Net can iteratively explore and test ideas related 
to understanding the strengths and limitations of knowledge representations (C5, C7), recognizing the role that humans 
play in programming AI (C10), and understanding computer reasoning processes (C8). Knowledge Net incorporates 
interaction with a tangible interface (DC2) and open-ended creative, collaborative interactions (DC11), as well as other 
AI literacy design considerations such as making algorithms explainable (DC1), providing opportunities for individuals 
to program/teach AI (DC6), leveraging learners’ interests (DC12), and facilitating a low barrier of entry (DC15). 

When we user-tested the first iteration of the Knowledge Net exhibit prototype, we observed that the exhibit was 
successful at engaging learners of all ages and varying levels of prior experience with AI (DC15). The semantic network 
representation was intuitive for participants to understand, and learners enjoyed customizing the networks to describe 
topics of interest to them (e.g. their family) (DC12). The exhibit was also successful at facilitating collaborative dialogue 
and interaction between group members (DC11). However, the first iteration of the design suffered from several 
issues.  Our image recognition algorithm failed or worked poorly in non-ideal conditions (e.g. bad lighting, poorly 
cropped picture), requiring users to manually input almost all of the network information and preventing most from 
interacting with the chatbot. We instructed learners who were unable to interact with the chatbot to engage in a role-
playing activity where they simulated a conversation between an AI chatbot and a human user. We also asked learners 
to photograph the playmat with their phones, which resulted in a cumbersome uploading/cropping process. These issues 
collectively prevented learners from engaging in an iterative exploration/testing cycle and making connections between 
the tangible interface and the virtual chatbot. We aimed to resolve these issues in the second iteration of the prototype 
by changing the material design of the tangible interface to aid in image recognition and replicability and introducing 
an Osmo device and iPad for photographing the playmat to aid in image recognition and an iterative process. 

3.2 Creature Features 

Creature Features (Figure 1, center) is an exhibit in which learners can use a card deck and “weight tokens” to provide 
training data to a feature-based machine learning algorithm that classifies animals as birds. Each card depicts a creature 
(e.g. bluebird, flying fish) and includes a list of features describing that creature (e.g. swims, has feathers). Learners are 
encouraged to look at the features for each creature on the playmat and consider how to place their weights to train an 
algorithm that can correctly recognize many different types of birds. The more weights tokens placed on a card, the 
more examples of that bird will be included in the dataset. Learners can take a picture of their playmat and upload it to 
a website. Once the photo is uploaded, our algorithm creates a training set by including each of the cards the amount of 
times the learner indicated with the respective weight tokens. The attributes of each element in the training set are 
averaged together to form a linear classifier, and all the possible cards are classified. Results are then shown to the 
learners, who are encouraged to iterate on their dataset. This exhibit aims to help learners understand some of the steps 
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and practices of machine learning (C9), explore different ways that agents represent knowledge (C7) and make decisions 
(C8), and engage in data curation and interpretation (C11, C12). It incorporates embodied interaction and metaphors 
(DC2) and facilitates collaborative discussion between group members (DC11), as well as other design considerations 
such as providing opportunities to program or teach AI (DC6) and creating explainable algorithms (DC1). 

User testing of the first iteration of Creature Features indicated that the exhibit was easy for novice users to 
understand (DC15) and engaged learners in collaborative dialogue (DC11), although it was not as engaging for our 
youngest users (ages 6-8). Some learners indicated confusion over how the weight tokens affected the algorithm and 
wanted more explanation (DC1) of both the tokens and the algorithm’s results (so they could better iterate on their 
dataset). The tangible card-based interface (DC2) worked well and learners were able to more easily connect it with the 
algorithmic output than they were in Knowledge Net due to fewer image recognition issues. However, we placed the 
creatures’ features on the back of the cards, and learners tended to not turn over the cards, limiting discussion of the 
features that the algorithm was using to make decisions. In addition, the process of user phone photography was 
cumbersome (as in Knowledge Net). In the second iteration, we added an Osmo device and iPad for photo capturing and 
experimented with material design to improve image recognition (as in Knowledge Net). We also moved the features to 
the front of the cards to make them more readily apparent. To make room for this, we moved the weight token spots to 
the gameboard and added writing to the board to better explain the purpose of the tokens and emphasize that learners 
were constructing a dataset. We also created space for both a positive training dataset (birds) and a negative training 
dataset (non-birds) to provide a more authentic experience of how feature-based machine learning algorithms work.  

