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Abstract—In this paper, we apply symmetry reduction tech-
niques from geometric mechanics to sufficient conditions for
local optimality in optimal control problems. After reinterpreting
some previous results for left-invariant problems on Lie groups,
we focus on optimal control problems with subgroup symmetry.
For these problems, the necessary conditions for optimality
can be simplified by exploiting symmetries so as to reduce
the number of variables needed to describe trajectories of the
system. We show that sufficient conditions for optimality, based
on the non-existence of conjugate points, can be simplified in
an analogous way to the necessary conditions. We demonstrate
these simplifications by analyzing an optimal control problem
that models a spinning top in a gravitational field, and we give
particular attention to the example of an axisymmetric sleeping
top. The results we derive in this paper allow us to determine
which trajectories of a sleeping top are locally optimal solutions
of the optimal control problem, which is a new result that has
not appeared in previous literature.

Index Terms—Conjugate points, Lie groups, optimal control,
sufficient conditions, symmetry reduction.

I. INTRODUCTION

CONSIDER an optimal control problem whose state takes
values on a Lie group. The Pontryagin maximum princi-

ple associates to this optimal control problem a Hamiltonian
system that evolves on the cotangent bundle of the Lie group
[1]. Geometric mechanics provides tools for studying such
Hamiltonian systems, and a main theme in mechanics is sim-
plifying Hamiltonian systems by exploiting symmetries [2].
Trajectories of a Hamiltonian system with symmetries evolve
on spaces of lower dimension than the original Hamiltonian
system. The equations of motion of the original Hamiltonian
system can often be simplified by working in coordinates for
these lower dimensional spaces. These same simplifications
can be obtained for optimal control problems by exploiting
symmetries in the necessary conditions for optimality.

The focus of this paper is on applying symmetry reduction
to sufficient conditions for optimality, which has received far
less attention than reduction of necessary conditions. The
sufficient conditions we use rely on the non-existence of
conjugate points, and symmetries allow us to simplify the
computations for finding conjugate points. We first reinterpret
some previous results for left-invariant problems, and thereby
establish some preliminary connections between symmetry
reduction of necessary and sufficient conditions for optimality.
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Then, to further explore these connections, we focus on a class
of optimal control problems on Lie groups whose associated
Hamiltonian functions are invariant under the left-action of a
subgroup of the Lie group. The systems we consider may be
fully actuated or underactuated. To account for the symmetries,
we apply Lie-Poisson reduction by stages to the Hamiltonian
system associated with the optimal control problem [3]. We
show that the simplifications that appear in the necessary con-
ditions for optimality also appear in the sufficient conditions.
These reduced sufficient conditions can be computed using a
reduced set of coordinates that account for symmetries in the
original optimal control problem.

To illustrate the application of the reduced sufficient condi-
tions, we analyze an optimal control problem on the Lie group
SO(3) whose cost function is the Lagrangian of a spinning
top in a gravitational field. Using the results in this paper, we
analytically determine which trajectories of an axisymmetric
sleeping top are locally optimal solutions of this optimal
control problem. Similar results for a top without gravity
have appeared in previous literature. However, the inclusion of
gravity in this analysis, which is made possible by the reduced
sufficient conditions we derive, is a new result that has not
appeared in previous literature.

We begin in Section II by covering related work from
geometric mechanics and optimal control. In Section III, we
state necessary and sufficient conditions for optimal control
problems on smooth manifolds. In Section IV, we recall
reduced necessary and sufficient conditions for left-invariant
optimal control problems, and we study an optimal control
problem that models a spinning top. Then, in Section V, we
provide a reinterpretation of the results in Section IV that
makes clear the connection between the reduced necessary and
sufficient conditions for left-invariant problems. In Sections VI
and VII, we derive reduced necessary and sufficient conditions,
respectively, for optimal control problems with subgroup sym-
metry. In Section VIII, we apply these results to a spinning top
in a gravitational field. Closing remarks are given in Section
IX. Readers may benefit from reviewing the work in [4], which
provides a more detailed account of the topics we recall in
Section IV, and from reading [5], [6], which provide additional
details on some of the computations in Sections VI and VII.

II. RELATED WORK

Hamiltonian systems that evolve on the cotangent bundle
of a smooth manifold have been studied extensively in the
field of geometric mechanics, as have the symmetries that
these systems can possess [2]. These symmetries can be
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used to study the Hamiltonian system in a quotient space of
reduced dimension through a procedure known as symmetry
group reduction. When a Hamiltonian system is invariant with
respect to a group action, and the symmetry group contains
a normal subgroup, reduction can first be carried out by the
normal subgroup and then by the complement of the normal
subgroup. This procedure is known as reduction by stages [3].
One case when reduction by stages can be applied is when
the Hamiltonian system evolves on the cotangent bundle of
the semidirect product of a Lie group and a vector space [7]–
[9]. This is the case that we will examine in this paper.

We restrict ourselves to studying Hamiltonian systems that
are left-invariant under the action of a symmetry group. Finite
dimensional mechanical systems with symmetries, such as
the heavy spinning top and underwater vehicle dynamics,
generally fall into this category [8], [10]. Alternatively, infinite
dimensional systems with symmetries can be invariant under
the right-action of the symmetry group. Examples of such
systems include compressible fluids, magnetohydrodynamics,
and three-dimensional elasticity [8]. Some systems are both
left and right-invariant and evolve on spaces called centered
semidirect products [11]. Although we focus on the left-
invariant case, the difference between the resulting equations
in the two cases is a single sign change [8]. Our results could
be extended to the right-invariant case by carrying this sign
change throughout the computations in this paper.

Symmetry reduction techniques can be applied to the neces-
sary conditions provided by Pontryagin’s maximum principle
for optimal control problems with symmetries. It was shown
by Grizzle and Marcus that symmetry allows optimal feedback
laws to be decomposed into two components, with one compo-
nent depending upon the symmetry, and the other component
depending upon a lower dimensional optimization problem
[12]. Symmetries in the maximization condition of Pontrya-
gin’s maximum principle were studied by van der Schaft
[13], whereas Echeverrı́a-Enrı́quez et al. studied symmetries
in optimal control problems from a presymplectic viewpoint
[14]. Principal connections in optimal control problems with
symmetries were explored by Ohsawa [15], de León et al.
applied results for vakonomic systems with symmetries to op-
timal control [16], and Martı́nez derived a reduced maximum
principle in terms of Lie algebroids [17].

In the particular case when the state of the optimal control
problem takes values on a Lie group, Lie-Poisson reduction
can be applied if the associated Hamiltonian function is
invariant (left or right-invariant) [18]. This reduction decouples
the costate trajectory in Pontryagin’s maximum principle from
the state of the system. Examples of invariant control problems
on Lie groups include motion planning problems for aircraft
[19], [20], autonomous underwater vehicles [21], Euler’s elas-
tica [22], the Kirchhoff elastic rod [4], conflict resolution in
differential games [23], biological models of collective motion
[24], and time-optimal control of quantum systems [25].
Connections between left-invariant optimal control problems,
the nonlinear Schrödinger equation, and vortex filaments have
also been established [26].

As an alternative to the Pontryagin maximum principle, a
Lagrangian approach can be taken to exploit symmetries in

the necessary conditions for optimal control problems [27],
[28]. These Lagrangian approaches have also been applied to
higher order variational problems, with applications to optimal
control of underactuated systems [29], [30]. In previous work,
Lagrangian systems on semidirect product spaces have been
studied [7], [31], and Gupta applied these results to optimal
control problems on semidirect products [32]. Optimal control
on semidirect products was also studied by Gay-Balmaz and
Ratiu using a Clebsch formulation [33].

While symmetry group reduction has been applied to the
necessary conditions provided by Pontryagin’s maximum prin-
ciple, less attention has been given to the role of symmetries
in sufficient conditions for optimal control problems. Suffi-
cient conditions in terms of conjugate points can sometimes
be computed if the Hamiltonian system associated with the
optimal control problem is integrable, e.g., rigid body motion
[34], Euler’s elastica [22], and some sub-Riemannian geometry
problems [35], where the symmetries can simplify these com-
putations. When determining the optimality of geodesics on a
Riemannian or sub-Riemannian manifold with a left-invariant
metric, comparison theorems can be used to bound conjugate
points [36]. For left-invariant optimal control problems on Lie
groups, it has been shown that conjugate points in the original
optimal control problem can be computed using the reduced
system provided by Lie-Poisson reduction [4]. However, the
connection between this result and the procedure for deriving
reduced necessary conditions for optimality was not explored
in [4]. We will explore this connection for left-invariant
problems in Section V, and we will extend it to problems
with subgroup symmetry in Section VII.

The results in this paper generalize those in a conference
paper by the authors [5]. In the conference paper, we con-
sidered optimal control problems on matrix Lie groups whose
cost functions depended upon a symmetry breaking term (such
as gravity) that was decoupled from the control input. The
results in this paper can be applied to general Lie groups
(although the examples in Sections IV and VIII involve matrix
Lie groups). Furthermore, we do not impose the decoupled
structure on the cost function in this paper. Also, as discussed
in the previous paragraph, we give particular attention to
establishing a clear relationship between simplifications in the
necessary and sufficient conditions, which was not explored
in the conference paper.

