








Unique wheel sizes without calibration: It is not neces-

sary to know or to learn the ei values. For this entire experi-

ment ei was set to 1. The four robots in Figure 14 were

successfully commanded from a horizontal line to a box

formation, and then to a vertical line. For each formation,

error converged to less than half a meter, as shown in

Figure 17.

Approximately identical wheel sizes: Even with approxi-

mately identical e values, a collection of robots is still con-

trollable due to process noise. The robots in Figure 14 were

fitted with approximately identical wheels. Figure 18 shows

Fig. 14. Four differential-drive robots with wheel diameters in the set {102, 108, 127, 152} mm (left) and robots with 102 mm wheels

(right). Each robot receives the same broadcast control signal, but the different wheel sizes scale the commanded linear and angular

velocities. Robots courtesy of College of Engineering Control Systems Laboratory (Block, 2012).

Fig. 15. Photographs from hardware experiment steering four differential-drive robots with different wheel sizes. The robots are

initialized in a straight line and all receive the same control input from a wireless signal. A motion capture system is used for feedback

to steer the four robots to the colored targets. In the third frame a disturbance is injected by moving a single robot away from its target.
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Fig. 16. Hardware experiment with unique wheel sizes and

online calibration. (Top) e values estimated by online calibration.

(Bottom) Summed distance error as the robots were steered

through the sequence of formations shown.
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Fig. 17. Hardware experiment with unique wheel sizes and

no calibration. The plot shows the summed distance error as

the robots were steered through the sequence of formations

shown.
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successful convergence results of four robots with approxi-

mately identical wheel sizes commanded to the same for-

mations as the previous experiment.

Convergence for varying numbers of robots: Our control

law extends to large numbers of robots, but convergence

time increases with population size. Figure 19 plots mean

error as a function of time for n = 1, 2, 5, 12, and 15

differential-drive robots with approximately identical wheel

sizes being directed to goal positions in a regular

0.2 3 0.2 m grid. As shown in Figure 20, all robots were

initialized in a clump 1 m away from the grid positions in

an enclosed 2 3 1.5 m workspace. Heading error was

artificially increased by each robot adding independent and

identical turning error uniformly randomly distributed on

[2p/4, p/4]. Robots were controlled until they achieved a

steady-state error. The steady-state errors were [3, 14, 12,

24, 34] mm. In each case the position error exponentially

decreases with time, but steady-state error and convergence

time increase with the number of robots. The time to con-

verge within distances � 0.2 m of the targets is roughly

linear in the number of robots n, with approximate rates of

1.8n to converge within 0.2 m and 0.34n to converge

within 0.5 m. For tighter convergence the convergence time

grows superlinearly, with approximate rates of 0.3n2 to

converge within 0.1 m and 0.6n2 to converge within

0.05 m. See Extension 1 for a video of 12 r-one robots

converging from one formation to a second formation.

4.4.5. Applications enabled by position control. The ability

to control position enables many tasks. For example, robot

aggregation collects all the robots to one position; this pri-

mitive operation could be useful for alignment of micro-

and nanorobots. To achieve aggregation, at each control

step the goal position of each robot is set to the mean posi-

tion of the ensemble.

Other tasks include forming subgroups, path- and trajec-

tory-following, dispersion, pursuit/avoidance, manipulation,

and assembly. Each can be implemented by a suitable selec-

tion of time-varying target locations in (13). See Onyuksel

(2012, Chapter 3.6) for an implementation of trajectory

tracking.

Obstacle and collision avoidance can be accomplished

by adding a potential field term to the control policy (12)

as in Choset et al. (2005, Chapter 4). See Onyuksel (2012,

Chapter 3.5) for an implementation of this obstacle avoid-

ance method.

5. Conclusion

In this paper we investigated ensembles of nonholonomic

unicycles that share a uniform control input. We first exam-

ined open-loop position and heading control of an ensem-

ble of nonholonomic unicycles. We provided a control

policy to steer n robots with unique turning rates to desired

range and bearing values in a finite number of steps. This

control policy was validated in simulation and in hardware

experiments.

Open-loop control is rarely satisfactory due to model

and process noise. Through Lyapunov analysis, we derived

a globally asymptotic stabilizing controller for an ensemble

of unicycles in continuous and in discrete time. In simula-

tion, we showed that a discrete-time ensemble of unicycles

converges asymptotically and rejects disturbances from a

standard noise model. In hardware experiments, we demon-

strated online calibration which learned the unknown para-

meter for each robot. These experiments led to surprising

results that (a) our controller still works when all wheel

sizes are incorrectly specified and (b) for certain levels of

process noise our controller works even when all wheel

sizes are the same.

This work shows that an ensemble of unicycles with uni-

form inputs to all robots can be regulated to arbitrary posi-

tions and reject disturbances from a standard noise model.

The analysis suggests that micro- and nanorobots with uni-

form inputs should be designed with large rotational, but

small translational process noise.
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Fig. 18. Hardware experiment with approximately identical

wheel sizes. The plot shows the summed distance error as the

robots were steered through the sequence of formations shown.
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Fig. 19. Hardware experiment with robots shown in Figure 20.

The goal for this experiment is to control all the robots to

position them into a uniform grid. Mean error as a function of

time for 1, 2, 5, 12, and 15 robots being directed to goal

positions in a regular 0.2 3 0.2 m grid. All robots were

initialized in a clump 1 m away from the grid positions in an

enclosed 2 3 1.5 m workspace. Robots were controlled until

they reached a steady-state error.
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With both open- and closed-loop control, convergence

time grows as a function of the number of robots. This

growth makes these methods most suitable for tens of robots.

Future work should investigate how to efficiently control

hundreds to thousands of nonholonomic unicycles simultane-

ously, and develop a theory of ensemble manipulation.

Finally, many micro- and nanoscale robot systems have

uniform inputs, but other motion constraints. In particular,

many systems such as helical swimmers (Zhang et al.,

2009a,b,c) and magnetized Tetrahymena pyriformis cells

(Ou et al., 2013) move in the same direction with different

speeds. See Becker et al. (2013b) for an example of how

control methods in this paper can be modified for these

classes of systems.
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Appendix A: Index to Multimedia Extension

The multimedia extension page is found at http://www. ijrr.
org.

Table of Multimedia Extension

Extension Media type Description

1 Video Hardware experiment with 12
differential-drive robots, all
commanded by the same
broadcast control signal. Robots
move from a rectangular
configuration to form the letter
‘R’. Next, 120 simulated robots
move from ‘‘ROBOTICS’’ to
form ‘‘IJRR’’ despite IID
perturbation.
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