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Abstract—Inverse optimal control is the problem of computing
a cost function that would have resulted in an observed sequence
of decisions. The standard formulation of this problem assumes
that decisions are optimal and tries to minimize the difference
between what was observed and what would have been observed
given a candidate cost function. We assume instead that decisions
are only approximately optimal and try to minimize the extent to
which observed decisions violate first-order necessary conditions
for optimality. For a discrete-time optimal control system with
a cost function that is a linear combination of known basis
functions, this formulation leads to an efficient method of
solution as an unconstrained least-squares problem. We apply
this approach to both simulated and experimental data to obtain
a simple model of human walking trajectories. This model might
subsequently be used either for control of a humanoid robot
or for predicting human motion when moving a robot through
crowded areas.

I. INTRODUCTION

In the problem of optimal control we are asked to find
input and state trajectories that minimize a given cost function.
In the problem of inverse optimal control, we are asked to
find a cost function with respect to which observed input and
state trajectories are optimal. This inverse problem has been
a topic of study for more than half a century [1]–[4], and
has a variety of applications both inside and outside the field
of robotics. Ziebart et al [5] apply inverse optimal control to
explain why taxi drivers make specific route choices, based
on GPS observations. Nielsen and Jensen [6] learn the utility
of a human decision maker given inconsistent observations of
behavior. Yepes et al [7] predict trajectories flown by human
pilots in air traffic control. Trautman and Krause [8] focus
on predicting future trajectories taken by human walkers to
enable robot navigation in crowds. Work on related problems
like apprenticeship learning [9]–[11] has been applied to learn
control policies for aerobatic flight based on observations of
human experts.

The standard formulation of inverse optimal control assumes
that decisions are optimal and tries to minimize the difference
between what is observed and what would have been observed
given a candidate cost function. This approach is used for
example in [12] and [13], two seminal recent papers that
have largely motivated our own work. In these works, the
cost function is represented as a linear combination of basis
functions weighted by an unknown parameter vector. Their
solution approach is to infer the parameter vector, solve
the corresponding optimal control problem, predict what the
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resulting observations would be, and then apply derivative-
free optimization to minimize the difference between predicted
and observed trajectories. This approach can work well, but
is computationally very expensive because it requires solving
an optimal control problem at each iteration. One approach
that differs from this standard formulation is presented in
[14]. In this recent paper, Dvijotham and Todorov implement
several algorithms that do not require solving the forward
problem. Instead, they infer the value function using maximum
likelihood. The inverse optimal control problem becomes an
unconstrained optimization problem, and their algorithms can
be applicable to linearly solvable MDPs with discrete and
continuous states.

The method proposed in this paper is inspired from [15].
This new formulation of inverse optimal control assumes that
the observations are perfect, while the system is considered
to be only approximately optimal. This change in assumption
allows us to define residual functions based on the Karush-
Kuhn-Tucker (KKT) necessary conditions for optimality [16],
[17]. The inverse optimal control problem then simplifies to
minimizing these residual functions in order to recover the
parameters that govern the cost function. As a result, the
inverse optimal control problem reduces to a simple least-
squares minimization, which can be solved very efficiently.
We also note that it is unnecessary that the underlying optimal
control problem be convex. In [15], the authors restrict their
attention to convex optimization problems only, but in this
paper, we apply a similar approach to solve an optimal control
problem that is non-convex. Our approach can be extended
to a wide range of discrete-time nonlinear problems, with
the assumption that the unknown parameter vector needs to
enter the cost function linearly. Note that this technique of
approximating a cost function using linear combinations of
basis functions is common to most inverse optimal control
methods.

Our paper proceeds as follows. In Section II we will
introduce the approach used to solve inverse optimal control
problems. In Section III we will apply the approach to data
generated in simulation, in order to validate it. In Section IV
we will apply the approach to experimental data to model
human locomotion, and finally Section V will present the
conclusions and future works.

II. THE APPROACH

A. Problem Formulation

Consider the following optimization problem with equality
constraints:
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min
x

f(x, c) = α(x) + cTβ(x)

subject to gi(x) = 0, i = 1, ...,m
(1)

where x ∈ Rn is the variable, f is the objective function com-
posed of the basis functions α and β such that α(x) : Rn → R
and β(x) : Rn → Rk, g is the set of m equality constraints
such that g(x) : Rn → Rm, and c ∈ Rk is an unknown
parameter vector. The functions f and gi are continuously
differentiable. Recall that the assumption in this approach
is that the observations of x are perfect while the system
itself might be imperfect, e.g. x ∼ N (x∗,Σ). Note that
inequality constraints could be added to problem (1) but are
not considered here.

