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Abstract. Consider a thin, flexible wire of fixed length that is held at each end by
a robotic gripper. The curve traced by this wire can be described as a local solution
to a geometric optimal control problem, with boundary conditions that vary with
the position and orientation of each gripper. The set of all local solutions to this
problem is the configuration space of the wire under quasi-static manipulation. We
will show that this configuration space is a smooth manifold of finite dimension that
can be parameterized by a single chart. Working in this chart—rather than in the
space of boundary conditions—makes the problem of manipulation planning very
easy to solve. Examples in simulation illustrate our approach.

1 Introduction

Figure 1 shows a thin, flexible wire of fixed length that is held at each end by a
robotic gripper. Our basic problem of interest is to find a path of each gripper that
causes the wire to move between start and goal configurations while remaining in
static equilibrium and avoiding self-collision. As will become clear, it is useful to
think about this problem equivalently as finding a path of the wire through its set
of equilibrium configurations (i.e., the set of all configurations that would be in
equilibrium if both ends of the wire were held fixed).

There are two reasons why this problem seems hard to solve. First, the configu-
ration space of the wire has infinite dimension. Elements of this space are framed
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Fig. 1 Quasi-static manipulation of an elastic rod (orange) by robotic grippers (blue). Notice
that the grippers begin and end in the same position and orientation. Remarkably, this motion
corresponds to a straight-line path in the global coordinate chart we derive in this paper.

curves, i.e., continuous maps q : [0,1]→ SE(3), the shape of which in general must
be approximated. Second, a countable number of configurations may be in static
equilibrium for given placements of each gripper, none of which (typically) can be
computed in closed form. For these two reasons, the literature on manipulation plan-
ning suggests exploring the set of equilibrium configurations indirectly, by sampling
displacements of each gripper and using numerical simulation to approximate their
effect on the wire. This approach was developed in the seminal work of Lamiraux
and Kavraki [21] and was applied by Moll and Kavraki [29] to manipulation of
elastic “deformable linear objects” like the flexible wire we consider here.

Our contribution in this paper is to show that the set of equilibrium configurations
for the wire is a smooth manifold of finite dimension that can be parameterized by
a single (global) coordinate chart. We model the wire as a Kirchhoff elastic rod [8].
The framed curve traced by this elastic rod in static equilibrium can be described as
a local solution to a geometric optimal control problem, with boundary conditions
that vary with the position and orientation of each gripper [41, 8]. Coordinates for
the set of all local solutions over all boundary conditions are provided by the initial
value of costates that arise in necessary and sufficient conditions for optimality.
These coordinates describe all possible configurations of the elastic rod that can
be achieved by quasi-static manipulation, and make manipulation planning—the
seemingly “hard problem” described above—very easy to solve.

Our approach builds on a long history in analysis of elasticity [3]. Recent work
gives a more or less complete picture of planar elastic rods [32, 31], and this work
rests on similar foundations as our own [1]. We have also been influenced by anal-
ysis of conjugate points in elastic filament models of DNA [14] and by an earlier
sequence of papers initiated by Langer and Singer [22]. In addition, we note the
emergence of new approaches to dynamic simulation of elastic rods based on dis-
crete geometry [7], which has started to find application in robotics [18]. However,
none of this previous work answers our questions about the set of equilibrium con-
figurations: is it a finite-dimensional manifold, what are its coordinate charts, etc.
These questions are the foundation of our approach to manipulation planning.
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We are motivated by applications that require manipulation of deformable ob-
jects: knots and suturing [15,38,40,33,5], cable routing [16], folding clothes [6,43],
compliant parts handling [26, 13] and assembly [4], surgical retraction of tissue
[17], and protein folding [2]. Related applications include haptic exploration with
“whisker” sensors, often modeled as elastic rods [36, 12]. We are also motivated by
the link, pointed out by Tanner [39], between manipulation of deformable objects
and control of hyper-redundant [10] and continuum [30, 42] robots.

Section 2 establishes our theoretical framework. The two key parts of this frame-
work are optimal control on manifolds and Lie-Poisson reduction. We derive co-
ordinate formulae for necessary and sufficient conditions—in the former case these
formulae are well known, but in the latter case they are not. Section 3 shows how our
framework applies to the elastic rod. We prove that the set of equilibrium configura-
tions for this rod is a smooth manifold of finite dimension that can be parameterized
by a single chart, and we explain why this result makes the problem of manipula-
tion planning easy to solve. We note in particular that the computations required
for planning are trivial to implement—the example of Figure 1 was generated by
about a dozen lines of code. Section 4 identifies several research directions that are
enabled by our analysis of the elastic rod. Our ideas follow from but significantly
extend earlier work on a simpler model (a planar elastic kinematic chain [28]).