 

  

 

 

Figure 1: Final prototype designs for (from left to right): Knowledge Net, Creature Features, and LuminAI (dance interface (top) and 3D 
visualization of agent’s clustered gesture memory (bottom)) 

3.3 LuminAI 

The LuminAI exhibit builds on an existing AI installation in which participants can improvise movement together with 
an AI dance partner that is projected onto a screen [33]. In the expanded version of LuminAI we developed for this 
educational context (Figure 1, right), learners can engage with an interactive visual interface to explore different aspects 
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of the dancer’s decision-making processes and memory, such as manipulating the dancer’s response modes (mimicry, 
transforming a gesture, performing a gesture from memory that is similar or contrasting to the observed gesture), 
switching between different databases of dance gestures (e.g. ballet, popular dance), and exploring a 3D visual 
representation of the way the dancer uses unsupervised learning to cluster (i.e. group) gestures in memory (Figure 1, 
right bottom). In the “boxed” version of the exhibit, learners could engage with this interface using a laptop and Microsoft 
Kinect motion sensor set up on a tripod. The exhibit aims to communicate AI-related competencies such as ways of 
representing knowledge (C7), how agents learn and make decisions (C12, C8), and exposing learners to aspects of 
machine learning (C9). It utilizes embodied interaction, engages learners in open-ended creative interaction, and can 
facilitate varying degrees of collaboration depending on the installation setup [32]. LuminAI also incorporates additional 
design considerations such as creating explainable algorithms (DC1), providing opportunities to program or teach AI 
(DC6), incorporating learner interests, and engaging with lesser-known forms of AI (DC14) [34]. 

We made only minor adjustments to LuminAI’s design between iterations because we wanted to gather additional 
data on participant interaction without drastically changing the prototype (our first user session for LuminAI was small). 
In addition, many of the changes we were considering would be vastly simpler to implement in a museum setting than 
an at-home environment. For instance, the small laptop screen made it difficult for learners to collaboratively dance and 
view the screen together (DC11). Figuring out a larger visualization option would be resolved simply in a museum space 
by projecting visualizations onto walls. We  did make some minor adjustments to the interface. In the first iteration, the 
3D visual representation displayed spheres which turned into moving gestures as the user moved towards them in 3D 
space. This feature was originally intended to improve the performance of the gesture display and reduce cognitive load 
by allowing viewers to focus only on the gestures they were nearest to. However, we observed that numerous users 
were confused by the spheres and did not recognize that they turned into gestures. As a result, we disabled the spheres. 
We also made some minor changes to the wording of the text in the UIs, including rephrasing “User dances” as “Your 
dances” when we observed that several users did not recognize that database as consisting of their own moves. 

4 METHODS 

We conducted a study session for each prototype iteration. We used several methods to recruit family groups with 
children ages 6 and up in the Atlanta metro area to ensure participant diversity, including posting on NextDoor, social 
media, coordinating with Georgia Tech’s education outreach program, and reaching out to Girls Who Code chapters. 
All studies were conducted remotely due to COVID-19. In order to facilitate interaction with physical materials, each 
family was given a set of three boxes—one containing materials for data collection and two containing prototypes (each 
family was only given two exhibits in order to keep the total study time to ~two hours). Boxes were disinfected between 
participant groups per Georgia Tech’s Department of Environmental Health and Safety standards.  