The inverse optimization problem associated with (1) is to
recover the unknown parameter vector c given observations of
x, and having prior knowledge of α, β and g.

B. Necessary Conditions for Optimality

For a given c, assuming that x∗ is a local minimum of
the problem (1) and is regular, there exist unique Lagrange
multiplier vectors λ∗ ∈ Rm such that [17], [18]:

∇xf(x∗, c) +

m∑
i=1

λ∗Ti ∇xgi(x∗) = 0

gi(x
∗) = 0, i = 1, ...,m

(2)

where f and gi are continuously differentiable functions.
The two equations in (2) are known as the KKT necessary
(and sufficient) conditions for equality constraint optimization
problems. The first one is the stationarity condition while the
second equation ensures primal feasibility. If the Lagrangian
of problem (1) is defined to be:

L(x, c, λ) = f(x, c) +

m∑
i=1

λTi gi(x) (3)

then for a given c, the necessary conditions in (2) can be
rewritten as:

∇(x,λ)L(x∗, c, λ∗) = 0 (4)

C. Residual Functions

As stated previously, the system is assumed to be only
approximately optimal. Residual functions are defined in order
to represent what approximately optimal means in a manner
similar to [15]:

req = g(x)

r(x, c, λ) = ∇xf(x, c) +

m∑
i=1

λi∇xgi(x)
(5)

The necessary conditions of optimality are satisfied when the
two residual functions in (5) are equal to zero. The method

consists then in minimizing the extent to which observed de-
cisions violate the KKT necessary conditions, i.e. minimizing
the extent to which they are not equal to zero. The candidate
solutions are obtained from the stationarity residual function,
while the first residual function is used to check that the
solutions obtained are feasible.

Using the Lagrangian defined as above, the stationarity
residual function in (5) becomes:

r(x, c, λ) = ∇xL(x, c, λ) (6)

which for problem (1) corresponds to:

r(x, c, λ) = ∇xα(x) + cT∇xβ(x) + λT∇xg(x) (7)

Given observations of x that are assumed to be perfect,
the inverse optimization problem becomes to minimize the
residual function defined in (7) where the unknowns are the
Lagrangian multipliers λ and the parameter c:

min
c,λ

||r(x, c, λ)||2 (8)

One can see that the initial constrained optimization problem
in (1) has been modified into an unconstrained optimization
problem in (8), with the only limitation that the objective
function needs to be composed of a linear combination of
known basis functions. Note also that the residual function
shown in (7) is linear with respect to the unknown parameter
c and the Lagrange multipliers λ. The problem therefore
becomes a convex unconstrained least-squares optimization
problem, which is easier to solve than the initial constrained
optimization problem in (1).

It is important to note that this method can be extended to
several variations of the problem presented in (8). For example,
one could consider the case where multiple observations of
the same system are given, or one could also consider the case
where the unknown parameter c changes with time. We believe
our approach can be used to solve discrete-nonlinear problems
that consist of a continuously differentiable cost function and
continuously differentiable constraints, but with the limitation
that the unknown parameter vector needs to enter the cost
function linearly.

Least-squares problems arise in many areas of applications,
and are one of the most commonly encountered unconstrained
optimization problems. Their structure makes them easier to
solve than general unconstrained minimization problems, and
solution techniques can be found in [3] and [16]. In particular,
linear least-squares problems can be solved very easily by
rewriting the objective function in the following manner:

r(x, z) =
1

2
||Jz − b||2 (9)

where z is the vector of unknown parameters: z = [c λ]T .
Since the problem is convex, we know that a global minimizer
z∗ of r(x, z) must satisfy ∇xr(x, z∗) = 0, which leads to the
normal equations:
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JTJz∗ = JT b (10)

Several algorithms can be used to solve the normal equations,
the major ones being Cholesky factorization, QR factorization
and Singular-Value Decomposition (SVD). These algorithms
are easy to implement, and their computation time is negligible
in comparison to algorithms that need to solve the forward
optimal control problem at each iteration.

III. APPLICATION TO DATA GENERATED IN
SIMULATION

In this section we apply the approach introduced in Section
II to data generated in simulation in order to validate it. The
model used for the simulation is chosen to be the unicycle
model, since it is the one used in Section IV to model human
locomotion using experimental data.