III. OPTIMAL CONTROL ON SMOOTH MANIFOLDS

In this section, we recall a few results from geometric
optimal control. First, in Section III-A, we review some
notation from differential geometry. Introductory material on
smooth manifolds that is not covered here can be found in
any differential geometry text, e.g., Lee [37]. Then, in Section
III-B, we state a geometric version of Pontryagin’s maximum
principle [38]. In Section III-C, we give a sufficient optimality
condition based on the theory of conjugate points. Proofs of
the necessary and sufficient conditions in this section can be
found in Agrachev and Sachkov [1]. In later sections, we
will specialize these optimality conditions for optimal control
problem with certain symmetry properties.
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A. Smooth Manifolds

For a smooth manifold M , we denote the set of all smooth
real-valued functions on M by C∞(M) and the set of all
smooth vector fields on M by X(M). Let v · df and 〈w, v〉
denote the actions of a tangent vector v ∈ TmM on a function
f ∈ C∞(M) and a tangent covector w ∈ T ∗mM on v,
respectively. The function X[f ] ∈ C∞(M) denotes the action
of a vector field X ∈ X(M) on a function f ∈ C∞(M), and
satisfies

X[f ](m) = X(m) · df

for all m ∈ M . For X,Y ∈ X(M), the Jacobi-Lie bracket
produces the vector field [X,Y ] that satisfies

[X,Y ][f ] = X[Y [f ]]− Y [X[f ]]

for all f ∈ C∞(M). The pushforward of a smooth map
F : M → N , where N is a smooth manifold, is the linear
map TmF : TmM → TF (m)N that satisfies

TmF (v) · df = v · d(f ◦ F )

for all v ∈ TmM and f ∈ C∞(N). The pullback of F at
m ∈M is the dual map T ∗mF : T ∗F (m)N → T ∗mM that satisfies

〈T ∗mF (w), v〉 = 〈w, TmF (v)〉

for all v ∈ TmM and w ∈ T ∗F (m)N . If there exists a non-zero
v ∈ TmM such that TmF (v) = 0, then we say F is degenerate
at m ∈M . The canonical symplectic form on T ∗M is

Ω =

n∑
i=1

dqi ∧ dpi,

where (q, p) are local coordinates on T ∗M and n =
dimM . The Poisson bracket generated by the canonical
symplectic form on T ∗M is denoted by {·, ·} : C∞(T ∗M)×
C∞(T ∗M)→ C∞(T ∗M) and satisfies

{f, g} = Ω(Xf , Xg)

for all f, g ∈ C∞(T ∗M), where Xf satisfies

Ω(Xf (m), v) = v · df(m)

for all m ∈ M and v ∈ TmM . We call Xf the Hamiltonian
vector field of f ∈ C∞(T ∗M). Finally, let π : T ∗M → M
denote the projection map π(m,w) = m for all w ∈ T ∗mM .

B. Necessary Conditions

We now consider an optimal control problem whose state
takes values on a smooth manifold M . Let g : M × U → R
and f : M × U → TM be smooth maps where U ⊂ Rm for
some m > 0. Consider the optimal control problem

minimize
q,u

∫ tf

0

g(q(t), u(t)) dt

subject to q̇(t) = f(q(t), u(t)) for all t ∈ [0, tf ]

q(0) = q0, q(tf ) = qf

(1)

for some fixed tf > 0, where q0, qf ∈ M are fixed and
(q, u) : [0, tf ]→M×U . Necessary conditions for (q, u) to be
a local optimum of (1) are provided by Pontryagin’s maximum

principle [38]. To apply the maximum principle, we define the
parameterized Hamiltonian Ĥ : T ∗M × R× U → R by

Ĥ(q, p, k, u) = 〈p, f(q, u)〉 − kg(q, u),

where p ∈ T ∗qM . Theorem 1 provides necessary conditions
that local optima of (1) must satisfy.

Theorem 1. (Necessary Conditions) Suppose (q, u) :
[0, tf ]→M ×U is a local optimum of (1). Then, there exists
k ≥ 0 and p : [0, tf ]→ T ∗q(t)M such that (q, p) is an integral
curve of the time-varying Hamiltonian vector field XH , where
H : T ∗M × R→ R is given by H(q, p, t) = Ĥ(q, p, k, u(t)),
and (q, p) satisfies

H(q(t), p(t), t) = max
u∈U

Ĥ(q(t), p(t), k, u) (2)

for all t ∈ [0, tf ]. If k = 0, then p(t) 6= 0 for all t ∈ [0, tf ].

Proof. See Theorem 12.10 in [1].

The integral curve (q, p) is called an abnormal extremal
when k = 0 and a normal extremal otherwise. If k 6= 0,
we may assume k = 1. We call (q, u) abnormal if it is the
projection of an abnormal extremal. We call (q, u) normal if it
is the projection of a normal extremal and it is not abnormal.

C. Sufficient Conditions

The conditions in Theorem 1 are necessary for a trajectory
(q, u) to be a local optimum of (1). Second order conditions
are needed to ensure (q, u) is indeed a local minimum.
Theorem 2 provides sufficient optimality conditions based on
the non-existence of conjugate points.

Theorem 2. (Sufficient Conditions) Suppose (q, p) : [0, tf ]→
T ∗M is a normal extremal of (1) and ∂2Ĥ/∂u2 < 0 in a
neighborhood of the curve (q, p). Assume that the maximized
Hamiltonian function

H(q, p) = max
u∈U

Ĥ(q, p, 1, u) (3)

is defined and smooth on T ∗M . Also assume that XH is
complete and that there exists no other integral curve (q′, p′)
of XH satisfying q′(t) = q(t) for all t ∈ [0, tf ]. Let
ϕt : T

∗M → T ∗M be the flow of XH and define the endpoint
map φt : T

∗
q0M → M by φt(w) = π ◦ ϕt(q0, w). Define

u : [0, tf ] → U so u(t) is the unique maximizer of (3) at
(q(t), p(t)). Then (q, u) is a local optimum if there exists no
t ∈ (0, tf ] for which φt is degenerate at p(0).

Proof. See Theorem 21.8 in [1].

A time at which φt is degenerate is called a conjugate time,
and the endpoint map φt is degenerate when its Jacobian
matrix is singular. To compute the integral curves (q, p) in
Theorem 1 or establish non-degeneracy of the endpoint map φt
in Theorem 2, we could introduce local coordinates on T ∗M .
Integral curves could then be found by solving Hamilton’s
canonical equations

q̇i = Hpi ṗi = −Hqi , (4)

where (qi, pi) are local coordinates on T ∗M with i =
1, . . . , n = dimM , and subscripts denote partial derivatives.
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In order to establish local optimality of an integral curve,
let J(t) denote the Jacobian matrix of the endpoint map φt in
this coordinate system, i.e., J(t) is the Jacobian matrix of the
state q(t) with respect to the initial costate p(0), and let M(t)
denote the Jacobian matrix of the costate p(t) with respect
to the initial value of the costate p(0). These matrices can be
found be solving the time-varying matrix differential equations

J̇ = (Hqp)J + (Hpp)M Ṁ = −(Hqq)J− (Hpq)M (5)

with the initial conditions M(0) = I and J(0) = 0. The
endpoint map φt is degenerate if det(J(t)) = 0.

Note that in (4), the evolution of the costate p could depend
upon both the state q and the costate p, depending upon the
structure of the Hamiltonian. Similarly, the evolution of q
could depend upon both q and p. Analogously, note that in
(5), the evolution of the matrix M could depend upon both M
and J. The evolution of the matrix J could also depend upon
both M and J. Also observe that the coefficient matrices in (5)
could be a function of both q and p. In the following sections,
we will show that symmetries allow us to decouple some of
these differential equations and that this decoupling occurs in
analogous ways in the necessary and sufficient conditions.

IV. LEFT-INVARIANT OPTIMAL CONTROL PROBLEMS

Theorems 1 and 2 provide coordinate-free conditions that
local solutions of (1) must satisfy. As described in the previous
section, these conditions can be evaluated by introducing local
coordinates on T ∗M . However, if the Hamiltonian function (3)
possesses symmetries, we can use these symmetries to sim-
plify these computations by reducing the number of variables
needed to describe trajectories of the system.

In this section, we review some results for the case when
the Hamiltonian function (3) is left-invariant. We begin by
recalling some facts about Lie Groups in Section IV-A. Further
information on Lie groups (and their representations, which
will be used in Section VI) can be found, e.g., in the text
by Varadarajan [39]. In Sections IV-B and IV-C, we give
reduced statements of the necessary and sufficient conditions
for optimality in Theorems 1 and 2, respectively. Then, in
Section IV-D, we consider a left-invariant optimal control
problem on the Lie group SO(3).

A. Lie Groups

Let G be an n-dimensional Lie group with identity element
e ∈ G. Let g = TeG be the Lie algebra associated with G and
g∗ = T ∗eG its dual. For any q ∈ G, define the left translation
map Lq : G→ G by

Lq(r) = qr

for all r ∈ G. A function H ∈ C∞(T ∗G) is left-invariant if

H(r, T ∗r Lq(w)) = H(s, w) (6)

for all w ∈ T ∗sG and q, r, s ∈ G satisfying s = Lq(r). For
any ζ ∈ g, let Xζ be the vector field that satisfies

Xζ(q) = TeLq(ζ)

for all q ∈ G. Define the Lie bracket [·, ·] : g× g→ g by

[ζ, η] = [Xζ , Xη](e)

for all ζ, η ∈ g. For any ζ ∈ g, the adjoint operator adζ : g→ g
is defined by the Lie bracket

adζ(η) = [ζ, η],

and the coadjoint operator ad∗ζ : g∗ → g∗ is given by its dual
map and determined by

〈ad∗ζ(µ), η〉 = 〈µ, adζ(η)〉

for all η ∈ g and µ ∈ g∗. The functional derivative of h ∈
C∞(g∗) at µ ∈ g∗ is the element δh/δµ ∈ g that satisfies

lim
s→0

h(µ+ sδµ)− h(µ)

s
=

〈
δµ,

δh

δµ

〉
for all δµ ∈ g∗. Let {X1, . . . , Xn} be a basis for g and
let {X1, . . . , Xn} be the dual basis for g∗ that satisfies
〈Xi, Xj〉 = δij for i, j ∈ {1, . . . , n}, where δij is the
Kronecker delta. We write ζi to denote the ith component of
ζ ∈ g with respect to this basis. For i, j ∈ {1, . . . , n}, define
the structure constants Ckij ∈ R for our choice of basis by

[Xi, Xj ] =

n∑
k=1

CkijXk. (7)

B. Left-Invariant Necessary Conditions
We now revisit the statement of necessary conditions for

the optimal control problem (1) in the case where the smooth
manifold M is a Lie group G and the Hamiltonian function
H is left-invariant under the cotangent lift of left translations.
Theorem 1 implies the existence of an integral curve (q, p) in
the cotangent bundle T ∗G. The following theorem implies the
existence of a corresponding integral curve µ in g∗.

Theorem 3. (Reduction of Necessary Conditions) Suppose
(q, u) : [0, tf ] → M × U is a local optimum of (1). Assume
the time-varying Hamiltonian function H : T ∗M × R → R
defined in Theorem 1 is both smooth and left-invariant for
all t ∈ [0, tf ], and denote the restriction of H to g∗ by h =
H|g∗×[0,tf ]. Then, the integral curve (q, p) : [0, tf ] → T ∗M
described in Theorem 1 satisfies

p(t) = T ∗q(t)Lq(t)−1(µ(t)) (8)

q̇ = Xδh/δµ(q) (9)

for all t ∈ [0, tf ], where µ : [0, tf ]→ g∗ is the solution of the
Lie-Poisson equations

µ̇ = ad∗δh/δµ(µ) (10)

with initial condition µ(0) = T ∗e Lq0(p(0)).