2 Theoretical Framework

We will see in Section 3 that the framed curve traced by an elastic rod in equilib-
rium is a local solution to a geometric optimal control problem. Here, we provide the
framework to characterize this solution. Section 2.1 gives our notation for smooth
manifolds. It is not a review (for this, see [25]), and is included only because notation
varies widely in the literature. Section 2.2 states necessary and sufficient conditions
for optimality on manifolds in a form that is useful for us. Section 2.3 derives coor-
dinate formulae to compute these necessary and sufficient conditions. Most of these
results are a translation of [1] in a style more consistent with [25, 27]. We conclude
with coordinate formulae to test sufficiency for left-invariant systems on Lie groups
(Theorem 4), an important result that is not in [1] and is hard to find elsewhere.

2.1 Smooth Manifolds

Let M be a smooth manifold. The space of smooth real-valued functions on M is
C∞(M). The space of smooth vector fields on M is X(M). The action of v ∈ TmM
on f ∈ C∞(M) is v · f . The action of w ∈ T ∗

mM on v ∈ TmM is 〈w,v〉. The ac-
tion of X ∈ X(M) on f ∈ C∞(M) produces the function X [ f ] ∈ C∞(M) satisfying
X [ f ](m) =X(m) · f for all m∈ M. The Jacobi-Lie bracket of X ,Y ∈X(M) is the vec-
tor field [X ,Y ] ∈ X(M) satisfying [X ,Y ][ f ] = X [Y [ f ]]−Y [X [ f ]] for all f ∈C∞(M).
If F : M → N is a smooth map between manifolds M and N, then the pushforward of
F at m∈ M is the linear map TmF : TmM → TF(m)N satisfying TmF(v) · f = v ·( f ◦F)
for all v ∈ TmM and f ∈ C∞(N). The pullback of F at m ∈ M is the dual map
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T ∗
mF : T ∗

F(m)N → T ∗
mM satisfying 〈T ∗

mF(w),v〉 = 〈w,TmF(v)〉 for all v ∈ TmM and
w ∈ T ∗

F(m)N. We say F is degenerate at m ∈ M if there exists non-zero v ∈ TmM such
that TmF(v) = 0. It is equivalent that the Jacobian matrix of any coordinate represen-
tation of F at m have zero determinant. The Poisson bracket generated by the canon-
ical symplectic form on T ∗M is {·, ·} : C∞(T ∗M)×C∞(T ∗M) → C∞(T ∗M). The
cotangent bundle T ∗M together with the bracket {·, ·} is a Poisson manifold. The
Hamiltonian vector field of H ∈C∞(T ∗M) is the unique vector field XH ∈ X(T ∗M)
satisfying XH [K] = {K,H} for all K ∈ C∞(T ∗M). We use this same notation when
H is time-varying. Finally, let π : T ∗M → M satisfy π(m,w) = m for all v ∈ T ∗

mM.

2.2 Optimal Control on Manifolds

Let U ⊂ R
m for some m > 0. Assume g : M ×U → R and f : M ×U → TM are

smooth maps. Consider the optimal control problem

minimize
q,u

∫ 1

0
g(q(t),u(t))dt

subject to q̇(t) = f (q(t),u(t)) for all t ∈ [0,1]

q(0) = q0, q(1) = q1,

(1)

where q0,q1 ∈ M and (q,u) : [0,1]→ M×U . Define the parameterized Hamiltonian
Ĥ : T ∗M×R×U →R by Ĥ(p,q,k,u) = 〈p, f (q,u)〉− kg(q,u), where p ∈ T �

q M.

Theorem 1 (Necessary Conditions). Suppose (qopt,uopt) : [0,1]→M×U is a local
optimum of (1). Then, there exists k ≥ 0 and an integral curve (p,q) : [0,1]→ T ∗M
of the time-varying Hamiltonian vector field XH, where H : T ∗M ×R→ R is given
by H(p,q, t) = Ĥ(p,q,k,uopt(t)), that satisfies q(t) = qopt(t) and

H(p(t),q(t), t) = max
u∈U

Ĥ(p(t),q(t),k,u) (2)

for all t ∈ [0,1]. Furthermore, if k = 0, then p(t) 
= 0 for all t ∈ [0,1].

Proof. See Theorem 12.10 of [1]. ��
We call the integral curve (p,q) in Theorem 1 an abnormal extremal when k = 0 and
a normal extremal otherwise. As usual, when k 
= 0 we may simply assume k = 1.
We call (q,u) abnormal if it is the projection of an abnormal extremal. We call (q,u)
normal if it is the projection of a normal extremal and it is not abnormal.

Theorem 2 (Sufficient Conditions). Suppose (p,q) : [0,1]→ T ∗M is a normal ex-
tremal of (1). Define H ∈C∞(T ∗M) by

H(p,q) = max
u∈U

Ĥ(p,q,1,u), (3)

assuming the maximum exists and ∂ 2Ĥ/∂u2 < 0. Define u : [0,1]→U so u(t) is the
unique maximizer of (3) at (p(t),q(t)). Assume that XH is complete and that there
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exists no other integral curve (p′,q′) of XH satisfying q(t)= q′(t) for all t ∈ [0,1]. Let
ϕ : R×T ∗M → T ∗M be the flow of XH and define the endpoint map φt : T ∗

q(0)M →M

by φt(w) = π ◦ϕ(t,w,q(0)). Then, (q,u) is a local optimum of (1) if and only if there
exists no t ∈ (0,1] for which φt is degenerate at p(0).