A. The Unicycle Model

Consider the following discretized version of the unicycle
model:

min
xi,ui

1

2
τ

N−1∑
i=0

(c(ui1)2 + (ui2)2)

subject to x
(i+1)
1 = xi1 + τui1 cos(xi3)

x
(i+1)
2 = xi2 + τui1 sin(xi3)

x
(i+1)
3 = xi3 + τui2

x(0) = xstart

x(N−1) = xgoal

(11)

where τ is the discretization rate, and i is the time step, going
from 0 to N −1. The position and the orientation are (x1, x2)
and x3, respectively. The two inputs are the forward speed
u1 and the turning rate u2. The start and end points are set
fixed to match the experimental setup described in Section IV.
The unknown parameter c governs how much we penalize
control effort u1 relative to control effort u2. The inverse
optimal control problem consists in recovering the value of the
parameter c, using data generated in simulation. Note that the
fixed end-point constraints do not appear in the derivation of
residual function, and the implications are discussed in Section
IV-C.

B. Derivation of the Residual Function for the Unicycle Model

Based on (3), the Lagrangian associated with the unicycle
model in (11) is:

L(xi, ui, c, λi+1) =
1

2
τ

N−1∑
i=0

(c(ui1)2 + (ui2)2)

+

N−1∑
i=0

(gi(xi, ui)− xi+1)Tλi+1

(12)

where g is the set of equality constraints in (11).

p 
p 
p 
p 
p 

Fig. 1. Example of a noiseless trajectory simulated using the unicycle
model (black line), along with four different noisy measurements. Each
set of measurements has been obtained by averaging 60 noisy trajectory
measurements. The amount of noise varies and is characterized by the value
of the standard deviation p = 1e−5, 1e−4, 1e−3 and 1e−2.

The KKT conditions defined in (2) and (4) for the unicycle
model lead to:

∇(xi)L(xi, ui, λi, λi+1) = −λi +∇(xi)g
i(xi, ui)Tλi+1

= 0
(13)

and

∇(ui)L(xi, ui, c, λi+1) =
1

2
τ∇(ui)(c(u

i
1)2 + (ui2)2)

+∇(ui)g
i(xi, ui)λi+1

=0

(14)

The residual function defined in (6) then becomes:

r(xi, ui, c, λi, λi+1) =

[
∇(xi)L(x, u, λi+1)
∇(ui)L(x, u, λi+1)

]
=

[
−λi +∇(xi)g

i(xi, ui)Tλi+1

1
2τ∇(ui)(c(u

i
1)2 + (ui2)2) +∇(ui)g

i(xi, ui)λi+1

] (15)

and is linear as a function of the unknown parameters
[c λi λi+1]T . It can therefore be rewritten in a similar man-
ner to (9) and solved using the algorithms for linear least-
squares unconstrained problems presented in [16]. Note that
the residual vector has dimensions (5N, 1), where N is the
total number of time steps, since x ∈ R3 and u ∈ R2.

C. Results for Data Generated in Simulation

Matlab 7.11.0 is used to implement the algorithm presented
in this paper. Paths are simulated using the unicycle model
described in (11) by arbitrarily choosing a value for the
parameter c (c = 3.7 was chosen). Once the trajectories
are generated, we can use the observations of the states
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Fig. 2. Error between the predicted value of the parameter c obtained for
each of the four averaged noisy measurements, and the value used during
simulation. The approach used is able to predict the correct value of c (c =
3.7), even when very noisy measurements are used (i.e. for p = 1e−2).

x and control inputs u to solve the unconstrained least-
squares optimization problem defined in (8) where the residual
function is given by (15). Recall that the aim of solving the
inverse optimal control problem is to recover the value of the
unknown parameter c. Since the trajectories are obtained from
simulation, we can compare the value of c predicted using the
approach introduced, to the actual value of the parameter used
during the simulation.

To test the robustness of the approach, noise is added to
the measurements. Gaussian white noise normally distributed
with zero mean and variable standard deviation is added to
the states x such that: x ∼ N (0, p). The noise variable p
is chosen to take the following values: 1e−5, 1e−4, 1e−3 and
1e−2. It is important to note that since the unknown parameter
is assumed to be constant (non-time-varying) in our model,
we do not need to consider multiple trajectories to predict the
correct value of c. Instead, we are looking at how fast the
predicted value of c converges as a function of the number
of data points constituting the trajectory, i.e. the time horizon
of the trajectory. A total of 60 trajectory measurements are
generated for each values of p, which are then averaged. In
other words, for each value of noise standard deviation p, we
have one corresponding averaged set of measurements. Fig. 1
shows a simulated noiseless trajectory, along with the four
different averaged noisy measurements obtained from the four
values of p.