Proof. See the proof of Theorem 13.4.4 in [2].

Since g∗ is a vector space, the trajectory µ described by (10)
can be evaluated by solving a system of ordinary differential
equations. Taking µ1(t), . . . , µn(t) as coordinates of µ(t), (10)
is equivalent to (see [18])

µ̇i = −
n∑
j=1

n∑
k=1

Ckij
δh

δµj
µk. (11)
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C. Left-Invariant Sufficient Conditions

We now revisit the sufficient conditions in Theorem 2 for
left-invariant optimal control problems. As shown in [4], non-
degeneracy of the endpoint map φt can be established by
working with the variables µi for i = 1, . . . , n from the
reduced necessary conditions in Theorem 3.

Theorem 4. (Reduction of Sufficient Conditions) Suppose
(q, p) : [0, tf ] → T ∗M is a normal extremal of (1), and
assume the conditions in Theorem 2 hold. Also assume the
Hamiltonian function H : T ∗M → R defined in Theorem 2 is
left-invariant, and let h = H|g∗ be the restriction of H to g∗.
Let µ be the solution of (10) with initial condition µ(0) =
T ∗e Lq0(p(0)), and define the matrices F, G, H ∈ Rn×n by

Fij = − ∂

∂µj

n∑
r=1

n∑
s=1

Csir
δh

δµr
µs

Gi
j =

∂

∂µj

δh

δµi
Hi

j = −
n∑
r=1

δh

δµr
Cirj .

Solve the (linear, time-varying) matrix differential equations

Ṁ = FM J̇ = GM + HJ (12)

with initial conditions M(0) = I and J(0) = 0. Define
u : [0, tf ] → U as in Theorem 2. Then (q, u) is a local
optimum if there exists no t ∈ (0, tf ] for which det(J(t)) = 0.

Proof. See the proof of Theorem 4 in [4].

Compared with the necessary and sufficient conditions in
Theorems 1 and 2, we see that the conditions in Theorems 3
and 4 have some advantages. Whereas the differential equa-
tions for the state q and the costate p were possibly coupled
in Theorem 1, as shown in (4), the Lie-Poisson equations (10)
in Theorem 3 governing the reduced costate µ are decoupled
from the state q. Similarly, the differential equation (12) in
Theorem 4 for the matrix M is decoupled from J, whereas
they were coupled in Theorem 2, as shown in (5). In Section
V, we will further explore the decouplings that occur through
reduction of the necessary and sufficient conditions.

D. The Torque-Free Spinning Top

To demonstrate the application of the conditions in Theo-
rems 3 and 4, consider a spinning top that does not experience
external torques. The motion of the top corresponds to a
trajectory on the matrix Lie group SO(3) that extremizes (but
does not necessarily minimize) the top’s action functional.
From a mechanics viewpoint, we are often concerned with
finding equations of motion and solving them as an initial
value problem. We are not typically concerned with finding
trajectories that minimize a system’s action functional subject
to given boundary conditions. However, to show how Theo-
rems 3 and 4 can be applied, we will search for trajectories
of the spinning top that satisfy given boundary conditions
and minimize the top’s action functional. We also note that
problems similar to the one considered in this section have
previously been studied in the context of optimal attitude
control of spacecraft and satellites [40].

The optimal control problem that corresponds to the spin-
ning top is given by

minimize
q,u

∫ tf

0

(
1

2

3∑
i=1

ciu
i2

)
dt

subject to q̇ = q

(
3∑
i=1

uiXi

)
q(0) = q0, q(tf ) = qf

(13)

for some fixed q0, qf ∈ SO(3) and tf > 0, where
(q, u) : [0, tf ]→ SO(3)× R3, and

X1 =
[
0 0 0
0 0 −1
0 1 0

]
X2 =

[
0 0 1
0 0 0
−1 0 0

]
X3 =

[
0 −1 0
1 0 0
0 0 0

]
.

Since SO(3) is a matrix Lie group, we have used qζ to denote
the left action of q ∈ G = SO(3) on ζ ∈ g = so(3) in the
dynamic constraints in (13), where the Lie algebra so(3) is
the set of all 3 × 3 skew-symmetric matrices. The positive
constants c1, c2, and c3 play the role of weights in the cost
function and correspond to the moments of inertia of the top.
The control input u is the angular velocity of the top, and
the integrand in the cost function in (13) is the kinetic energy
of the top. For each q ∈ SO(3), the right hand side of the
dynamic constraint in (13) spans the tangent space TqSO(3),
and the system is therefore controllable [1].

Applying Theorem 1 gives that local extrema of (13)
correspond to integral curves of the Hamiltonian vector field
XH , where H : T ∗SO(3)→ R is defined by

Ĥ(q, p, k, u) =

〈
p, q

(
3∑
i=1

uiXi

)〉
− k

2

(
3∑
i=1

ciu
i2

)
and

H(q, p) = max
u

Ĥ(q, p, k, u).

In the abnormal case (that is, k = 0), Ĥ is extremized in u
when p = 0. Therefore, by Theorem 1, there are no abnormal
extremals. In the normal case, if we take k = 1, then the
maximum is achieved when

ui = c−1i 〈p, qXi〉 (14)

for i ∈ {1, 2, 3}. This is indeed a maximum since

∂2Ĥ/∂u2 = −diag(c1, c2, c3) < 0.

The maximized Hamiltonian function is then

H(q, p) =
1

2

3∑
i=1

c−1i 〈p, qXi〉2.

Note that for any p ∈ T ∗q SO(3) and q, g, r ∈ SO(3)
satisfying q = gr, we have

H(r, T ∗r Lg(p)) =
1

2

3∑
i=1

c−1i 〈T
∗
r Lg(p), g

−1qXi〉2

=
1

2

3∑
i=1

c−1i 〈p, g
(
g−1qXi

)
〉2

=
1

2

3∑
i=1

c−1i 〈p, qXi〉2

= H(q, p).

(15)
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Therefore, H is left-invariant and we can apply Theorem 3.
The reduced Hamiltonian on so∗(3) is given by

h(µ) = H(µ, e) =
1

2

3∑
i=1

c−1i µ2
i .

The Lie-Poisson equations (10) for the reduced Hamiltonian
h are given by

µ̇ = µ× u (16)

where ui = c−1i µi. In this case, the coadjoint operator in (10)
is the cross product after an identification of so(3) with R3

using the hap map ̂ : R3 → so(3), which satisfies âb = a× b
for all a, b ∈ R3.

Candidate solutions of (13) are obtained by finding an
initial value of µ(0) ∈ so∗(3) ∼= R3 that places q(tf ) at qf .
Such solutions are only guaranteed to be extrema of (13).
It is clear that that µ ∈ g∗ (and hence p ∈ T ∗SO(3))
is uniquely determined by (q, u), and in this case, XH is
complete. Therefore, we may apply Theorem 4 to determine
which extrema are actually local minima.

Computing the matrices F, G, and H in Theorem 4 (and
defining cij = (c−1i − c

−1
j )) gives

F =

 0 c32µ3 c32µ2

c13µ3 0 c13µ1

c21µ2 c21µ1 0


G = diag(c−11 , c−12 , c−13 ) H = −û.

(17)

After finding µ(0) ∈ so∗(3) that places q(tf ) at qf , (12)
can be solved with the initial conditions M(0) = I and
J(0) = 0. If det(J(t)) 6= 0 for all t ∈ (0, tf ], then the
solution corresponding to this choice of µ(0) ∈ so∗(3) is a
local minimum of (13).

We now consider a top that is axisymmetric with c2 =
c3 = 1. With these parameters, setting µ2 = µ3 = 0 and
letting µ1 be arbitrary gives a fixed point of the system (16).
This fixed point corresponds to the top rotating about its axis
of symmetry. Solving the linear system (12) at this fixed
point, which now becomes time-invariant, and computing the
determinant of J(t) gives

det (J(t)) =
4t

c1µ2
1

sin2
(µ1

2
t
)
.

We see that if |µ1tf | < 2π, then this trajectory of the top
is locally optimal, since det (J(t)) > 0 for all t ∈ (0, tf ]. If
|µ1tf | > 2π, this trajectory of the top is not locally optimal.

These results for the axisymmetric top are consistent with
previous studies of conjugate points in rigid body motion, such
as [34], in which the conjugate locus for an axisymmetric
body was computed, and [41], in which conjugate points for a
sleeping but non-axisymmetric body were computed. In Sec-
tion VIII, we derive similar results for a top in a gravitational
field, which have not appeared in previous literature.

V. REINTERPRETATION OF THE OPTIMALITY CONDITIONS
FOR LEFT-INVARIANT PROBLEMS

The key insight in Theorem 3 is that by taking an integral
curve (q, p) of XH and left-translating the costate to the iden-
tity to obtain µ(t) = T ∗e Lq(t)(p(t)), we find that µ satisfies the

ordinary differential equation (10), which is decoupled from
the state q. This same procedure was used to prove Theorem 4
in [4], although this connection between the reduced necessary
and sufficient conditions was not made explicit. In this section,
we explicitly connect the results in Theorems 3 and 4.

Recall from Theorem 2 that we need to determine if the map
φt : T

∗
q0G → G is degenerate at p(0) for some t ∈ (0, tf ]. In

other words, for each t ∈ (0, tf ], we need to determine if
the image of the pushforward Tp(0)φt spans the tangent space
Tq(t)G. Following the approach in Theorem 3 to decouple the
state and the costate, we pre- and post-compose Tp(0)φt with
left-translation from and to the identity, respectively. Then we
evaluate this map at each Xj ∈ g∗, which produces the Lie
algebra element

ηj(t) = Tq(t)Lq(t)−1

(
Tp(0)φt

(
T ∗q0Lq−1

0
(Xj)

))
. (18)

After defining the matrix Jij(t) = ηij(t), we can check
for degeneracy of the endpoint map φt by checking the
determinant of J(t). As shown in Theorem 4, the matrix J(t)
can be computed by solving a matrix differential equation
that only depend upon the reduced costate µ. Just as the
costate p can be reconstructed from the reduced costate µ
using (8) in Theorem 3, the Jacobian of the endpoint map φt
can be reconstructed by left-translating each ηj(t) to q(t) for
j = 1, . . . , n, i.e., by TeLq(t)(ηj(t)). The reconstruction of
ηj(t) provides a variation along the curve q(t) in G, and such
variations have been used to establish first order necessary
conditions in variational problems with symmetries [42].