Proof. See Theorem 21.8 of [1]. ��

2.3 Lie-Poisson Reduction

Let G be a Lie group with identity element e ∈ G. Let g= TeG and g∗ = T ∗
e G. For

any q ∈ G, define the left translation map Lq : G → G by Lq(r) = qr for all r ∈ G.
A function H ∈ C∞(T ∗G) is left-invariant if H (T ∗

r Lq(w),r) = H(w,s) for w ∈ T ∗
s G

and q,r,s ∈ G satisfying s = Lq(r). For ζ ∈ g, let Xζ be the vector field that satisfies
Xζ (q) = TeLq(ζ ) for all q ∈ G. Define the Lie bracket [·, ·] : g× g→ g by [ζ ,η ] =[
Xζ ,Xη

]
(e) for all ζ ,η ∈ g. For ζ ∈ g, the adjoint operator adζ : g → g satisfies

adζ (η) = [ζ ,η ] and the coadjoint operator ad∗ζ : g∗ → g∗ satisfies
〈

ad∗ζ (μ),η
〉
=〈

μ ,adζ η
〉

for all η ∈ g and μ ∈ g∗. The functional derivative of h ∈ C∞(g∗) at
μ ∈ g∗ is the unique element δh/δ μ of g that satisfies the following for all δ μ ∈ g∗:

lim
s→0

h(μ + sδ μ)− h(μ)
s

=

〈
δ μ ,

δh
δ μ

〉

Theorem 3 (Reduction of Necessary Conditions). Suppose H : T ∗G× [0,1]→ R

is both smooth and left-invariant for all t ∈ [0,1]. Denote the restriction of H to g∗
by h = H|g∗×[0,1]. Given p0 ∈ T ∗

q0
G, let μ : [0,1]→ g∗ be the solution of

μ̇ = ad∗δh/δ μ(μ) (4)

with initial condition μ(0) = T ∗
e Lq0(p0). The integral curve (p,q) : [0,1] → T ∗G

of XH with initial condition p(0) = p0 satisfies p(t) = T ∗
q(t)Lq(t)−1 (μ(t)) for all t ∈

[0,1], where q is the solution of q̇ = Xδh/δ μ(q) with initial condition q(0) = q0.

Proof. See Theorem 13.4.4 of [27]. ��
It is convenient for us to introduce coordinates on g and g∗. Let {X1, . . . ,Xn} be
a basis for g and let {P1, . . . ,Pn} be the dual basis for g∗ that satisfies

〈
Pi,Xj

〉
=

δi j, where δi j is the Kronecker delta. We write ζi to denote the ith component of
ζ ∈ g with respect to this basis, and so forth. Define the structure constants Ck

i j ∈ R

associated with our choice of basis by

[Xi,Xj] =
n

∑
k=1

Ck
i jXk (5)

for i, j ∈ {1, . . . ,n}. We require two lemmas before our main result (Theorem 4).
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Lemma 1. Let q : U → G be a smooth map, where U ⊂ R
2 is simply connected.

Denote its partial derivatives ζ : U → g and η : U → g by

ζ (t,ε) = Tq(t,ε)Lq(t,ε)−1

(
∂q(t,ε)

∂ t

)
η(t,ε) = Tq(t,ε)Lq(t,ε)−1

(
∂q(t,ε)

∂ε

)
. (6)

Then,
∂ζ/∂ε − ∂η/∂ t = [ζ ,η ]. (7)

Conversely, if there exist smooth maps ζ and η satisfying (7), then there exists a
smooth map q satisfying (6).

Proof. See Proposition 5.1 of [9]. ��
Lemma 2. Let α,β ,γ ∈ g and suppose γ = [α,β ]. Then γk = ∑n

r=1 ∑n
s=1 αrβsCk

rs.

Proof. This result is easily obtained from the definition (5). ��
Theorem 4 (Reduction of Sufficient Conditions). Suppose that H ∈ C∞(T ∗G) is
left-invariant and that XH is complete. Let h = H|g∗ be the restriction of H to g∗
and let ϕ : R×T ∗G → T ∗G be the flow of XH. Given q0 ∈ G, define the endpoint
map φt : T ∗

q0
G → G by φt(p) = π ◦ϕ(t, p,q0). Given p0 ∈ T ∗

q0
G, let a ∈ R

n be the
coordinate representation of T ∗

e Lq0(p0), i.e.,

T ∗
e Lq0(p0) =

n

∑
i=1

aiPi. (8)

Solve the ordinary differential equations

μ̇i =−
n

∑
j=1

n

∑
k=1

Ck
i j

δh
δ μ j

μk i ∈ {1, . . . ,n} (9)

with the initial conditions μi(0) = ai. Define matrices F,G,H ∈ R
n×n as follows:

[F]i j =− ∂
∂ μ j

n

∑
r=1

n

∑
s=1

Cs
ir

δh
δ μr

μs [G]i j =
∂

∂ μ j

δh
δ μi

. [H]i j =−
n

∑
r=1

δh
δ μr

Ci
r j

Solve the (linear, time-varying) matrix differential equations

Ṁ = FM (10)

J̇ = GM+HJ (11)

with initial conditions M(0) = I and J(0) = 0. The endpoint map φt is degenerate
at p0 if and only if det(J(t)) = 0.