The inverse optimal control algorithm is used to recover the
value of c for each set of measurements. The computation time
required to run the algorithm is 0.032 seconds (on a 2.5 GHz
Core 2 Duo processor). The results showing the comparison
between the predicted value of c and the value used during
simulation are shown in Fig. 2.

The results in Fig. 2 show that even with large Gaussian

white noise (i.e. p = 1e−2) the algorithm is able to predict
the correct value of c. It is obvious from Fig. 2 that when the
amount of white noise is increased, the algorithm necessitates
more points from the trajectory (i.e. a longer time horizon) to
correctly recover the unknown parameter. Therefore results in
Fig. 2 show that our approach also performs well in presence
of noisy measurements.

IV. APPLICATION TO EXPERIMENTAL DATA FOR
MODELING OF HUMAN LOCOMOTION

In this section we apply the approach introduced in Section
II to experimental data, in order to find a model for human
locomotion. The reason why we would want to model human
locomotion, in the context of humanoid robot control, is to
obtain a model based on observations that can be implemented
to humanoid robots to generate locomotion trajectories similar
to human trajectories, and to predict actions or trajectories of
robots based on human observations.

A. The Experiment

The data used were collected for the experiment described in
[12]. In summary, subjects were asked to walk in a gymnasium
from a starting point to a final destination represented by a
porch. The starting point was always the same, but the final
position and final orientation of the porch were varying. The
subjects were asked to walk from one point to another freely,
without time or velocity constraints, and the trajectories were
recorded using motion capture technology. An example of a
subset of 6 observed trajectories is presented in Fig. 4 (blue
lines) for one subject.

B. Notes on the Choice of the Model

The initial assumption in [12] was that human walking
data can be modeled using a simple nonholonomic unicycle
model along with an objective function that minimizes input
energy. However, it was found that more complicated dynamic
models could be used to better fit the experimental data. For
example, [12] defines the turning input to be the derivative
of the curvature. In [13], the authors not only use a more
complex dynamic model, but they also define a more complex
objective function that takes into account the initial tendency
of the subjects to adjust the orientation of their bodies towards
the target.

However, in this paper, we want to focus on validating our
inverse optimal control approach by showing results for the
standard unicycle model and with a simple objective function
defined in (11). As we will show in the rest of this section,
our approach leads to promising results. We expect our fitting
results to improve in future work when we will consider more
complex system dynamics and objective functions.

C. Recovered Trajectories

Once the inverse optimal control problem is solved and the
unknown parameter c is predicted, it is necessary to generate
the trajectory obtained using the model and the recovered value
of c, and compare it to the experimental data. Instead of using a
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Fig. 3. Recovered trajectories before and after performing gradient descent
to match the end points. The blue trajectory is the observed one obtained from
experimental data. The black trajectory is the predicted result obtained before
performing gradient descent and the red trajectory is the predicted result after
performing gradient descent.

shooting method to generate the recovered trajectories, a faster
algorithm is employed, based on the same KKT conditions for
optimality. From (13) and (14), the following relationships can
be derived:

(λi)T = (λi+1)TJ i

(ui)T = −(λi+1)TGi
(16)

where for the unicycle model:

J i =

1 0 −τui1 sinxi3
0 1 τui1 cosxi3
0 0 1

 , Gi =

 1
c cosxi3 0
1
c sinxi3 0

0 1

 (17)

which leads to:

λi+1 = (J i)−T pi

(ui)T = −(λi)T (J i)−1Gi
(18)

where we note that (J i)−1 always exists. Therefore using the
state equations from (11) and the set of equations from (18), it
is possible to reconstruct the entire trajectory. The recovered
trajectory depends only on the initial position x(0), which is
given, and the initial set of Lagrange multipliers λ(0), which
is predicted from the inverse optimal control problem. The
initial recovered trajectory obtained from λ(0) and x(0) does
not necessarily satisfy the terminal constraint. This is because
the end-point constraints are not taken into account in our
residual function. Therefore, we use gradient descent to search
for a λ(0) that results in a trajectory satisfying the terminal
constraint.