At the end of Section III-C, we saw that when working in
local coordinates, the differential equations (4) were coupled
in a similar way to the matrix differential equations (5). Now
note the similarities between the differential equations (10) and
(9) in Theorem 3 and the matrix differential equations (12) in
Theorem 4. The evolution of the covector µ is decoupled from
the state q in (10), whereas the evolution of q, given by (9),
depends on both q and µ. Analogously, the matrix M is decou-
pled from J in (12), whereas the evolution of J depends upon
both J and M. Furthermore, the coefficient matrices in (12)
depend only upon the reduced costate µ. These simplifications
were derived by applying the reduction procedure in Theorem
3 to the sufficient conditions in Theorem 2. We therefore call
the conditions in Theorem 4 reduced sufficient conditions.

The procedure for exploiting symmetries in necessary and
sufficient conditions for optimality is outlined in Figure 1,
along with the corresponding theorems in this paper. In
this figure, solid arrows denote standard results for optimal
control problems (such as those in Section III) that can be
applied to problems without symmetry. The dotted arrows
denote previous work on symmetry in necessary conditions for
optimality, some of which is described in Section II. Our focus
is on deriving reduced sufficient conditions and equating the
reduced and unreduced sufficient conditions, i.e., the dashed
arrows, which has received less consideration in previous
literature than the necessary conditions. In the remainder of
this paper, we extend the results in this section by exploring the
analogous simplifications in reduced necessary and sufficient
conditions for problems that are not left-invariant, but are
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Optimal Control Problem with Symmetries

Necessary Conditions
Theorem 1

Sufficient Conditions
Theorem 2

Reduced Necessary Conditions
Theorems 3 and 5

Reduced Sufficient Conditions
Theorems 4 and 6

Maximum Principle

Reduction / Reconstruction

Conjugate Point Test

Local Optimality

Reduced Conjugate Point Test

Reduction / Reconstruction

Fig. 1: The procedure for applying symmetry reduction to optimal control problems. Solid arrows represent standard results
from optimal control theory, such as those in Section III. Dotted arrows represent previous work, covered in Section II, on
reduction of necessary conditions. Dashed arrows represent the focus of this paper, which is reduction of sufficient conditions.

invariant under a subgroup of the Lie group G.

VI. NECESSARY CONDITIONS FOR PROBLEMS WITH
SUBGROUP SYMMETRY

In Section IV, we assumed that the Hamiltonian function
provided by the maximum principle was left-invariant under
an action of the Lie Group G. In this section, we consider the
case when the Hamiltonian is left-invariant with respect to a
subgroup of G. As was done in Theorem 3, we will derive a
reduced Hamiltonian system whose integral curves correspond
to integral curves of the Hamiltonian vector field XH on T ∗G..
As before, these curves can be computed by solving a system
of ordinary differential equations.

In Section VI-A, we motivate the need to consider optimal
control problems with subgroup symmetry by examining a
generalization of the optimal control problem in Section IV-D.
Then, in Section VI-B, we review semidirect products and
Lie group representations. In Section VI-C, we give reduced
necessary conditions for optimality when the Hamiltonian
function is left-invariant with respect to a subgroup of G.

A. The Heavy Spinning Top

Consider again the optimal control problem (13) (i.e., the
same dynamic constraints and boundary conditions as (13)),
but now with the cost function

g(q, u) =
1

2

3∑
i=1

ciu
i2 + χ0(qν), (19)

where ν ∈ R3 is a constant vector and χ0 : R3 → R is a linear
map. Since the map χ0 is linear, it can be represented by a
constant three-dimensional row vector. This cost function is
the Lagrangian of a spinning top in a gravitational field, where
ν is a vector pointing from the fixed point of the top to the
top’s center of mass, and χ0 points in the direction of gravity
and has magnitude equal to the weight of the top. The control
input u and the constants ci still have the same interpretation
as in Section IV-D, i.e., u is the angular velocity of the top,
the constants ci are the moments of inertia of the top, and
the first term in the cost function (19) is the kinetic energy of
the top. The second term in the cost function (19), which did

not appear in the problem (13), is the negative of the top’s
gravitational potential energy.

The Hamiltonian function depends upon the two parameters
ν (which is a vector) and χ0 (which is a linear map). As
we will see in Section VI-C, the parameter χ0 will become
important when we apply symmetry reduction to this system.
Therefore, to denote the dependence of the Hamiltonian func-
tion on the parameter χ0, we will denote the Hamiltonian by
Hχ0

. Applying Theorem 1 gives that local extrema of (13)
with the cost function (19) correspond to integral curves of
the Hamiltonian vector field XHχ0

, where

Ĥχ0
(q, p, k, u) =

〈
p, q

(
3∑
i=1

uiXi

)〉

− k

(
1

2

3∑
i=1

ciu
i2 + χ0(qν)

)

and

Hχ0
(q, p) = max

u
Ĥχ0

(q, p, k, u).

The abnormal case for this problem is identical to the abnormal
case in Section IV-D, so there are no abnormal extremals. In
the normal case, when k = 1, the maximum is again given by
(14). The maximized Hamiltonian function is then

Hχ0
(q, p) =

1

2

3∑
i=1

c−1i 〈p, qXi〉2 − χ0(qν). (20)

Using the computations in (15), note that for any p ∈
T ∗q SO(3) and q, g, r ∈ SO(3) satisfying q = gr, we have

Hχ0(r, T ∗r Lg(p)) =
1

2

3∑
i=1

c−1i 〈p, qXi〉2 − χ0(g−1qν).

We see that H is left-invariant under the elements of SO(3)
that satisfy χ0g

−1 = χ0. These elements form a subgroup of
G, called the isotropy group of χ0. In the remainder of this
section, we will give necessary conditions for problems with
this subgroup symmetry property.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 8

B. Semidirect Products

Let V be an l-dimensional vector space and let ρ : G →
GL(V ) be a left representation of G on V , i.e., ρ is a smooth
group homomorphism that assigns to each g ∈ G a linear map
ρ(g) : V → V satisfying

ρ(g1g2) = ρ(g1)ρ(g2)

for all g1, g2 ∈ G. The associated left and right representations
of G on V ∗, denoted ρ∗ and ρ∗, respectively, are

ρ∗(g) =
[
ρ(g−1)

]∗
ρ∗(g) = [ρ(g)]

∗
,

where [ ]∗ denotes the dual transformation. The induced Lie
algebra representation ρ′ : g→ End[V ] of ζ ∈ g satisfies

ρ′(ζ)(v) =
d

dt
[ρ(exp(tζ))(v)] |t=0

for all v ∈ V , where exp : g → G is the exponential map.
Denote by Gχ the isotropy group of χ ∈ V ∗, i.e.,

Gχ = {g ∈ G|ρ∗(g)χ = χ}. (21)

Let S = G × V be the semidirect product of G and V with
multiplication and inversion given by

(g1, v1)(g2, v2) = (g1g2, v1 + ρ(g1)v2)

(g1, v1)−1 = (g−11 ,−ρ(g−11 )v1)

for all g1, g2 ∈ G and v1, v2 ∈ V . The Lie algebra of S is
s = g× V with the Lie bracket

[(ζ1, v1), (ζ2, v2)] = ([ζ1, ζ2], ρ′(ζ1)v2 − ρ′(ζ2)v1)

for all ζ1, ζ2 ∈ g and v1, v2 ∈ V . The left action of S on T ∗S
is given by

T ∗(r,z)L(q,u)(s, w, v, χ) = (r, T ∗r Lq(w), z, ρ∗(q)χ) (22)

for all u, v, z ∈ V , χ ∈ V ∗, w ∈ T ∗sG, and q, s, r ∈ G
satisfying s = Lq(r) and z = u+ ρ(q−1)v [8].

C. Reduction of Necessary Conditions

We now consider the statement of necessary conditions
in Theorem 1 in the case when the Hamiltonian function is
left-invariant under the action of a subgroup of G. In many
situations, the Hamiltonian function depends upon a parameter
in the dual of some vector space, and the subgroup under
which the Hamiltonian is left-invariant is the isotropy group
of this parameter. For such systems, Theorem 5 provides
necessary conditions similar to those in Theorem 3.

Before stating Theorem 5, we provide a motivation for the
results contained in the theorem. The key idea of the theorem
is to embed a Hamiltonian system with subgroup symmetry
within an extended Hamiltonian system that is left-invariant.
This embedding procedure has been applied to many problems
in geometric mechanics with subgroup symmetry [7]–[9], and
Theorem 5 applies this idea to the necessary conditions given
in Theorem 1. To see how this is done, suppose a Hamiltonian
function depends smoothly on a parameter χ0 ∈ V ∗ and is left-
invariant under the action of Gχ0

on T ∗G, so that (6) holds
when q ∈ Gχ0

(recall from (21) that Gχ0
is the isotropy group

of χ0). We denote the Hamiltonian by Hχ0 : T ∗G→ R to note
the dependence on χ0 ∈ V ∗.

The procedure for applying reduction to such Hamiltonian
systems is to consider the augmented Hamiltonian function
H : T ∗S → R defined by H(q, p, v, χ) = Hχ(q, p), where
T ∗S = T ∗G× V × V ∗. Since Hχ(q, p) is independent of the
variable v ∈ V , we ignore the V component of the left action
of S on T ∗S and define H to be constant in the variable v ∈ V
[7]. We then show that H : T ∗S → R is left-invariant under
the action of S, i.e., using (22), we show that

H(r, T ∗r Lq(w), v, ρ∗(q)χ) = H(s, w, v, χ) (23)

for all v ∈ V , χ ∈ V ∗, w ∈ T ∗sG, and q, r, s ∈ G satisfying
s = Lq(r). An example of this computation for a specific
Hamiltonian function is shown in (37) of Section VIII.

The original Hamiltonian system on T ∗G, with Hamilto-
nian Hχ0

, is now embedded within an extended Hamiltonian
system on T ∗S, with Hamiltonian H . Since the Hamiltonian
function H is left-invariant, we can apply reduction to the
Hamiltonian system on T ∗S. Note that if (23) holds and
q ∈ Gχ0

, then χ0 = ρ∗(q)χ0 by (21) and

Hχ0(r, T ∗r Lq(w)) = H(r, T ∗r Lq(w), v, χ0)

= H(r, T ∗r Lq(w), v, ρ∗(q)χ0)

= H(s, w, v, χ0)

= Hχ0(s, w)

for all w ∈ T ∗sG, r, s ∈ G, and q ∈ Gχ0
satisfying s =

Lq(r). Therefore (23) implies that Hχ0
is left-invariant under

the action of Gχ0 on T ∗G.
If (23) holds, then the family of Hamiltonians {Hχ|χ ∈

V ∗} induces a reduced Hamiltonian h on s∗. As shown in the
following theorem, the existence of an integral curve (µ, χ)
in s∗ implies the existence of a corresponding integral curve
(q, p) of XHχ0

in the cotangent bundle T ∗G.