Adult members of the family completed consent forms, and a researcher called each family at a scheduled time to ask 
participating children for assent. Participants were given the option to have the researcher stay on the call or for the 
researcher to hang up and be available as-needed. On-call, the researcher took on the role of an observer, watching 
quietly and only answering questions when asked so as not to unduly influence the interaction. Participants followed a 
detailed written instruction packet (included in the supplemental materials). We provided instructions on how to set up 
and use the exhibit (something that visitors might observe in a museum environment), but we kept explanatory content-
related text to a minimum (i.e. the amount that you might find on a sign next to the exhibit). Participants recorded their 
own data using a provided audio and video recorder. We were able to collect audio/video data for all groups except one 
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(where a device malfunctioned), and all participants over the age of 7 completed surveys after each activity. Survey 
questions and format were adapted to be age-appropriate (using techniques from [39], see supplemental materials).  

In order to test our hypothesis “Interactions with embodied, collaborative, and/or creative AI learning activities in 
informal learning spaces lead to interest development in AI and improved understanding of AI,” we assessed these 
evaluation questions (EQs): EQ1) Usability: Are the exhibits usable?; EQ2) Creativity: Do participants engage creatively 
with the exhibits?; EQ3) Collaboration: Do participants collaborate?; EQ4) Interest: Do participants demonstrate interest 
formation [22] in AI?; EQ5) Learning: Do participants demonstrate learning of AI literacy competencies?; and EQ6) Cross-
Installation Comparison: Do any particular exhibits lead to greater interest development, learning gains, or creative 
engagement? One adult per group was asked for demographic information. We adapted items from various instruments 
to assess EQs1-4, including Wiebe’s user engagement scale [52] (EQ1), Carroll et al.’s Creativity Support Index [9] (EQ2, 
EQ3), Maltese et al.’s instrument for assessing creativity in makerspaces [36] (EQ2), and Chen et al.’s instrument for 
assessing situational interest development [11] (EQ4) (Error! Reference source not found.). We supplemented these 
Likert-type questions with free response questions to provide qualitative insight into user engagement and interest 
development. Results from all Likert-type survey items are reported using appropriate statistics for ordinal data (e.g. 
median (Mdn), quartiles (Q1, Q3), interquartile range (IQR)). Some items were left blank by participants and certain items 
were only asked to participants ages 10+, so we specify the number of respondents for all results. Certain items assessed 
the same construct but were phrased slightly differently for different ages—we group results from these items together 
when reporting. 

We assessed learning (EQ5) using two different metrics. First, we used a retrospective pre/post survey [29,38] to ask 
participants to reflect on how their understanding of particular concepts changed before and after their interaction with 
the museum installation. These pre/post questions assessed learners’ self-efficacy changes (i.e. how much do they think 
they know about a topic before vs. after the activity). We also asked participants content-related post-interaction 
questions to assess their knowledge of certain concepts after they completed the activity. Multiple choice questions were 
scored by one grader, and free response questions were each scored by two graders (using a rubric, see supplemental 
material). A third analyst resolved discrepancies. We conducted a cross-installation comparison of survey results to 
determine whether any of the installation designs support learning more effectively than others (EQ6). 

5 RESULTS 

We recruited a total of 14 family groups (38 participants; 21 children ages 6 and up and 17 adults) to interact with the 
exhibit prototypes. Eight groups (n=22) interacted with Iteration 1, and six groups (n=16) interacted with Iteration 2. 
Among the 14 adults who answered the demographic questions, nine identified as White/Caucasian, four as African 
American, two as Asian American, and one as other Latin American (two participants were biracial). Most adults 
reported having at least a 4-year degree (79%). Among the children, 10% were 6 years old, 30% were 7-9 years old, 50% 
were 10-14, and 10% were 15. 60% of children identified as female and 40% as male. We also asked families about their 
prior experience with computing. Most adults considered their children to have some prior experience with computers 
(70%) and AI (60%). Most adults also reported that they worked with computers a lot or sometimes (79%) and had some 
prior experience interacting with AI (79%) but did not write code or program AI (93%). Unless noted, all results reported 
in this section are for all participants from both study sessions. This section is organized by evaluation question. 
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5.1 EQ1: Usability 