D. Results for the Experimental Data

The unconstrained linear least-squares problem being solved
is defined in (8) where the residual function is given by (15) for

the unicycle model presented in (11). Once the least-squares
problem is solved and the unknown parameter c is predicted
along with the Lagrange multipliers λ, the set of equations in
(18) and (11) are used to construct the predicted trajectory.

Figure 3 shows the recovered trajectory before and after gra-
dient descent. The total computation time to solve the inverse
optimal control problem, construct the predicted trajectory
and perform gradient descent is 0.076 seconds. One can see
from Fig. 3 that the recovered trajectory does not perfectly fit
the experimental data, and this is believed to be due to the
limitations of the unicycle model.

Beyond considering only one trajectory, the experimental
data consists of a set of multiple trajectories for a variety of
boundary conditions. In particular, we consider a subset of the
data which consists of 15 trajectories for 6 different boundary
conditions (i.e. the same terminal position and orientation).
Figure 4 shows results of recovered trajectories when using
only one observed trajectory (dashed red lines) and when
using multiple observed trajectories (dashed black lines). One
can see that better results are obtained when using multiple
observations to recover the parameter c. Note that in the
case of multiple observations, the linear least-squares problem
becomes:

min
c,λ1,...,λNtraj

Ntraj∑
i=1

||r(xi, ui, c, λi, λi+1)||2 (19)

where x1, x2, ...., xNtraj are Ntraj perfectly observed trajecto-
ries and c is constant across the Ntraj trajectories. Our results
suggest that more observations used to predict c will result in
a better recovered cost function, i.e. one which better predicts
observed trajectories.

The total computation time to solve the inverse optimal
control problem using 15 observed trajectories, construct the
predicted trajectory and perform gradient descent was 16
seconds. This increase in computation time is due to the fact
that the size of the residual vector is no longer (5N, 1), but
(5NtrajN), where Ntraj is the number of observed trajec-
tories. Despite the increased computation time, we believe
the complexity of solving least-squares problem is less than
the complexity of iterative techniques which require solving
the forward optimal control problem at each iteration. A full
comparison of running time and complexity is the subject of
future work.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper we present a new approach for solving inverse
optimal control problems that differs from already existing
methods. The standard formulation of this problem assumes
that decisions are optimal and consists in minimizing the
difference between what is predicted and what is observed
given a candidate cost function. We assume instead that
decisions are only approximately optimal and we minimize
the extent to which observed decisions violate the necessary
conditions of optimality. This approach can be applied to
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Fig. 4. In this figure, observed and predicted trajectories are projected
on the x-y plane. Blue curves represent observed trajectories obtained from
experimental data. Red dashed curves show predicted results obtained when
using only a single observation to recover the value of parameter c. Black
dashed curves show predicted results obtained when using 15 observations to
recover the value of c.

discrete-time optimal control systems with the limitation that
the cost function has to be a linear combination of known
basis functions. The initial optimal control problem simplifies
into an unconstrained linear least-squares problem, which can
be solved easily and which does not necessitate iterations.

A discretized unicycle model is used to test the approach
with both simulation and experimental data. The application
to data generated in simulation successfully validates the
approach, and shows that it also performs well in presence
of noisy measurements. The approach is then applied to
experimental data in order to find a model for human loco-
motion. Subjects were asked to walk in a gymnasium from a
starting point to a final destination and their trajectories were
recorded [12]. The approach gives satisfactory results when
comparing the recovered trajectories to the experimental data.
Furthermore, using multiple observed trajectories to recover
the unknown parameter of the cost function is found to
improve the quality of the recovered trajectories.

Therefore, it was shown that this approach can be used to
obtain a simple model of human locomotion, without solving
the forward optimal control problem and without iterations, but
by simply minimizing the extent to which observed trajectories
violate the necessary conditions of optimality.

B. Future Works

The details of the limitations of our approach still need to
clarified. For example, it is not clear what the conditions are
for perfectly recovering the cost function, and how sensitive
the approach is to model uncertainty. Also, we are aware that
better models for human locomotion have been proposed in
other studies such as [12] and [13], and an improvement would
be to use a more complex dynamic model along with a more

complete set of basis functions to define the cost function.
Another necessary improvement to this study is to compare our
approach to existing methods, in terms of computation time
and complexity. And finally, we are hoping to extend this work
either for the control of a humanoid robot or for predicting of
human motion when moving a robot though crowded areas.
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