Theorem 5. (Semidirect Product Reduction of Necessary
Conditions) Suppose (q, u) : [0, tf ] → M × U is a lo-
cal optimum of (1). Assume the time-varying Hamiltonian
function defined in Theorem 1, which we now denote by
Hχ0

: T ∗G × [0, tf ] → R, is smooth and depends smoothly
on the parameter χ0 ∈ V ∗. In addition, let S = G × V
be the semidirect product between G and V , and suppose
that the Hamiltonian function H : T ∗S × [0, tf ]→ R, defined
by H(q, p, v, χ, t) = Hχ(q, p, t), is left-invariant under the
action of S for all t ∈ [0, tf ]. Denote the restriction of
H to s∗ by h = H|s∗×[0,tf ]. Then, the integral curve
(q, p) : [0, tf ]→ T ∗M described in Theorem 1 satisfies

p(t) = T ∗q(t)Lq(t)−1(µ(t)) (24)

q̇ = Xδh/δµ(q) (25)

for all t ∈ [0, tf ], where (µ, χ) : [0, tf ]→ s∗ is the solution of

µ̇ = ad∗δh/δµ(µ)−
(
ρ′δh/δχ

)∗
χ (26)

χ̇ = ρ′ (δh/δµ)
∗
χ (27)
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with initial conditions µ(0) = T ∗e Lq0(p(0)) and χ(0) =
ρ∗(q0)χ0, where ρ′δh/δχ : g→ V satisfies

ρ′δh/δχ(ζ) = ρ′(ζ)
δh

δχ

for all ζ ∈ g.

Proof. See Theorem 3.4 of [8].

As was the case in Theorem 3, writing (26) and (27) in
coordinates allows us to find µ and χ by solving a system
of ordinary differential equations. From (11), we know the
structure of the coadjoint term in (26). Next, since χ ∈ V ∗

and dim(V ) = l, we may represent χ as an l-dimensional row
vector. We then have(

ρ′δh/δχ

)∗
(χ)(·) = χ

(
ρ′(·) δh

δχ

)
∈ g∗.

Therefore, we have

µ̇i = −
n∑
j=1

n∑
k=1

Ckij
δh

δµj
µk − χ

(
ρ′ (Xi)

δh

δχ

)
.

Expanding the second term in the above expression gives

µ̇i = −
n∑
j=1

n∑
k=1

Ckij
δh

δµj
µk−

l∑
j=1

l∑
k=1

χj [ρ′(Xi)]
j
k

δh

δχk
. (28)

We can also write (27) in coordinates as

χ̇i =

l∑
j=1

χj [ρ′ (δh/δµ)]
j
i . (29)

Also note that from (25) we have

d

dt
ρ(q) = ρ(q)ρ′(δh/δµ),

and therefore
d

dt
(ρ(q)∗χ0) =

d

dt
(χ0(ρ(q)))

= χ0

(
d

dt
ρ(q)

)
= χ0 (ρ(q)ρ′(δh/δµ))

= ρ′(δh/δµ)∗χ0 (ρ(q))

= ρ′(δh/δµ)∗ (ρ(q)∗χ0) .

This shows that
χ(t) = ρ(q(t))∗χ0 (30)

solves (27) with the correct initial condition.
We now have two ways of finding integral curves of the

Hamiltonian vector field XHχ0
. We could solve for the reduced

variables (µ, χ) using the differential equations (26) and (27),
and then reconstruct the trajectory (q, p) using (24) and (25).
This is analogous to the result in Theorem 3, where we first
solved for the reduced variable µ and then reconstructed the
trajectory (q, p). Now, due to the subgroup symmetry, we have
to keep track of the extra reduced variable χ. Alternatively,
we could substitute the expression in (30) for χ into the
differential equation (26). This would explicitly show how the
subgroup symmetry of the problem couples the reduced costate

µ with the state q. In the next section, we will show that the
sufficient conditions can be computed in two alternative ways
that are analogous to the necessary conditions.

Before moving on, we make one note about the notation
used in this section. In the differential equation (26) in
Theorem 5, we have a term of the form (ρ′v)

∗
χ with v ∈ V

and χ ∈ V ∗. In previous work, the diamond operator was
used to denote this function [7], i.e., (ρ′v)

∗
χ = v �χ. Readers

should keep this notation in mind when comparing Theorem
5 to previous results in geometric mechanics. However, when
we state sufficient conditions for problems with subgroup
symmetry in Section VII and when we prove these conditions
in the appendices, it will be more convenient to work with the
notation we have used in Theorem 5.

VII. SUFFICIENT CONDITIONS FOR PROBLEMS WITH
SUBGROUP SYMMETRY

In the previous section, we found reduced necessary condi-
tions for optimal control problems with subgroup symmetry.
In this section, we give reduced sufficient conditions for
such problems. We do this by deriving a system of matrix
differential equations, similar to those in (12), that can be
evaluated to establish non-degeneracy of the endpoint map φt
from Theorem 2. The reduced sufficient conditions rely on
the gradients of the state q and the reduced variables µ and χ
with respect to the initial value of µ at t = 0. Formulas for
computing these gradients are derived in Section VII-A. We
then state the reduced sufficient conditions in Section VII-B.
In Section VII-C, we compare the structure of the sufficient
conditions with the necessary conditions found in Theorem 5.

A. Computation of the State and Costate Gradients

We now derive a set of differential equations for computing
the gradients of the state q and the reduced variables µ and χ
with respect to the initial value of µ at time t = 0. These gradi-
ents will be used to establish the reduced sufficient conditions
in Section VII-B. In this section, we will use Φt : s

∗ → s∗

to denote the flow of the system (26)-(27), i.e., Φt maps an
initial condition (µ(0), χ(0)) ∈ s∗ to (µ(t), χ(t)) ∈ s∗. Also
recall that {X1, . . . , Xn} is a basis for the Lie algebra g and
{X1, . . . , Xn} is the corresponding dual basis for g∗. These
bases are used in Lemmas 1 and 2. We first compute the
gradients of the reduced variables µ and χ.

Lemma 1. Suppose (q, p) : [0, tf ] → T ∗M is a normal
extremal of (1), and assume the conditions in Theorem 2 hold.
Also assume the Hamiltonian function defined in Theorem 2,
which we now denote by Hχ0 : T ∗G→ R, depends smoothly
on the parameter χ0 ∈ V ∗. In addition, let S = G × V
be the semidirect product between G and V , and suppose
that the Hamiltonian function H : T ∗S → R, defined by
H(q, p, v, χ) = Hχ(q, p), is left-invariant under the action
of S. Denote the restriction of H to s∗ by h = H|s∗ .

Let Φt be the flow of (26)-(27), and let (µ(t), χ(t)) =
Φt(T

∗
e Lq0(p(0)), ρ∗(q0)χ0). Define the matrices F, L ∈
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Rn×n, N, P ∈ Rn×l, R ∈ Rl×n, and S ∈ Rl×l by

Fij = − ∂

∂µj

n∑
r=1

n∑
s=1

Csir
δh

δµr
µs

Lij = − ∂

∂µj

l∑
r=1

l∑
s=1

χr [ρ′(Xi)]
r
s

δh

δχs

Nij = − ∂

∂χj

n∑
r=1

n∑
s=1

Csir
δh

δµr
µs

Pij = − ∂

∂χj

l∑
r=1

l∑
s=1

χr [ρ′(Xi)]
r
s

δh

δχs

Rij =
∂

∂µj

l∑
r=1

χr [ρ′(δh/δµ)]
r
i

Sij =
∂

∂χj

l∑
r=1

χr [ρ′(δh/δµ)]
r
i .

Solve the (linear, time-varying) matrix differential equations

Ṁ = (F + L)M + (N + P)K (31)

K̇ = RM + SK (32)

with initial conditions M(0) = I and K(0) = 0. Then[
M(t)
K(t)

]
=

(
∇µ0Φt(µ0, ρ

∗(q0)χ0)

)∣∣∣∣
µ0=T∗

e Lq0 (p(0))

. (33)

Proof. See Appendix A.

The matrices M(t) and K(t) are the gradients of the reduced
variables µ(t) and χ(t) with respect to the initial condition
µ(0) = T ∗e Lq0(p(0)). In other words, if a ∈ Rn is the co-
ordinate representation of T ∗e Lq0(p(0)) so that

∑n
i=1 aiX

i =
T ∗e Lq0(p(0)), then Mi

j(t) is the gradient of µi(t) with respect
to aj . Similarly, Ki

j(t) is the gradient of χi(t) with respect
to aj . Using Lemma 1, we can now compute the gradients of
the state trajectory.

Lemma 2. Suppose (q, p) : [0, tf ] → T ∗M is a normal
extremal of (1), and assume that the conditions in Lemma
1 hold. Define the maps µ(t) and χ(t) as in Lemma 1, and
define the endpoint map φt : T ∗q0G → G as in Theorem 2 for
the Hamiltonian vector field XHχ0

. Next, define the matrices
G, H ∈ Rn×n and T ∈ Rn×l by

Gi
j =

∂

∂µj

δh

δµi
Hi

j = −
n∑
r=1

δh

δµr
Cirj Tij =

∂

∂χj

δh

δµi
.

Solve the (linear, time-varying) matrix differential equation

J̇ = GM + TK + HJ (34)

with initial condition J(0) = 0, where M and K solve the
matrix differential equations (31) and (32) in Lemma 1. Then
the jth column of J(t) gives the coordinate representation of
ηj(t) in (18) with respect to the basis {X1, . . . , Xn} of the
Lie algebra g.

Proof. See Appendix B.

Let a ∈ Rn again be the coordinate representation of
T ∗e Lq0(p(0)). The Lie algebra element ηj(t) is the gradient

of the state q(t) with respect to aj after left-translation to the
identity e ∈ G. The columns of the matrix J(t) are therefore
coordinate representations of the gradients of q(t) with respect
to a in terms of the Lie algebra basis {X1, . . . , Xn}.