All exhibits had an average hold time (i.e. time spent interacting with the exhibit) of 27-30 minutes. This is likely not 
indicative of the hold time in an actual museum environment, which has many more distractions. However, the length 
of the at-home hold time indicates that these activities have the potential to foster prolonged engagement and have a 
“high ceiling” for interaction. Hold times were similar across iterations, except for Creature Features, which saw an 
increase in average hold time from 19:06 to 39:05 from iteration 1 to iteration 2. We hypothesized that this was due to 
the changes that made it easier for participants to iterate on their dataset design. However, we found that a similar 
number of groups iterated on their datasets (3/5 with Iteration 1 vs. 4/5 with Iteration 2). Instead, this increase in hold 
time occurred because participants spent more time discussing the creatures’ features once we moved them to the front 
side of the cards. The survey questions we asked to assess user engagement were drawn from Wiebe’s User Engagement 
Scale [52] (Error! Reference source not found.). Learners generally indicated that they found all three activities 
enjoyable. Participants indicated that they found the activities easy to understand, but that they could not do some of 
the things they wanted to do.  

Table 1: Participant median scores for survey items. We used a 5-point Likert scale for participants age 15+ and a 3-point scale for 
ages 10-14 per guidance in [39]. We grouped all scores together by mapping the 3-point scale to scores 1, 3, and 5 on a 5-point scale.  

Item EQs Knowledge Net 
(n=15) 

Creature 
Features (n=12) 

LuminAI (n=15) 

It was easy to understand how to use the activity.  1 Mdn=5, IQR=1 Mdn=4.5, IQR=1 Mdn=4, IQR=2 
It was easy for me to explore different ideas, outcomes, options or designs 
when doing the activity. 

2 Mdn=4, IQR=2 Mdn=4.5, IQR=1 Mdn=3, IQR=2 

What I was able to produce was worth the effort I had to exert to produce 
it. 

2 Mdn=4, IQR=2 Mdn=4, IQR=1 Mdn=4, IQR=2 

I was able to be creative while doing the activity. 2 Mdn=5, IQR=2 Mdn=5, IQR=2 Mdn=5, IQR=1 
I feel like I created something personally meaningful. 2 Mdn=3, IQR=3 Mdn=3, IQR=1 Mdn=3, IQR=0 
I feel like I created something important. 2 Mdn=3, IQR=3 Mdn=3, IQR=2 Mdn=3, IQR=1 
I was able to easily work with other people when doing the activity. 2, 3 Mdn=5, IQR=2 Mdn=5, IQR=1 Mdn=4, IQR=2 
The activity was interesting. 4 Mdn=5, IQR=2 Mdn=5, IQR=0 Mdn=5, IQR=1 
The topic of the activity was new to me. 4 Mdn=4, IQR=3 Mdn=5, IQR=2 Mdn=4, IQR=2 
I was focused on the activity. 4 Mdn=5, IQR=1 Mdn=5, IQR=1 Mdn=5, IQR=1 
I was so involved in doing the activity that I lost track of time. 4, 2 Mdn=3, IQR=2.5 Mdn=3, IQR=1 Mdn=3, IQR=1 
Doing the activity was challenging in a good way 4, 1, 2 Mdn=4, IQR=2 Mdn=5, IQR=1 Mdn=4, IQR=1 
The activity was enjoyable. 1, 4 Mdn=4, IQR=2 Mdn=5, IQR=1 Mdn=5, IQR=.5 
I could not do some of the things I wanted to do when completing the 
activity. 