Proof. Define the smooth map ρ : Rn → T ∗
q0

G by ρ(a) = T ∗
q0

L−1
q0

(∑n
i=1 aiPi). This

same expression defines ρ : Rn → Tp0(T
∗

q0
G) if we identify T ∗

q0
G with Tp0(T

∗
q0

G)
in the usual way. Given p0 = ρ(a) for some a ∈ R

n, there exists non-zero
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λ ∈ Tp0(T
∗

q0
G) satisfying Tp0φt(λ ) = 0 if and only if there exists non-zero s∈R

n sat-
isfying Tρ(a)φt(ρ(s)) = 0. Define q : [0,1]×R

n → G by q(t,a) = φt ◦ρ(a). Noting
that ∂q(t,a)/∂a j = Tρ(a)φt(T ∗

q0
Lq−1

0
(Pj)) for j ∈ {1, . . . ,n}, we have

Tρ(a)φt(ρ(s)) =
n

∑
j=1

s j
∂q(t,a)

∂a j
.

By left translation, Tρ(a)φt(ρ(s)) = 0 if and only if

0 =
n

∑
j=1

s jTq(t,a)Lq(t,a)−1

(
∂q(t,a)

∂a j

)
. (12)

Let η j(t,a) = Tq(t,a)Lq(t,a)−1 (∂q(t,a)/∂a j) for j ∈ {1, . . . ,n}. Define J : [0,1] →
R

n×n so that J(t) has entries [J]i j = η j
i (t,a), i.e., the jth column of J(t) is the co-

ordinate representation of η j(t,a) with respect to {X1, . . . ,Xn}. Then, (12) holds for
some s 
= 0 if and only if det(J(t)) = 0. We conclude that φt is degenerate at p0 if
and only if det(J(t)) = 0. It remains to show that J(t) can be computed as described
in the theorem. Define ζ (t,a) = Tq(t,a)Lq(t,a)−1 (∂q(t,a)/∂ t). Taking μ1(t), . . . ,μn(t)
as coordinates of μ(t), it is easy to verify that (4) and (9) are equivalent (see [27]).
We extend each coordinate function in the obvious way to μi : [0,1]×R

n → R, so
μi(t,a) solves (9) with initial condition μi(0,a) = ai. Define M : [0,1] → R

n×n by
[M(t)]i j = ∂ μi/∂a j. Differentiating (9), we compute

[Ṁ]i j =
∂
∂ t

∂ μi

∂a j
=

∂
∂a j

∂ μi

∂ t
=

∂
∂a j

(
−

n

∑
r=1

n

∑
s=1

Cs
ir

δh
δ μr

μs

)

=
n

∑
k=1

− ∂
∂ μk

(
n

∑
r=1

n

∑
s=1

Cs
ir

δh
δ μr

μs

)
∂ μk

∂a j
=

n

∑
k=1

[F]ik[M]k j .

It is clear that [M(0)]i j = δi j, so we have verified (10). Next, we have

η̇ j =
∂ζ
∂a j

− [
ζ ,η j]= ∂

∂a j

δh
δ μ

−
[

δh
δ μ

,η j
]

from Lemma 1 and Theorem 3. We write this in coordinates by Lemma 2:

[J̇]i j = η̇ j
i =

n

∑
k=1

(
∂

∂ μk

δh
δ μi

)
∂ μk

∂a j
+

n

∑
k=1

(
−

n

∑
r=1

δh
δ μr

Ci
rk

)
η j

k

=
n

∑
k=1

[G]ik[M]k j +
n

∑
k=1

[H]ik[J]k j.

It is clear that [J(0)]i j = 0, so we have verified (11). ��
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3 Mechanics and Manipulation of an Elastic Rod

The previous section derived coordinate formulae to compute necessary and suf-
ficient conditions for a particular class of optimal control problems on manifolds.
Here, we apply these results to a Kirchhoff elastic rod. Section 3.1 recalls that the
framed curve traced by the rod in static equilibrium is a local solution to a geometric
optimal control problem [8,41]. Section 3.2 proves that the set of all trajectories that
are normal with respect to this problem is a smooth manifold of finite dimension that
can be parameterized by a single chart (Theorem 6). Section 3.3 proves that the set
of all normal trajectories that are also local optima is an open subset of this smooth
manifold, and provides a computational test for membership in this subset (Theorem
7). Together, these two results suffice to describe all possible configurations of the
elastic rod that can be achieved by quasi-static manipulation. Section 3.4 explains
why these results make the problem of manipulation planning easy to solve.