B. Reduction of Sufficient Conditions

We can now state the reduced sufficient conditions, which
establish a correspondence between times when the matrix J(t)
is singular and times when the endpoint map φt is degenerate.

Theorem 6. (Semidirect Product Reduction of Sufficient Con-
ditions) Suppose (q, p) : [0, tf ]→ T ∗M is a normal extremal
of (1), and assume the conditions in Lemma 1 hold. Solve the
matrix differential equations in Lemmas 1 and 2 to find the
matrix function J : [0, tf ] → Rn×n. Define u : [0, tf ] → U as
in Theorem 2. Then (q, u) is a local optimum if there exists
no t ∈ (0, tf ] for which det(J(t)) = 0.

Proof. See Appendix C.

We conclude that non-degeneracy of the endpoint map φt,
and therefore local optimality, can be established by solving
the matrix differential equations (31)-(34). We began in Sec-
tion V with the goal of exploring the connections in Figure
1 denoted by the dashed lines. For systems with subgroup
symmetry, Theorem 6 establishes these connections.

C. Comparison of the Necessary and Sufficient Conditions

Recall from Section VI-C that we could solve for the
reduced variables µ and χ and the state q in two ways. First,
we could solve the differential equations (26) and (27), which
are decoupled from q, to find µ and χ. Then, using (25),
we could solve for q. Analogously, in the reduced sufficient
conditions, we can first solve the matrix differential equations
(31) and (32), which are decoupled from J, to find M and K.
Then, using (34), we can solve for J.

Alternatively, we could use the solution of (27), given
by (30), to eliminate the variable χ in (26). However, this
couples the reduced costate µ and the state q. The same is
possible for the sufficient conditions. To see this, let a again
be the coordinate representation of µ0 = T ∗e Lq0(p(0)), and
recall from Theorem 6 that φt is the endpoint map sending
p(0) ∈ T ∗q0G to φt(p(0)) = q(t). Using the definition of J,
the gradient of ρ(φt(p(0))) with respect to aj is

∂

∂aj
ρ(φt(p(0))) = ρ(q(t))

(
n∑
s=1

ρ′(Xs)Jsj(t)

)
.

Therefore, using the solution χ(t) = χ0ρ(q(t)) given in (30),
we can write the gradient of χ(t) with respect to aj as

∂

∂aj
χ(t) = χ0

(
∂

∂aj
ρ(φt(p(0)))

)
= χ0ρ(q(t))

(
n∑
s=1

ρ′(Xs)Jsj(t)

)

=

n∑
s=1

(ρ′(Xs))
∗
χ(t)Jsj(t),
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where we have used the notation ∂χ/∂aj to denote the
gradient of the χ component of the flow of (26)-(27) with
respect to aj . Writing this expression in coordinates of χ gives

∂

∂aj
χi(t) =

l∑
r=1

n∑
s=1

χr(t) [ρ′(Xs)]
r
i Jsj(t).

In Lemma 3, we show that the above expression can be used
to construct the solution of the differential equation (32).

Lemma 3. Define the matrix K ∈ Rl×n by

Ki
j =

l∑
r=1

n∑
s=1

χr [ρ′(Xs)]
r
i Jsj . (35)

Then K solves the matrix differential equation (32) with the
initial condition K(0) = 0.

Proof. See Appendix D.

We can now use the solution for K in the matrix differential
equations (31) and (34). This gives an alternative system of
matrix differential that can be solved to find the matrix J, as
shown in Theorem 7.

Theorem 7. (Alternative Test for Conjugate Points) Suppose
(q, p) : [0, tf ] → T ∗M is a normal extremal of (1), and
assume the conditions in Theorem 6 hold. Define the matrix
U ∈ Rl×n by

Uij =

l∑
r=1

χr [ρ′(Xj)]
r

i .

Solve the (linear, time-varying) matrix differential equations

Ṁ = (F+L)M+(N+P)UJ J̇ = GM+(TU+H)J (36)

with the initial conditions M(0) = I and J(0) = 0. Define
u : [0, tf ] → U as in Theorem 2. Then (q, u) is a local
optimum if there exists no t ∈ (0, tf ] for which det(J(t)) = 0.

Proof. From Lemma (3), we have K = UJ. The differential
equations (36) are obtained by directly substituting this expres-
sion for K into the differential equations (31) and (34).

Just as we were able to eliminate the reduced variable χ
in the differential equation (26) in the necessary conditions,
we can eliminate the matrix K in the matrix differential
equations (31) and (34) in the sufficient conditions. In the
necessary conditions, the elimination of χ results in a coupling
between the reduced costate µ and the state q. In the sufficient
conditions, the elimination of K results in a coupling between
the matrices M and J.

Table I summarizes the computations and the coupling
between equations in the necessary and sufficient conditions
for optimal control problems without symmetry, left-invariant
problems, and problems with subgroup symmetry. For systems
with subgroup symmetry, we see that the variables µ, χ, and
q play analogous roles in the necessary conditions as the
matrices M, K, and J in the sufficient conditions, respectively.
Applying symmetry reduction provides similar simplifications
in both the necessary and sufficient conditions.

VIII. CONJUGATE POINTS IN THE HEAVY TOP

In this section, we return to the optimal control problem
(13) with the augmented cost function (19), which models a
spinning top in a gravitational field. We first apply the results
in Theorem 5 to obtain necessary conditions for optimality
in Section VIII-A. In Section VIII-B, we apply the reduced
sufficient conditions in Theorems 5 and 7, which give two
equivalent ways of establishing local optimality. In Section
VIII-C, we compute conjugate points in the axisymmetric
sleeping top and determine which of these trajectories are
locally optimal solutions of the optimal control problem.

A. Necessary Conditions for the Heavy Top

Recall that the Hamiltonian function Hχ0
for the heavy

spinning top is given by (20). Extending Hχ0
to be a function

on T ∗G× V × V ∗ = T ∗SO(3)× R3 × R3∗ gives

H(q, p, v, χ) =
1

2

3∑
i=1

c−1i 〈p, qXi〉2 − χ(qν).

For any v ∈ V , χ ∈ V ∗, p ∈ T ∗q SO(3), and g, q, r ∈ SO(3)
satisfying q = gr, we have

H(r, T ∗r Lg(p), v, ρ
∗(g)χ)

=
1

2

3∑
i=1

c−1i 〈T
∗
r Lg(p), g

−1qXi〉2 − ρ∗(g)χ(g−1qν)

=
1

2

3∑
i=1

c−1i 〈p, gg
−1qXi〉2 − χ(gg−1qν)

=
1

2

3∑
i=1

c−1i 〈p, qXi〉2 − χ(qν)

= H(q, p, v, χ).

(37)

Therefore H is left-invariant under the action of S. This
implies that Hχ0

is left-invariant under the action of Gχ0
,

which simply means that Hχ0
is left-invariant under rotations

around the gravity vector. As a consequence, we can apply
Theorem 5. The reduced Hamiltonian on s∗ is given by

h(µ, χ) = H(e, µ, v, χ) =
1

2

3∑
i=1

c−1i µ2
i − χiνi.

The necessary conditions in Theorem 5 give that µ and χ
satisfy (26) and (27), which are equivalent to

µ̇ = µ× u+ χ× ν χ̇ = χ× u (38)

where ui = c−1i µi. The solution for χ, given by (30), is χ(t) =
χ0q(t). We see that χ(t) gives the direction of the gravity
vector rotated into the local coordinate frame at q(t).

B. Sufficient Conditions for Optimality

We will now apply the sufficient conditions in Theorem 6.
Computing the matrices F, L, N, P, R, and S from Lemma
(1), we see that F is identical to (17), L and N are both zero
matrices, S is identical to H in (17), and

P = −ν̂ R =

 0 −χ3/c2 χ2/c3
χ3/c1 0 −χ1/c3
−χ2/c1 χ1/c2 0


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TABLE I: Computations and coupling in necessary and sufficient conditions for optimal control problems with symmetry

Symmetry Type Necessary Conditions Sufficient Conditions Coupling of Equations

No Symmetry ṗ = −Hq Ṁ = −Hpq M −Hqq J p and q can be coupled.
(working in local coordinates) q̇ = Hp J̇ = Hpp M +Hqp J M and J can be coupled.

Coefficient matrices in sufficient
conditions may depend upon p and q.

Left-Invariant µ̇ = ad∗δh/δµ(µ) Ṁ = FM µ is decoupled from q.
q̇ = Xδh/δµ(q) J̇ = GM + HJ M is decoupled from J.

Coefficient matrices in sufficient
conditions only depend upon µ.

Subgroup Symmetry µ̇ = ad∗δh/δµ(µ)−
(
ρ′
δh/δχ

)∗
χ Ṁ = (F + L)M + (N + P)K µ and χ are decoupled from q.

χ̇ = ρ′ (δh/δµ)∗ χ K̇ = RM + SK M and K are decoupled from J.
q̇ = Xδh/δµ(q) J̇ = GM + TK + HJ Coefficient matrices in sufficient

conditions only depend upon µ and χ.
or or

µ̇ = ad∗δh/δµ(µ)−
(
ρ′
δh/δχ

)∗
χ Ṁ = (F + L)M + (N + P)K χ is a function of q, which couples µ and q.

χ(t) = ρ(q(t))∗χ0 K = UJ K is a function of J, which couples M and J.
q̇ = Xδh/δµ(q) J̇ = GM + TK + HJ Coefficient matrices in sufficient

conditions only depend upon µ and χ.

Computing the matrices in Lemma 2, we see that G and H are
identical to (17), and T = 0. Therefore, to find the matrix J
and establish non-degeneracy of the endpoint map φt, we must
solve the matrix differential equations (31)-(34) with the initial
conditions M(0) = I , K(0) = 0, and J(0) = 0. Alternatively,
we can apply Theorem 7 and solve the matrix differential
equations (36). Computing the matrix U in Lemma 7 gives
U = χ̂. For a given solution of (38), these matrix differential
equations can be solved to determine if the solution is a local
optimum of the optimal control problem.

C. The Axisymmetric Sleeping Top

We now consider a sleeping axisymmetric top in a grav-
itational field with the parameters in the cost function (19)
satisfying c2 = c3 = 1 and v = [1 0 0]T . The top is said
to be sleeping when its axis of symmetry is aligned with the
direction of gravity, and the top is rotating about this axis.
These trajectories correspond to the fixed points of the system
(38) given by µ2 = µ3 = χ2 = χ3 = 0, where µ1 and
χ1 are arbitrary. At these fixed points, the matrix differential
equations (36) are linear time-invariant equations.