1 Mdn=3, IQR=3 Mdn=2.5, IQR=2 Mdn=3, IQR=2 

This activity made me think more about AI. 4 Mdn=4, IQR=2 Mdn=4.5, IQR=1 Mdn=5, IQR=0 
I would like to do more activities like this one in the future. 4 Mdn=5, IQR=2 Mdn=5, IQR=1 Mdn=4, IQR=2 

5.2 EQ2: Creativity 

We drew on constructs such as exploration, effort/reward tradeoff, and expressiveness from Caroll et al.’s Creativity 
Support Index [9] when evaluating creativity (Error! Reference source not found.). Participants indicated across all 
three exhibits that there was an appropriate effort/reward tradeoff in the interaction, and that they felt they were able 
to be creative. Learners also indicated that they were able to explore a variety of ideas/outcomes during their interactions 
with Knowledge Net and Creature Features. Responses were more neutral when it came to exploring a variety of 
ideas/outcomes with LuminAI. We also asked learners if they felt that they had created something important or 
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personally meaningful—responses were neutral across all exhibits. Finally, we asked learners to reflect on their 
perceptions of AI as creative before vs. after the activity. Learners reported positive changes in median agreement with 
the statement “I can create things with AI” for all activities (KN: DMdn=+2, CF: DMdn=+1.5, L: DMdn=+2). Despite being 
situated in a more expressive domain, LuminAI did not generate notably larger gains in perceptions of AI as creative 
when compared to the other two exhibits. 

5.3 EQ3: Collaboration 

Most participants indicated that they were able to easily collaborate with others during all three activities (Error! 
Reference source not found.). Many participants said in their free-response answers that the aspect of the activity 
they liked the most was being able to do it together with their family (e.g. “What I like about this activity is the family 
engagement and my girls view on different things”; “I like that I got to do it with my mom”). We observed that Knowledge 
Net most consistently supported collaboration amongst group members of all ages. Younger participants (6-8 years old) 
did not appear to be as engaged with Creature Features as older group members were (“My child was less interested, I 
would have been more interested in this on my own”). However, we observed that the exhibit was quite popular with 
slightly older children (10-11). Since only one person is tracked by the Kinect/AI dancer at one time, learners often 
engaged with turn-taking with LuminAI, which sometimes caused conflict amongst kids who wanted to engage with the 
dancer simultaneously. Several participants commented that they would have enjoyed the opportunity to dance as a 
group with the AI. We have explored more social versions of LuminAI in larger installation spaces in the past [32]. 
Learners indicated that they felt they could “collaborate with AI” more after the activities than before. The biggest 
positive change in scores for this question was for LuminAI (DMdn=+2, somewhat disagreeàsomewhat agree), which 
was expected, since learners were actively co-creating with the AI dancer in LuminAI and the other exhibits did not 
involve human-AI co-creation. 

5.4 EQ4: Interest Development 

We drew on constructs from Chen et al.’s survey for situational interest [11] (Error! Reference source not found.). 
Participants generally agreed that the exhibits were interesting. Participants found Creature Features to be the most novel 
activity, followed by LuminAI and Knowledge Net. We had anticipated LuminAI would be the most novel activity for 
participants, but several participants were familiar with the Microsoft Kinect, which may have led them to feel the 
exhibit as a whole was less novel. Most participants indicated agreement with the statement “The activity was 
challenging in a good way,” suggesting that although it was easy to understand how to interact with the exhibit (EQ1), 
the activities provided enough challenge to be engaging. Participants generally indicated that they were focused on the 
activities, though responses were more neutral when we asked them to rate their agreement with the statement “I was 
so involved in doing the activity that I lost track of time.” This may indicate that the exhibits were interesting enough 
to keep participants’ attention, but did not go so far as to absorb them in a state of creative “flow” in most cases [12]. 
Participants indicated that they would like to do similar activities in the future (Mdn=[4,5] for all three activities) and 
that the activities made them think more about AI (Mdn=[4,5] for all three activities). Retrospective questions indicated 
that learners’ interest in wanting to “find out more about AI” (KN: DMdn=+.5, CF: DMdn=+1.5, L: DMdn=0) and “learn to 
build or program AI” (KN: DMdn=+2, CF: DMdn=+2, L: DMdn=+1) was either high to begin with or increased after the 
activities, with most substantial increases after Creature Features. Across the board, most learners reported interest in AI 
both before and after the activity (Mdn=[4,5] for all three activities), which may be why they self-selected to participate 
in the study.  
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5.5 EQ5: Learning 