3.1 Model

We refer to the object in Figure 1 as a rod. Assuming that it is thin, inextensible, and
of unit length, we describe the shape of this rod by a continuous map q : [0,1]→ G,
where G = SE(3). Abbreviating TeLq(ζ ) = qζ , we require this map to satisfy

q̇ = q(u1X1 + u2X2 + u3X3 +X4) (13)

for some u : [0,1]→U , where U = R
3 and

{X1, . . . ,X6}=
{[ 0 0 0 0

0 0 −1 0
0 1 0 0
0 0 0 0

]
,

[ 0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

]
,

[ 0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]
,

[ 0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]
,

[ 0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]
,

[ 0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]}

is a basis for g. Denote the dual basis for g∗ by {P1, . . . ,P6}. We refer to q and u
together as (q,u) : [0,1]→ G×U or simply as (q,u). Each end of the rod is held by
a robotic gripper, which we assume fix arbitrary q(0) and q(1). We further assume,
without loss of generality, that q(0) = e. We denote the space of all q(1) by B = G.
Finally, we assume that the rod is elastic in the sense of Kirchhoff [8], so has to-
tal elastic energy 1

2

∫ 1
0

(
c1u2

1 + c2u2
2 + c3u2

3

)
dt for given constants c1,c2,c3 > 0. For

fixed endpoints, the wire is motionless only if its shape locally minimizes energy. In
particular, we say that (q,u) is in static equilibrium if it is a local optimum of

minimize
q,u

1
2

∫ 1

0

(
c1u2

1 + c2u2
2 + c3u2

3

)
dt

subject to q̇ = q(u1X1 + u2X2 + u3X3 +X4)

q(0) = e, q(1) = b

(14)

for some b ∈ B.
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3.2 Necessary Conditions for Static Equilibrium

Theorem 5. A trajectory (q,u) is normal with respect to (14) if and only if there
exists μ : [0,1]→ g∗ that satisfies

μ̇1 = u3μ2 − u2μ3 μ̇4 = u3μ5 − u2μ6

μ̇2 = μ6 + u1μ3 − u3μ1 μ̇5 = u1μ6 − u3μ4 (15)

μ̇3 =−μ5 + u2μ1 − u1μ2 μ̇6 = u2μ4 − u1μ5,

q̇ = q(u1X1 + u2X2 + u3X3 +X4), (16)

ui = c−1
i μi for all i ∈ {1,2,3}, (17)

with initial conditions q(0) = e and μ(0) = ∑6
i=1 aiPi for some a ∈ A , where

A =
{

a ∈ R
6 : (a2,a3,a5,a6) 
= (0,0,0,0)

}
.

Proof. We begin by showing that (q,u) is abnormal if and only if u2 = u3 = 0.
Theorem 1 tells us that (q,u) is abnormal if and only if it is the projection of an
integral curve (p,q) of XH that satisfies (2), where H(p,q, t) = Ĥ(p,q,0,u(t)) and

Ĥ(p,q,0,u) = 〈p,q(u1X1 + u2X2 + u3X3 +X4)〉 .

For any g,r ∈ G satisfying q = gr, we compute

H(T ∗
r Lg(p),r, t) =

〈
T ∗

r Lg(p),g−1q(u1X1 + u2X2 + u3X3 +X4)
〉

=
〈

p,g
(
g−1q(u1X1 + u2X2 + u3X3 +X4)

)〉
= 〈p,q(u1X1 + u2X2 + u3X3 +X4)〉= H(p,q, t),

(18)

so H is left-invariant. Then, the existence of (p,q) satisfying Theorem 1 is equiva-
lent to the existence of μ satisfying Theorem 3: μ̇ = ad∗δh/δ μ(μ) and q̇= q(δh/δ μ),
where h = H|g∗ . Application of (9) produces the formulae (15)-(16), where we re-
quire μ1 = μ2 = μ3 = 0 to satisfy (2). We therefore have μ̇2 = μ6 and μ̇3 = −μ5,
hence μ5 = μ6 = 0. Applying this result again to (15), we find μ̇5 =−u3μ4 = 0 and
μ̇6 = u2μ4 = 0. Since μ cannot vanish when k = 0, we must have μ4 
= 0, hence
u2 = u3 = 0, with u1 an arbitrary integrable function. Our result follows.

Now, we return to the normal case. As before, Theorem 1 tells us that (q,u) is
normal if and only if it is not abnormal and it is the projection of an integral curve
(p,q) of XH that satisfies (2), where H(p,q, t) = Ĥ(p,q,1,u(t)) and

Ĥ(p,q,1,u) = 〈p,q(u1X1 + u2X2 + u3X3 +X4)〉−
(
c1u2

1 + c2u2
2 + c3u2

3

)
/2.

