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Introduction 
!
My name is Jonathan. Between beta testing, Sensobot, schedule difficulties that often prevented 
everyone from being at practice on the same days, and software incompatibilities *cough* Cameron’s 
crappy laptop *cough* dirty Mac users *cough*, I am a bit behind in terms of teaching programming. I 
think that a manual would be a handy way for people to figure out the MARS way of programming, 
even if I can’t be there to answer a specific question. The key to successful programming is a firm grasp 
of two important concepts: 

1. Robots are dumb as hell. 

No matter how fast a robot’s processor is, and how expensive all its sensors are, the robot doesn’t have 
a brain. Robots cannot analyze an unexpected situation and figure out what to do. The robot will 
execute its code the same way every time it is run. At its core, a robot only “thinks” in terms of data. To 
get robots to do what we want, we need to write extremely specific code. Robots cannot “fill in the 
gaps”. When a human is asked to throw a Frisbee, the human can be safely assumed to know that he 
must extend his or her arm, flick his or her wrist, and release his or her grip on the Frisbee. Unless the 
code is already written, for an arm robot, one would have to specify those three actions in a sequence 
(not concurrent, or else the Frisbee will be dropped) for the code to work. We thus need to closely 
examine what specific actions that performing a task entails. Also, robots cannot fix mistakes made in 
the code made by the programmer. If an extra zero is added to the distance that a robot must travel in 
a “Go to supermarket” method, you may find your robot in Pennsylvania. People would look for visual 
cues and can tell when Google Maps incorrectly calculated the distance to the supermarket but 
(unless the robot was programmed to look for visual cues) a robot would be completely fooled 
because it DOESN’T HAVE A BRAIN. 

On the plus side, wouldn’t it be hilarious to get a robot to look for a belt stretcher or a dip loop? Given 
enough battery power, it may literally search forever. 

2. Other programmers are not geniuses. 

There is no question programmers are smarter than robots but they are not necessarily geniuses or 
telepaths. Code needs to be written and annotated in a way that makes sense to other programmers 
whom may be correcting the code if it does not work or needs to be modified to work with newer 
code. In addition, there are a number of steps that can be taken to limit creation of software errors as 
the code is being written. One misspelled device reference name can mean a total loss of functionality 
of a subsystem (see concept #1 for an explanation why). 

The consequences for ignoring concept #2 are severe, and may include mascot duty at regionals and/
or the eternal wrath of Steve. If I missed anything that should be covered, email me at 
jglister96@gmail.com. 

!
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FRC VIs and LabVIEW Tricks 

The guys at FRC designed a baseline set of code that allows the robot to drive and respond to 
commands from the Field Management Software (FMS) and from the Driver Station. The FMS runs the 
match by sending cues to the robot that specify which stage the match is in, giving the robot 
autonomous control for 15 seconds, allowing teleoperated control for two minutes, and stopping the 
robots at the end. 

There are four key VIs that are executed in sequence during a match: 

1.   Begin: executes once, initializes all motors, actuators, and 
sensors 

2. Autonomous Independent: executes once, robot is allowed to 
perform actions without driver input. The program can run 
indefinitely in a testing situation but during a real match it is 
aborted after 15 seconds. 

3.  Teleop: executes repeatedly within a while loop, drivers control 
the robot’s actions for 2 minutes in a match, indefinitely in a testing 
situation. 

4. Finish: executes once, deletes motor, actuator, and sensor 
references after the match to avoid memory leak. 

To interface with the various attachments on the robot, FRC has 
developed a set of VIs that can be accessed from the WPI Robotics 
Library. !
There are a number of categories and subcategories, but the 
categories all contain the same general functions for each robot 
attachment. The motor category will be used as an example, all 
other devices should follow the same pattern of VIs in their 
palettes. 

In LabVIEW, each motor, sensor, or 
other actuator is represented as a 
cluster of data called a device 
reference (analogous to an object in 
Java or related languages.) In the 

Begin VI, device references are 
created using Open VIs. 

!
!
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!

An Open VI takes a number of inputs (usually one or more slots, such as PWM 
outputs, through which the robot can either send or read data) and outputs a 
device reference using that information. However, upon looking at the data 
contained within the device reference, you will realize it’s a bunch of 
incomprehensible crap, as seen to the right. 

To improve readability, the device references can be compiled into a registry 
and identified by string names. (Recall that a “string” is a series of characters.) To 
do this, FRC made the Refnum Set and Refnum Get VIs. 

Refnum Set takes a device reference and a string (Refnum Name) as inputs and 
sets the device reference in the registry. Using 
Refnum Get takes a string (Refnum Name) input 
and outputs the corresponding device reference. 
Device references 
are set in Begin 
and they are used 
in Autonomous, 
Teleop, and 
Finish. 

!
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Examples 

!
Proper use of Refnum Set:!

!
!!!

!
!
Proper use of Refnum Get:!

!
Yes, those strings do look funny. They’re globals, but 
they’re still strings like any other. We have our refnum 
names in a global file for neatness and consistency. 

What to do with the device now that we can access it 
varies. We may be sending a certain power level to 
motors, or reading a sensor, or actuating a pneumatic, 
depending on the device we accessed. 

Specifying the device reference with the Open and 
Refnum Set VIs would be declaring and instantiating the 
object in Java. The other VIs in the palette are analogous 
to methods in a Java class (example: the Set Output VI in 
the Motor Control palette can be thought of as an 
outputSet method in the class Motor.) 

In the Finish VI close device references like in the picture 
to the right: 

!
!
!

 6



Structures 
There!are!some!other!VIs!and!structures!of!note.!

!
 