Solving the linear time-invariant system (36) at these fixed
points and computing the determinant of J(t) gives

det(J(t)) =

t

(
e
t

√
χ1−

µ21
4 − e−t

√
χ1−

µ21
4

)2

4c1

(
χ1 − µ2

1

4

) . (39)

If the term χ1 − µ2
1/4 > 0, then (39) simplifies to

det(J(t)) =
t

c1

(
χ1 − µ2

1

4

) sinh2

(
t

√
χ1 −

µ2
1

4

)
.

If the term χ1 − µ2
1/4 < 0, then (39) simplifies to

det(J(t)) =
t

c1

(
µ2
1

4 − χ1

) sin2

(
t

√
µ2
1

4
− χ1

)
.

If χ1 − µ2
1/4 = 0, then (39) simplifies to

det(J(t)) =
t3

c1
.

We see that if χ1 ≥ µ2
1/4, then det(J(t)) > 0 for all t > 0.

Therefore, the sleeping top with χ1 ≥ µ2
1/4 is a local optimum

of the optimal control problem for arbitrarily large final times
tf . If χ1 < µ2

1/4, then the first conjugate point occurs at

t = π

(
µ2
1

4
− χ1

)−1/2
. (40)

We conclude that the sleeping top with χ1 < µ2
1/4 is a local

optimum if the final time tf satisfies

tf < π

(
µ2
1

4
− χ1

)−1/2
.

These expressions for conjugate points in the heavy sleeping
top have not appeared in previous work, and our ability to
derive them relies on the results we proved in Section VII.

We end by discussing an interesting link between conjugate
points and dynamic stability of the sleeping top. The boundary
between locally optimal and non-optimal fixed points in the
µ1-χ1 plane is given by (40) with t = tf . Rearranging this
expression gives

χ1 =
µ2
1

4
− π2

t2f
.

This boundary between locally optimal and non-optimal fixed
points is shown in Figure 2 in the µ1-χ1 plane. As tf increases,
the boundary between locally optimal and non-optimal fixed
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Fig. 2: Regions of optimal and non-optimal fixed points in the
µ1-χ1 plane corresponding to trajectories of the sleeping top.

points approaches χ1 = µ2
1/4, which is also shown in Figure 2.

In particular, χ1 = µ2
1/4 is the boundary in the µ1-χ1 plane

between fixed points that are locally optimal for arbitrarily
large tf > 0 and fixed points that lose optimality for some
finite tf . For a given tf > 0, these boundaries allow us to
partition the µ1-χ1 plane into three regions. The red region
in Figure 2 corresponds to trajectories of the sleeping top that
have conjugate points before tf , and are therefore non-optimal.
The blue region corresponds to trajectories that have conjugate
points after tf , and are therefore locally optimal. The green
region corresponds to locally optimal trajectories that have no
conjugate points for all time.

The curve χ1 = µ2
1/4 is also the boundary between

dynamically stable and unstable trajectories of the sleeping
top, as denoted in Figure 2 [43]. This result agrees with the
kinetic instability theorem of Kelvin and Tait [44], which states
that a trajectory of a conservative system without conjugate
points for arbitrarily large tf is unstable [45].

IX. CONCLUSIONS

We have applied Lie-Poisson reduction by stages to ge-
ometric optimal control problems on Lie groups with sub-
group symmetry. After providing reduced necessary conditions
for optimality, we derived reduced sufficient conditions for
optimality based on the non-existence of conjugate points.
Whereas the general necessary and sufficient conditions in
Section III were stated in terms of coordinate-free geometric
mechanics results, the reduced necessary and sufficient con-
ditions were stated in terms of coordinate formulas and rely
on solutions of ordinary differential equations, and evaluating
these coordinate formulas did not depend upon local coordi-
nates on the Lie group. These results were then applied to
a geometric optimal control problem that models the motion

of a spinning top in a gravitational field. Using Theorems 5,
6, and 7, we derived new results on conjugate points in the
axisymmetric sleeping top.

The results in this paper suggest that by exploiting sym-
metries in an optimal control problem, sufficient conditions
for optimality can be simplified in an analogous way to
necessary conditions. This was shown by comparing the
computations needed to evaluate the reduced necessary and
sufficient conditions. In particular, the two alternative ways
of evaluating the necessary conditions for problems with
subgroup symmetry lead to two analogous ways of evaluating
the sufficient conditions, as shown in Table I. A deeper
understanding of this connection could be obtained by com-
paring the quotient spaces on which the reduced necessary and
sufficient conditions evolve, rather than comparing coordinate
formulas. For the left-invariant problems considered in Section
IV, the unreduced necessary conditions evolve on T ∗G, while
the reduced necessary conditions evolve on a quotient space
that is diffeomorphic to g∗. Future work could analyze the
corresponding quotient spaces on which the reduced sufficient
conditions evolve.

In Sections VI and VII, we considered problems that
depended upon a linear map, which we denoted by χ0 ∈ V ∗.
This map was the source of the subgroup symmetry. One
extension of this work would be to consider optimal control
problems that depend upon multiple linear maps. As an
example, consider the optimal control problem (13) with the
cost function given by

g(q, u) =

3∑
i=1

ciu
i2 + U (χx(qν), χy(qν), χz(qν)) , (41)

where U : R3 → R, ν is a constant vector, and the maps χx,
χy , and χz have row vector representations

χx = [1 0 0] χy = [0 1 0] χz = [0 0 1].

This cost function is the Lagrangian of a spinning top in a
potential field that depends on the position of a point within the
top (described by the vector ν). In Section IV-B, we embedded
a Hamiltonian system with subgroup symmetry in the space
T ∗G×V ×V ∗, within which the system became left-invariant.
Similarly, we could embed the Hamiltonian system with the
above cost function in the space T ∗G×(V ×V ∗)3. Riemannian
geometry problems with potential fields, which are similar but
not identical to the problem (13) with the cost function (41),
were studied in [46]. However, only necessary conditions were
considered, and sufficient conditions were not explored.

Other extensions include the consideration of more general
approaches to symmetry group reduction. In this paper, we
focused on the case when the state of the optimal control
problem evolves on a Lie group and the symmetry group of the
system is the isotropy group of a parameter. However, reduc-
tion by stages, and more generally symmetry group reduction,
can be applied to systems with less structure, i.e., where the
state takes values on a smooth manifold [3]. Exploring the
connection between reduction of the necessary and sufficient
conditions for optimality in more general optimal control
problems is an interesting direction for future work.
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APPENDIX A
PROOF OF LEMMA 1

We use the notation ∂µi/∂aj and ∂χi/∂aj to denote the µi
and χi components, respectively, of the gradient of the flow of
(26)-(27), i.e., the right side of the expression (33). Defining
Mi

j = ∂µi/∂aj and Ki
j = ∂χi/∂aj and using (28), we find

d

dt
Mi

j =
∂µ̇i
∂aj

= − ∂

∂aj

n∑
r=1

n∑
s=1

Csir
δh

δµr
µs

− ∂

∂aj

l∑
r=1

l∑
s=1

χr [ρ′(Xi)]
r
s

δh

δχs

=

n∑
k=1

(
− ∂

∂µk

n∑
r=1

n∑
s=1

Csir
δh

δµr
µs

)
∂µk
∂aj

+

l∑
k=1

(
− ∂

∂χk

n∑
r=1

n∑
s=1

Csir
δh

δµr
µs

)
∂χk
∂aj

+

n∑
k=1

(
− ∂

∂µk

l∑
r=1

l∑
s=1

χr [ρ′(Xi)]
r
s

δh

δχs

)
∂µk
∂aj

+

l∑
k=1

(
− ∂

∂χk

l∑
r=1

l∑
s=1

χr [ρ′(Xi)]
r
s

δh

δχs

)
∂χk
∂aj

=

n∑
k=1

(
Fik + Lik

)
Mk

j +

l∑
k=1

(
Nik + Pik

)
Kk

j .

It is clear that Mi
j(0) = δij , so we have verified (31). A

similar calculation, using (29), shows that (32) holds.

APPENDIX B
PROOF OF LEMMA 2

We need the following lemmas before proving Lemma 2.

Lemma 4. Let q : W → G be a smooth map, where W ⊂ R2

is simply connected. Denote its partial derivatives ζ : W → g
and η : W → g by

ζ(t, ε) = Tq(t,ε)Lq(t,ε)−1

(
∂q(t, ε)

∂t

)
η(t, ε) = Tq(t,ε)Lq(t,ε)−1

(
∂q(t, ε)

∂ε

)
.

(42)

Then
∂ζ

∂ε
− ∂η

∂t
= [ζ, η]. (43)

Conversely, if there exist smooth maps ζ and η satisfying (43),
then there exists a smooth map q satisfying (42).

Proof. See Proposition 5.1 in [47].

Lemma 5. Let α, β, γ ∈ g and suppose γ = [α, β]. Then

γk =

n∑
r=1

n∑
s=1

αrβsCkrs.

Proof. See Lemma 2 in [4].

We can now prove Lemma 2. For j ∈ {1, . . . , n}, define
ηj(t) ∈ g as in (18). Also let ζ(t) ∈ g be

ζ(t) = Tq(t)Lq(t)−1 (q̇(t)) =
δh

δµ
,

where the second equality follows from (25) in Theorem 5.
From Lemma 4, we have

η̇j =
∂ζ

∂aj
− [ζ, ηj ] =

∂

∂aj

δh

δµ
−
[
δh

δµ
, ηj
]
.

After defining Jij(t) = ηij(t), so that the jth column of J is
the coordinate representation of ηj(t), the previous equation
can be written in coordinates using Lemma 5:

J̇ij = η̇ij

=

n∑
k=1

(
∂

∂µk

δh

δµi

)
∂µk
∂aj

+

l∑
k=1

(
∂

∂χk

δh

δµi

)
∂χk
∂aj

+

n∑
k=1

(
−

n∑
r=1

δh

δµr
Cirk

)
ηkj

=

n∑
k=1

Gi
kMk

j +

l∑
k=1

TikKk
j +

n∑
k=1

Hi
kJkj ,

(44)

where we used Mi
j = ∂µi/∂aj and Ki

j = ∂χi/∂aj from
Lemma 1. It is clear that Jij = 0, so we have verified (34).

APPENDIX C
PROOF OF THEOREM 6.

Define the smooth map σ : Rn → T ∗q0G by

σ(a) = T ∗q0Lq−1
0

(
n∑
i=1

aiPi

)
.