By a computation identical to (18), H is left-invariant. Application of (9) to the
conditions of Theorem 3 produces the same formulae (15)-(16), where (17) fol-
lows from (2) because Ĥ is quadratic in u. It remains to show that trajectories pro-
duced by (15)-(17) are not abnormal if and only if a ∈ A . We prove the converse.
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First, assume a ∈ R
6\A , so (a2,a3,a5,a6) = (0,0,0,0). From (15) and (17), we

see that u2 = u3 = 0, hence (q,u) is abnormal. Now, assume (q,u) is abnormal,
so u2 = u3 = 0. From (17), we therefore have μ2 = μ3 = 0, and in particular
a2 = a3 = 0. Plugging this result into (15), we see that μ̇2 = μ6 and μ̇3 = −μ5,
hence also that μ5 = μ6 = 0, i.e., that a5 = a6 = 0. So, a ∈ R

6\A . Our result
follows. ��
Theorem 5 provides a set of candidates for local optima of (14), which we now
characterize. Denote the set of all smooth maps (q,u) : [0,1] → G×U under the
smooth topology by C∞([0,1],G ×U). Let C ⊂ C∞([0,1],G ×U) be the subset
of all (q,u) that satisfy Theorem 5. Any such (q,u) ∈ C is completely defined
by the choice of a ∈ A , as is the corresponding μ . Denote the resulting map by
Ψ(a) = (q,u) and Γ (a) = μ . We require three lemmas before our main result
(Theorem 6).

Lemma 3. If Ψ (a) =Ψ(a′) for some a,a′ ∈ A , then a = a′.

Proof. Suppose (q,u) =Ψ (a) and μ = Γ (a) for some a ∈ A . It suffices to show
that a is uniquely defined by u (and its derivatives, since u is clearly smooth). From
(17), we have ai = ciui(0) for i ∈ {1,2,3}. From (15), we have

a5 =−c3u̇3(0)+ a1a2(c
−1
2 − c−1

1 ) a6 = c2u̇2(0)− a1a3(c
−1
1 − c−1

3 ). (19)

It is now possible to compute μ̇i(0) and μ̈i(0) for i ∈ {4,5,6} by differentiation of

μ̇4 = u3μ5 −u2μ6 μ5 =−μ̇3 +u2μ1 −u1μ2 μ6 = μ̇2 −u1μ3 −u3μ1. (20)

Based on these results, we differentiate (15) again to produce

(c−1
3 a3)a4 = c−1

1 a1a6 − μ̇5(0)

(c−1
2 a2)a4 = c−1

1 a1a5 + μ̇6(0)

(−a5 + a1a2(c
−1
2 − c−1

1 ))a4 = c3(c
−1
1 (μ̇1(0)a6 + a1μ̇6(0))− μ̈5(0))− a3μ̇4(0)

(a6 + a1a3(c
−1
1 − c−1

3 )a4 = c2(c
−1
1 (μ̇1(0)a5 + a1μ̇5(0))+ μ̈6(0))− a2μ̇4(0).

(21)

At least one of these four equations allows us to compute a4 unless (a2,a3,a5,a6) =
(0,0,0,0), which would violate our assumption that a ∈ A . Our result follows. ��
Lemma 4. The map Ψ : A → C is a homeomorphism.

Proof. The map Ψ is clearly a bijection—it is well-defined and onto by construc-
tion, and is one-to-one by Lemma 3. Continuity of Ψ also follows from Theorem
5. It remains to show that Ψ−1 : C → A is continuous. This result is a corollary
to the proof of Lemma 3. It is immediate that a1,a2,a3 depend continuously on
u(0). From (19), we see that a5,a6 depend continuously on a1,a2,a3, u̇(0), hence on
u(0), u̇(0). From (20), we see in the same way that μ̇4(0), μ̇5(0), μ̇6(0), μ̈5(0), μ̈6(0)
depend continuously on u(0), u̇(0), ü(0). Hence, all of the quantities in (21) depend
continuously on u(0), u̇(0), ü(0), so a4 does as well. Our result follows. ��
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Lemma 5. If the topological n-manifold M has an atlas consisting of the single
chart (M,α), then N = α(M) is a topological n-manifold with an atlas consisting
of the single chart (N, idN), where idN is the identity map. Furthermore, both M and
N are smooth n-manifolds and α : M → N is a diffeomorphism.

Proof. Since (M,α) is chart, then N is an open subset of Rn and α is a bijection.
Hence, our first result is immediate and our second result requires only that both α
and α−1 are smooth maps. For every p ∈ M, the charts (M,α) and (N, idN) satisfy
α(p) ∈ N, α(M) = N, and idN ◦ α ◦α−1 = idN , so α is a smooth map. For every
q ∈ N, the charts (N, idN) and (M,α) again satisfy α−1(q) ∈ M, α−1(N) = M, and
α ◦α−1 ◦ idN = idN , so α−1 is also a smooth map. Our result follows. ��
Theorem 6. C is a smooth 6-manifold with smooth structure determined by an atlas
with the single chart (C ,Ψ−1).