A summary of median knowledge changes according to learners’ retrospective pre/post self-reports for each construct 
is shown in Table 2. There were no constructs with a negative change. The most positive gains were seen for LuminAI 
and Creature Features. Particularly notable gains are shown in dark green and bolded in the table. These positive jumps 
occurred for “types of AI and the differences between them” (LuminAI) and “how AI reasons and makes decisions” 
(Creature Features). These results indicate that learners generally felt that they had learned from the activities, although 
perhaps only moderately in most cases. Of the three activities, the median scores suggest that Knowledge Net was the 
least successful at leading to substantial self-reported learning gains, although the Q1 quartile change indicates that 
learners with less prior knowledge did report some increase. We saw larger gains for some of the constructs in the 
Iteration 2 study than Iteration 1. This could have been due to the modifications to the exhibit designs. It could also be 
because the Iteration 2 participants self-reported on average that they had less prior knowledge of AI than the Iteration 
1 participants, leaving them more room to learn. This would be a positive result, indicating that the activities had a low 
barrier of entry (DC15) and were able to communicate AI concepts to learners with little prior knowledge. 

Table 2: Summary of median (Mdn) change in self-reported knowledge for participants ages 10 and up. Quartile change (DQ1, DQ3) 
is shown where there is no median change. Cells are shaded to indicate the size of the shift, with larger shifts shaded darker green. 

Construct Knowledge Net (n=15) Creature Features (n=12) LuminAI (n=15) 
Similarities and differences between 
human and machine intelligence 

DMdn=0 (Moderate) 
DQ1=+1; DQ3=+.5 

DMdn = 0 (Moderate) 
DQ1=+1; DQ3=+1 

DMdn = +1  
(Low à Moderate) 

Types of AI and the differences 
between them 

DMdn = +1  
(Low à Moderate) 

DMdn = +1  
(Low à Moderate) 

DMdn = +1.5  
(None-Low à Moderate) 

How computers store and represent 
knowledge 

DMdn = 0 (Moderate)  
DQ1=+1; DQ3=0 

N/A DMdn = 0 (Moderate) 
DQ1=+1.5; DQ3=0 

How AI reasons and makes 
decisions 

DMdn = 0 (Moderate) 
DQ1=+2; DQ3=+.5 

DMdn = +1.5  
(Low-Moderate à High) 

DMdn = +1 (Low à Moderate) 

The role that humans play in 
programming and fine-tuning AI 

DMdn = 0 (Moderate) 
DQ1=+1; DQ3=+1 

DMdn = +1  
(Moderate à High) 

DMdn = +1 (Low à Moderate) 

Ethical concerns about AI DMdn = +1 
(Low à Moderate) 

DMdn = +1  
(Low à Moderate) 

DMdn = +1 (Low à Moderate) 