This expression also defines σ : Rn → Tp0(T ∗q0G) if we iden-
tify T ∗q0G with Tp0(T ∗q0G) in the usual way. Given p0 = σ(a)
for some a ∈ Rn, there exists non-zero λ ∈ Tp0(T ∗q0G)
satisfying Tp0φt(λ) = 0 if and only if there exists non-zero
s ∈ Rn satisfying Tσ(a)φt(σ(s)) = 0. Now observe that

Tσ(a)φt(σ(s)) =

n∑
j=1

sj

(
Tσ(a)φt

(
T ∗q0Lq−1

0

(
Xj
)))

,

where, recall, {X1, . . . , Xn} is a basis for g∗. By left trans-
lation, Tσ(a)φt(σ(s)) = 0 if and only if

0 =

n∑
j=1

sjTq(t)Lq(t)−1

(
Tσ(a)φt

(
T ∗q0Lq−1

0

(
Xj
)))

. (45)

With ηj(t) ∈ g as defined in (18), the above expression is
equivalent to 0 =

∑n
j=1 sjηj(t). From Lemma 2, J(t) satisfies

Jij(t) = ηij(t), i.e., the jth column of J(t) is the coordinate
representation of ηj(t) with respect to the basis {X1, ..., Xn}.
Then, (45) holds for some s 6= 0 if and only if det(J(t)) = 0.
Therefore φt is degenerate at p0 if and only if det(J(t)) = 0.
The result follows by application of Theorem 2.
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APPENDIX D
PROOF OF LEMMA 3

Since J(0) = 0, it is clear that K(0) = 0. Taking the time
derivative of (35) gives

K̇i
j =

l∑
r=1

n∑
s=1

(
χ̇r [ρ′(Xs)]

r
i Jsj + χr [ρ′(Xs)]

r
i J̇sj

)
.

Using (29) and (44), we have

K̇i
j =

l∑
r=1

n∑
s=1

l∑
k=1

χk [ρ′ (δh/δµ)]
k
r [ρ′(Xs)]

r
i Jsj

+

l∑
r=1

n∑
s=1

n∑
k=1

χr [ρ′(Xs)]
r
i

(
∂

∂µk

δh

δµs

)
Mk

j

+

l∑
r=1

n∑
s=1

l∑
k=1

χr [ρ′(Xs)]
r
i

(
∂

∂χk

δh

δµs

)
Kk

j

−
l∑

r=1

n∑
s=1

n∑
k=1

χr [ρ′(Xs)]
r
i

(
n∑
p=1

δh

δµp
Cspk

)
Jkj .

(46)

We will analyze each row in the above expression individually.
The second row of (46) is equivalent to

l∑
r=1

n∑
s=1

n∑
k=1

χr [ρ′(Xs)]
r
i

(
∂

∂µk

δh

δµs

)
Mk

j

=

n∑
k=1

(
∂

∂µk

l∑
r=1

χr

(
n∑
s=1

[ρ′(Xs)]
r
i

δh

δµs

))
Mk

j

=

n∑
k=1

(
∂

∂µk

l∑
r=1

χr [ρ′(δh/δµ)]
r
i

)
Mk

j

=

n∑
k=1

RikMk
j .

Next, consider the third row of (46):
l∑

r=1

n∑
s=1

l∑
k=1

χr [ρ′(Xs)]
r
i

(
∂

∂χk

δh

δµs

)
Kk

j

=

l∑
k=1

(
l∑

r=1

χr
∂

∂χk

(
n∑
s=1

[ρ′(Xs)]
r
i

δh

δµs

))
Kk

j

=

l∑
k=1

(
l∑

r=1

χr
∂

∂χk
[ρ′(δh/δµ)]

r
i

)
Kk

j .

Now consider the fourth row of (46). Using the definition of
the structure constants in (7), we have

l∑
r=1

n∑
s=1

n∑
k=1

χr [ρ′(Xs)]
r
i

(
n∑
p=1

δh

δµp
Cspk

)
Jkj

=

n∑
k=1

l∑
r=1

n∑
p=1

χr
δh

δµp

(
n∑
s=1

Cspk [ρ′(Xs)]
r
i

)
Jkj

=

n∑
k=1

l∑
r=1

n∑
p=1

χr
δh

δµp
[ρ′([Xp, Xk])]

r

i [J]
k
j .

By the definition of the Lie bracket, we have

ρ′([Xp, Xk]) = ρ′(Xp)ρ
′(Xk)− ρ′(Xk)ρ′(Xp)

and

[ρ′([Xp, Xk])]
r

i

=

l∑
s=1

[ρ′(Xp)]
r

s [ρ′(Xk)]
s
i − [ρ′(Xk)]

r
s [ρ′(Xp)]

s

i .

We now have that the fourth row of (46) is equivalent to
n∑
k=1

l∑
r=1

n∑
p=1

l∑
s=1

χr
δh

δµp
[ρ′(Xp)]

r

s [ρ′(Xk)]
s
i Jkj

−
n∑
k=1

l∑
r=1

n∑
p=1

l∑
s=1

χr
δh

δµp
[ρ′(Xk)]

r
s [ρ′(Xp)]

s

i Jkj

=

n∑
k=1

l∑
r=1

l∑
s=1

χr [ρ′(δh/δµ)]
r
s [ρ′(Xk)]

s
i Jkj

−
n∑
k=1

l∑
r=1

l∑
s=1

χr [ρ′(δh/δµ)]
s
i [ρ′(Xk)]

r
s Jkj .

Since the fourth line in (46) begins with a minus sign, we see
that the first term in the above expression cancels with the first
line in (46). We are left with

n∑
k=1

l∑
r=1

l∑
s=1

χr [ρ′(δh/δµ)]
s
i [ρ′(Xk)]

r
s Jkj

=

l∑
s=1

[ρ′(δh/δµ)]
s
i

(
l∑

r=1

n∑
k=1

χr [ρ′(Xk)]
r
s Jkj

)
.

Using (35), this expression is equivalent to
l∑

s=1

[ρ′(δh/δµ)]
s
i Ks

j .

Combining these calculations, we have that

K̇i
j =

n∑
k=1

RikMk
j +

l∑
k=1

[ρ′(δh/δµ)]
k
i Kk

j

+

l∑
k=1

(
l∑

r=1

χr
∂

∂χk
[ρ′(δh/δµ)]

r
i

)
Kk

j

=

n∑
k=1

RikMk
j +

l∑
k=1

∂

∂χk

(
l∑

r=1

χr [ρ′(δh/δµ)]
r
i

)
Kk

j

=

n∑
k=1

RikMk
j +

n∑
k=1

SikKk
j .

We conclude that K solves the differential equation (32).

ACKNOWLEDGMENT

The authors would like to thank Rui Loja Fernandes and
Ioan Marcut for many helpful discussions.

REFERENCES

[1] A. A. Agrachev and Y. L. Sachkov, Control Theory from the Geometric
Viewpoint. Berlin, Germany: Springer, 2004.

[2] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry.
New York, NY: Springer, 1999.

[3] J. E. Marsden, G. Misiolek, J. P. Ortega, M. Perlmutter, and T. S. Ratiu,
Hamiltonian Reduction by Stages. Berlin, Germany: Springer, 2003.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 16

[4] T. Bretl and Z. McCarthy, Quasi-static manipulation of a Kirchhoff
elastic rod based on a geometric analysis of equilibrium configurations,
Int. J. Robot. Res., vol. 33, no. 1, pp. 48-68, 2014.

[5] A. Borum and T. Bretl, Geometric optimal control for symmetry
breaking cost functions, in Proc. 53rd IEEE Conf. Decision Control,
2014, pp. 5855-5861.

[6] A. Borum, Optimal control problems on Lie groups with symmetry
breaking cost functions, Masters thesis, University of Illinois at Urbana-
Champaign, 2014.

[7] D. D. Holm, J. E. Marsden, and T. S. Ratiu, The Euler-Poincaré equa-
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[34] L. Bates and F. Fassò, The conjugate locus for the Euler top I. The
axisymmetric case, Int. Math. Forum., vol. 2, no. 43, pp. 2109-2139,
2007.

[35] U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metrics on S3,
SO(3), SL(2), and lens spaces, SIAM J. Control Optim., vol. 47, no.
4, pp. 1851-1878, 2008.

[36] D. Barilari and L. Rizzi, Comparison theorems for conjugate points in
sub-Riemannian geometry, ESAIM Contr. Optim. Ca., to appear.

[37] J. M. Lee, Introduction to Smooth Manifolds. New York, NY: Springer,
2003.

[38] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F.
Mishchenko, The Mathematical Theory of Optimal Processes. New
York, NY: Wiley, 1962.

[39] V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations.
New York, NY: Springer, 1984.

[40] K. Spindler, Optimal control on Lie groups with applications to attitude
control, Math. Control Signals Syst., vol. 11, no. 3, pp. 197-219, 1998.

[41] K. Suzuki, Y. Watanabe, and T. Kambe, Geometrical analysis of free
rotation of a rigid body, J. Phys. A: Math. Gen., vol. 31, pp. 6073-6080,
1998.

[42] H. Cendra, J. E. Marsden, S. Pekarsky, and T. S. Ratiu, Variational
principles for Lie-Poisson and Hamilton-Poincaré equations, Mosc.
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Poincaré equations and double bracket dissipation, Commun. Math.
Phys., vol. 175, no. 1, pp. 1-42, 1996.

Andy Borum received the B.S. degree in engineer-
ing science and mechanics and the B.S. degree in
mathematics from Virginia Tech, Blacksburg, VA, in
2012 and the M.S. degree in aerospace engineering
from the University of Illinois at Urbana-Champaign
in 2014. He is currently a National Science Founda-
tion Graduate Research Fellow in the Department of
Aerospace Engineering at the University of Illinois
at Urbana-Champaign.

Timothy Bretl received the B.S. degree in engi-
neering and the B.A. degree in mathematics from
Swarthmore College, Swarthmore, PA, in 1999 and
the M.S. and Ph.D. degrees both in aeronautics and
astronautics from Stanford University, Stanford, CA,
in 2000 and 2005, respectively. Subsequently, he
was a Postdoctoral Fellow in the Department of
Computer Science, also at Stanford University. Since
2006, he has been with the University of Illinois
at Urbana-Champaign, where he is an Associate
Professor of Aerospace Engineering and a Research

Associate Professor in the Coordinated Science Laboratory. Dr. Bretl received
the National Science Foundation Faculty Early Career Development Award in
2010.