Proof. Since Ψ : A → C is a homeomorphism by Lemma 4 and A ⊂ R
6 is open,

then (C ,Ψ−1) is a chart whose domain is C . Our result follows from Lemma 5. ��

3.3 Sufficient Conditions for Static Equilibrium

Theorem 7. Let (q,u) =Ψ(a) and μ = Γ (a) for some a ∈ A . Define

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 μ3(c
−1
3 − c−1

2 ) μ2(c
−1
3 − c−1

2 ) 0 0 0
μ3(c

−1
1 − c−1

3 ) 0 μ1(c
−1
1 − c−1

3 ) 0 0 1
μ2(c

−1
2 − c−1

1 ) μ1(c
−1
2 − c−1

1 ) 0 0 −1 0
0 −μ6/c2 μ5/c3 0 μ3/c3 −μ2/c2

μ6/c1 0 −μ4/c3 −μ3/c3 0 μ1/c1

−μ5/c1 μ4/c2 0 μ2/c2 −μ1/c1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

G = diag
(
c−1

1 ,c−1
2 ,c−1

3 ,0,0,0
)

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 μ3/c3 −μ2/c2 0 0 0
−μ3/c3 0 μ1/c1 0 0 0
μ2/c2 −μ1/c1 0 0 0 0

0 0 0 0 μ3/c3 −μ2/c2

0 0 1 −μ3/c3 0 μ1/c1

0 −1 0 μ2/c2 −μ1/c1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Solve the (linear, time-varying) matrix differential equations

Ṁ = FM J̇ = GM+HJ (22)

with initial conditions M(0) = I and J(0) = 0. Then, (q,u) is a local optimum of
(14) for b = q(1) if and only if det(J(t)) 
= 0 for all t ∈ (0,1].

Proof. As we have already seen, normal extremals of (14) are derived from the
parameterized Hamiltonian function

Ĥ(p,q,1,u) = 〈p,q(u1X1 + u2X2 + u3X3 +X4)〉−
(
c1u2

1 + c2u2
2 + c3u2

3

)
/2.
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This function satisfies ∂ 2Ĥ/∂u2 = −diag(c1,c2,c3) < 0 and admits a unique max-
imum at ui = 〈p,qXi〉/ci for i ∈ {1,2,3}. The maximized Hamiltonian function is

H(p,q) = 〈p,qX4〉+
(

c−1
1 〈p,qX1〉2 + c−1

2 〈p,qX2〉2 + c−1
3 〈p,qX3〉2

)
/2.

It is clear that XH is complete. By Lemma 3, the mapping from (q,u) to a and hence
to μ =Γ (a) is unique. By Theorem 3, it is equivalent that the mapping from (q,u) to
(p,q) is unique. As a consequence, we may apply Theorem 2 to establish sufficient
conditions for optimality. Since a computation identical to (18) shows that H is left-
invariant, we may apply the equivalent conditions of Theorem 4. Noting that the
restriction h = H|g∗ ∈C∞(g∗) is given by

h(μ) = μ4 +
(
c−1

1 μ2
1 + c−1

2 μ2
2 + c−1

3 μ2
3

)
/2

it is easy to verify that F, G and H take the form given above. Our result follows. ��
Theorem 7 provides a computational test of which points a ∈ A actually produce
local optima Ψ(a) ∈ C of (14). Let Astable ⊂ A be the subset of all a for which the
conditions of Theorem 7 are satisfied and let Cstable =Ψ (Astable) ⊂ C . An impor-
tant consequence of membership in Astable is smooth local dependence of (14) on
variation in b. Define Bstable = {q(1) ∈ B : (q,u) ∈ Cstable} and let Φ : C → B be
the map taking (q,u) to q(1). Clearly Astable is open, so Ψ |Astable : Astable → Cstable

is a diffeomorphism. We arrive at the following result:

Theorem 8. The map Φ ◦Ψ |Astable : Astable → Bstable is a local diffeomorphism.

Proof. The map Φ ◦Ψ |Astable is smooth and by Theorem 7 has non-singular Jacobian
J(1). Our result follows from the Implicit Function Theorem [25, Theorem 7.9]. ��

3.4 Application to Manipulation Planning

Recall that we want to find a path of the gripper that causes the rod to move be-
tween given start and goal configurations while remaining in static equilibrium.
It is equivalent to find a path of the rod through its set of equilibrium configura-
tions. We showed that any equilibrium configuration can be represented by a point
in Astable ⊂ A ⊂ R

6. Think of A as the “configuration space” of the rod during
quasi-static manipulation and of Astable as the “free space.” Theorems 5-6 say how
to map points in A to configurations of the rod. Theorem 7 says how to test mem-
bership in Astable, i.e., it provides a “collision checker.” Theorem 8 says that paths
in Astable can be “implemented” by the gripper, by establishing a well-defined map
between differential changes in the rod (represented by Astable) and in the gripper
(represented by Bstable). We have expressed the manipulation planning problem for
an elastic rod as a standard motion planning problem in a configuration space of
dimension 6, for which there are hundreds of solution approaches [23, 11, 24].