Most content knowledge questions were scored on a scale of 0-3—0-inadequate, 1-partial, 2-adequate, 3-excellent (a 
few questions did not have a “partial” option and two were multiple choice) (see supplemental materials for the rubric 
for each question). An adequate score indicated that the learner demonstrated the expected level of knowledge. Excellent 
scores were “above and beyond”. Table 3 summarizes participants’ scores for each question. Median scores for all of the 
questions were adequate; participants responses to the LuminAI questions were most consistently strong. For Creature 
Features, this indicates that learners were for the most part able to predict what would happen if they placed a lot of 
weight on a particular card (CFQ1), list items they would include in a training dataset for another context (e.g. self-
driving car) (CFQ2), and predict what would happen if they placed weight tokens on a card in the alternative context 
(CFQ3). For LuminAI, this indicates that learners were able to decide what cluster a gesture would be placed in (LQ2), 
consider the strengths/limitations of LuminAI’s representation of the human body (LQ3, LQ4), and transfer their 
knowledge of the agent’s clustering to a new domain (LQ5). For Knowledge Net, this indicates that learners were able to 
consider similarities/differences between human intelligence and the network (KNQ1), explain how the computer would 
use the network to answer a question (KNQ2),  transfer what they learned at the exhibit to a new domain (e.g. grocery 
shopping) (KNQ3), and consider how to gather data to input into the network (KNQ4, KNQ5).  
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LuminAI Q1 asked learners to circle all of the things that they noticed the agent doing. Everyone that completed the 
survey (n=15) noticed that LuminAI mimicked them, and most people noticed the other response modes (e.g. performing 
a similar (n=13) or contrasting (n=13) movement, modifying their movement (n=11) and recognizing that the AI learned 
from them (n=11)). This is a significant improvement from earlier studies we have conducted with the non-educational 
version of LuminAI in which participants are just able to dance with the installation without any UI controls over the 
agent’s reasoning capabilities. Participants at previous versions of the installations have often not noticed that the agent 
is doing anything more novel than mimicking them despite complex reasoning on the backend [27,32]. 

Table 3: Frequency table of participant scores for content-knowledge questions. Exhibit names are abbreviated as Knowledge Net 
(KN), Creature Features (CF), LuminAI (L). Cells representing the median score are shaded and the contents are bolded.  

Score KNQ1 KNQ2 KNQ3 KNQ4 KNQ5 CFQ1 CFQ2 CFQ3 LQ2 LQ3 LQ4 LQ5 
0 - Inadequate 3 4 8 4 5 6 1 2 0 2 2 3 
1 - Partial 6 7 N/A 6 1 3 4 6 N/A N/A N/A N/A 
2 - Adequate 15 14 8 11 13 11 10 7 18 15 12 14 
3 - Excellent 2 1 10 0 2 4 9 3 N/A 1 4 1 

6 DISCUSSION 

This section examines several key implications of our results as they relate to the use of collaboration, creativity, and 
embodied interaction in AI literacy learning interventions. Although overall our exhibits were successful at facilitating 
collaborative learning, we noted two main inhibitors to collaborative interaction in AI literacy exhibits—intimidation 
and age. AI and computer science more broadly can be intimidating topics to learn about, particularly if learners have 
negative preconceptions about their technological literacy or whether or not they “belong” in computing [47]. We saw 
some of this intimidation surface in parental interactions with LuminAI. Some users felt overwhelmed by the 3D 
interactive visualization we had developed to make the AI more “explainable,” commenting that “We weren’t sure what 
we were supposed to be learning.” Despite these concerns, most participants scored well on the content knowledge 
questions related to LuminAI. This suggests that although they can lead to learning, visual interfaces provided to explain 
AI algorithms may be intimidating for novice users and require additional scaffolding or a more guided, less exploratory 
experience to begin with. The response mode interface was less intimidating, indicating making components 
customizable could be a good approach for making AI explainable.  

The other factor that influenced collaboration at exhibits was age. Creature Features was not particularly engaging 
for our youngest participants (6-7) but was more engaging for slightly older kids. This suggests that in addition to age-
appropriate learning outcomes [48], researchers may consider developing AI literacy design principles specific to 
particular age bands. We plan to pursue additional user testing to define appropriate age groups for our exhibits. 
Knowledge Net was most successful at facilitating collaboration amongst group members of all ages and levels of 
experience with AI. We hypothesize that the ability to use prior knowledge during the activity made learning about AI 
less intimidating—one learner commented that they liked Knowledge Net because they could “make relationships 
between things they already knew.” Bolstering learners’ confidence by allowing them to succeed at pulling in prior 
knowledge could enable them to explore activities in which they may otherwise feel less confident or discouraged [17]. 