For the sake of completeness, here is one way to implement a sampling-based
planning algorithm like PRM [19]:
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Fig. 2 A second example of quasi-static manipulation by robotic grippers (blue) of an elastic
rod (orange). Again, the grippers begin and end in the same position and orientation. And
again, this motion corresponds to a straight-line path in the global coordinate chart A that
we derived.

• Sample points in A , for example uniformly at random in {a ∈ A : ‖a‖∞ ≤ w}
for some w > 0. Note that it is possible to choose w in practice by taking advan-
tage of the direct correspondence (which we do not discuss here) between a and
forces/torques at the base of the elastic rod.

• Keep points that are in Astable and add them as nodes in the roadmap. This test
requires only solving the ordinary differential equations (15)-(17) in 6 variables
and the matrix differential equations (22) in 72 variables.

• Try to connect each pair of nodes a and a′ with a straight-line path in A , adding
this path as an edge in the roadmap if it lies entirely in Astable. This test can be
approximated in the usual way by sampling points along the straight-line path at
some resolution, again solving (15)-(17) and (22) for each point.

• Declare astart,agoal ∈ Astable to be path-connected if they are connected by a se-
quence of nodes and edges in the roadmap. This sequence is a continuous and
piecewise-smooth map α : [0,1]→ Astable, where α(0) = astart and α(1) = agoal.

• Move the robotic gripper along the path Φ ◦Ψ |Astable ◦α : [0,1]→ Bstable. This
path is again continuous and piecewise-smooth, and can be evaluated at way-
points s ∈ [0,1] by solving the matrix differential equation (16) on SE(3).

Each step is trivial to implement using modern numerical methods. It is also easy to
include other constraints, such as self-collision, within this basic framework.

We emphasize that the “start” and “goal” for the manipulation planning problem
must be points in Astable, or equivalently points in Cstable through the diffeomor-
phism Ψ . It is insufficient to specify start and goal by points in Bstable, since these
points do not uniquely define configurations of the elastic rod.

Figure 2 shows another example result. The start and goal configurations are
both associated with the same boundary conditions, each one being a different local
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minimum of total elastic energy. The motion of the rod therefore could not possibly
correspond to a single straight-line path in Bstable, where planning has traditionally
been done (e.g., [21, 29]). However, this motion does indeed correspond to a single
straight-line path in Astable and was trivial to generate with our approach. We have
constructed many similar examples, all of which point to favorable visibility proper-
ties of Astable and lead us to expect standard motion planning algorithms to perform
well in this context [19, 11, 24]. We note further that a number of planning heuris-
tics like lazy collision-checking [34]—which bring huge speed-ups in practice—are
easy to apply when planning in Astable but hard to apply when planning in Bstable.
Finally, should we still want to plan in Bstable (i.e., to connect nearby configura-
tions by straight-line paths in Bstable rather than in Astable), it is now easy to do
so by using the Jacobian matrix J(1), which is non-singular in Bstable by construc-
tion. In particular, we have the relationship δb = J(1)δa, which can be inverted to
move along straight lines in Bstable. Without this relationship, we would be forced
to apply gradient descent in the infinite-dimensional space of inputs u : [0,1]→U ,
prompting methods of approximation like the one described in [29].

4 Conclusion

Our contribution in this paper was to show that the set of equilibrium configurations
for a Kirchhoff elastic rod held at each end by a robotic gripper is a smooth manifold
of finite dimension that can be parameterized by a single (global) coordinate chart.
The fact that we ended up with a finite-dimensional smooth manifold is something
that might have been guessed in hindsight (it’s dimension—six—is intuitive given
that the grippers move in SE(3)), but the fact that this manifold admitted a global
chart is something that we find remarkable. Our results led to a simple algorithm for
manipulation planning, which at the outset had seemed very hard to solve.

A straightforward extension is to implement a sampling-based planner as de-
scribed in Section 3.4 and perform experiments that compare our approach to others
(e.g., [29]) in terms of standard metrics like running time, failure probability, etc.
This implementation requires consideration of certain details that we did not address
explicitly. For example, to verify static equilibrium, Theorem 7 requires a check that
det(J(t)) does not vanish on (0,1]. We can approximate this check by sampling t, but
would prefer an approach with guarantees (as in “exact” collision checking [35]).
This is problematic since det(J(t)) and all its derivatives vanish at t = 0.

There are several other opportunities for future work. First, the coordinates we
derive can be interpreted as forces and torques at the base of the elastic rod, so
A is exactly the space over which to perform inference in state estimation with a
force/torque sensor. Second, our model of an elastic rod depends on three physical
parameters c1,c2,c3 > 0. Finding these parameters from observations of equilib-
rium configurations can be cast as an inverse optimal control problem [18]. The
structure established by Theorem 6 allows us to define a notion of orthogonal dis-
tance between C and these observations, similar to [20], and may lead to an efficient
method of solution. Third, we note that an elastic inextensible strip (or “ribbon”) is a
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developable surface whose shape can be reconstructed from its centerline [37]. This
centerline conforms to a similar model as the elastic rod and is likely amenable to
similar analysis, which may generalize to models of other developable surfaces.
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