We had hypothesized that LuminAI, which involved creativity to a greater extent than the other two exhibits, 
would be the most successful at fostering interest development and self-efficacy gains, but there was not a notable 
difference. We posit that the lack of a lasting/permanent creative artifact and the lack of an iterative 
exploration/testing/revision cycle may have played a role in limiting the impact of LuminAI on learner interest 
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development/self-efficacy. Prior work has shown that learners often have increased interest/self-efficacy in computing 
after engaging in creative activities where they create a personally meaningful artifact (e.g. multimedia creation [20], 
music composition [35]). Learners interacting with LuminAI indicated that they did not feel they had created anything 
important or personally meaningful. Although LuminAI allowed learners to creatively express themselves, the 
ephemeral nature of dance means learners did not generate a lasting artifact. The lack of an artifact may also explain 
why LuminAI (along with the other exhibits) did not go so far as to absorb participants in a state of creative “flow.”  

We designed LuminAI to facilitate open-ended exploration, but learners had neutral feelings about their ability to 
explore a variety of ideas/outcomes when interacting with LuminAI. This could result from the lack of an iterative 
testing/reflection/revision cycle that was present at the other two exhibits. Recent research on AI education suggests 
that immediate feedback and opportunities for metacognition play an important role in AI learning experiences [15,53]. 
Creature Features and Knowledge Net had an iterative cycle built into the interaction, and learners were encouraged to 
reflect on their dataset/network after testing it on the computer. LuminAI did not have a similar cycle, and incorporating 
opportunities for metacognition could be an interesting direction for inspiring greater creativity and learning. 

Our findings indicate that learners enjoyed the embodied nature of the exhibits.  Learners commented, “It was a 
great blend of hands-on and screen time,” and “I liked the tactile manipulation of the tiles representing abstract info.” 
Learners also liked seeing their personal movements captured in LuminAI and observing how the agent replayed them, 
modified them, or responded with familiar dance moves. Our findings indicate that the embodied interfaces facilitated a 
low barrier to entry for AI novices. One participant commented that they “liked how the activity wasn’t too complicated, 
and anyone could do it (as opposed to if we had to code the AI ourselves).” We noted that interaction and discussion 
time was skewed towards the embodied component of the activity. For instance, in Knowledge Net, participants focused 
on selecting tiles and relationships to construct the network, with less time spent interacting with and discussing the 
chatbot. Similarly, participants spent significantly more time dancing with LuminAI than they did exploring the 
interactive visualization. This imbalance points to the engaging nature of the embodied interactions but raises additional 
research questions about how to foster AI learning experiences that span both physical and digital interfaces.   

7 LIMITATIONS & THREATS TO VALIDITY 

The results reported in this section are not statistically significant due to the small sample size of our population. Study 
size was limited due to COVID-19 precautions. Participants may have self-selected for the study due to an existing 
interest in AI/technology. Further studies will need to be conducted to determine whether these findings generalize to a 
larger population. This study was also not able to probe the individual effect of creativity, collaboration, or embodiment 
on learning/interest development. For example—does collaboration play a larger role than creativity in supporting 
learning? This would require controlled studies with similar versions of each exhibit where (for example) one version 
incorporated embodied interaction and one did not. 

8 CONCLUSION 

In this paper, we present the design of three museum exhibits that aim to foster public AI literacy. These exhibits 
incorporate embodied interaction, collaboration, and/or creativity as key design features, and they also draw on design 
considerations outlined in [34]. We present the results from user studies in which we examined family groups’ 
interactions with the exhibits, with a particular focus on understanding learning and interest development in relation to 
embodiment, creativity, and collaboration. Our findings suggest new considerations for designing collaborative, creative, 
and/or embodied AI literacy learning interventions.  
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