The case structure houses multiple snippets of code, and executes one 
based on the value passed into the selector (the question mark). It is like 
an if/else statement and a switch statement in Java all in one. (If/else if 
statements are made by nested case structures, which are not pretty.) 
Wiring a data type other than Boolean (for instance, a number) into the 
selector will change the true/false cases to reflect the data type 
change. By default, it acts an if/else statement. Scroll through the cases 

using the arrows next to the case title (“True” in this example). The case 
structure can be wired to take data from the outside and send data to 
the outside. Inputs may or may not be used in the code snippets written 
for each case, but if an output is sent in one case, every other case must 
also send an output of the same data type through the same terminal. 

!
 

!
The while loop causes a snippet of code to execute repeatedly until a 
condition (Boolean, wired into the stop icon) is met. If multiple 
snippets are running in parallel, the while loop will wait until the 
slowest piece of code to execute is finished. The Teleop code operates 
within a while loop such as this, with loop time being around 20 
milliseconds. Therefore, if you use the below VIs within Teleop… 

!
!
!
!
!

!
… you will cause lag in the drive code and not only will Matt and (probably) Wyatt, kill you, but Steve 
will kill you again. I have seen a lot of teams do this in their code at competition. 
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A single execution while loop is fine, however. If a “True” is sent to the loop condition, the code will 
execute once and stop. (Technically, a LabVIEW while loop is more like a Java do… while loop.) The 
while loop would normally be redundant, but while loops can hold shift registers. Shift registers (in red 
circles, below) do the same thing as feedback nodes (send the value from last cycle) but look neater, 
especially when multiple feedback nodes would be needed. Note that the down arrow on the left 
corresponds to the up arrow directly across from it. 

Some processes take longer than a loop cycle to complete. (For instance, our shooting cycle takes 
about a second.) Therefore, we must spread the process across multiple loop cycles. A method of 
accomplishing this is using a single-execution loop, a case structure, and a timer (tick count) VI. Timers 
do not slow the loop cycle, instead they output the time elapsed in milliseconds since the robot 
started. (The tick count VI does not define a time 0 in fact it resets after 2^32 milliseconds, but this is 
over 1000 hours, so it is not a concern for FIRST robotics.) 

In case 0, the robot is idle. The while loop has a shift 
register for the value that is fed to the selector on the 
case structure. The logic that determines whether the 
case switches is held within the case structure itself. It 
increments the value if the copilot right bumper is 
pressed. 

!
!
!

 

In case 1, the timer value is recorded, and the case 
structure automatically increments. 

!
!
!
!
!
!
!
!
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In case 2, the timer value recorded in case 1 is 
maintained on the shift register and compared with 
the current time. When it exceeds 300 (to give the 
trigger pneumatic time to slide out), 1 is added to the 
value fed into the selector. 

In the last case (not shown), when the completion 
condition occurs, the selector value is set to 0 and the 
process can restart. 

The robot is not waiting for certain conditions to 
occur that would slow down the loop. It is instead 
checking if a certain condition is true or false at every 
loop cycle, which does not slow the loop. This allows 
for timing and sequencing processes without 
angering the drive team with lag. 

Global VIs 

A global VI is a global file located in the project that houses one or more global variables. They have 
front panels, and can be saved within the project to be re-used elsewhere. They are accessed from the 
structures menu. We use them for refnum names and constants that need to be tuned (“Calibrations”, 
as we call them.) Why? There are two reasons for this: 

1. Global variables are represented as drop-down lists, which makes it convenient to access variables 
by name, and eliminates the risk of someone mistyping a string name. Recall that robots are dumb as 
hell, and they cannot correct the string “Shoter Motor” to “Shooter Motor”. They also do not realize that 
“drive motors” is the same as “Drive Motors”. Using a global variable in this way ensures consistency 
throughout the code. 

2. Changing the value of a variable in the global file will change the value everywhere in the project, 
no matter how many times it is used. This frees up time, as we (for example) would only have to 
change the shooter wheel speed once instead of five times. 

!
!
!
!
!
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Opening a global file 

 

Accessing a global file 

!
!
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Data contained within 

For mode and state names, we use enumerated types, saved as typedefs, which follow the same 
principle. To create an enumerated type, select Enum constant, click Make Type Def, then Open Type Def. 

How to edit the values: 

Edit Items 

Then add values for every state you will need and assign each numerical value a string name. Be sure 
to put the default mode in as item 0 or the robot will boot in another mode. (Ensure subsystems have 
“Standby” or “Normal” as item 0 as well, for the same reason.) Like with global variables, save them 
within the project. 
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Architecture Conventions 
 
We touched on some basic architectural concepts already (such as using global VIs and enumerated 
types) but the way the robot operates follows a certain pattern. Every Marvin is a state machine its 
behavior depends on the state it’s in. The states dictating overall robot behavior are called robot 
modes, and the states the govern subsystem behavior are called subsystem states. These modes and 
states are set and switched by the pilot 
and copilot pressing buttons on the 
joystick or control board. The mode 
governs which subsystem states are 
allowed to be selected by the pilot and 
copilot. The subsystem states are then 
sent to the SSI (subsystem state 
implementor) VIs, which take a state 
input and joystick axes and buttons and 
output numbers and other data types. 
The outputs from the SSI VIs are passed 
through Safety, where the robot checks 
to see if it’s safe to pass said values to the 
Output VIs, where the data is actually 
translated into robot motion. But usually 
there is no safety check and the values 
go straight through. 

Overall robot architecture (note that SSS is no longer 
used, subsystem state selection is done in Modes and 
States) 
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!
Jesus Christ, Modes and States can be a mess. On the left case structure is the major robot mode, and 
on the right are some subsystem states. It outputs an enumerated type for each subsystem. This VI 
only controls subsystem state selection, however, and the states do not have a meaning as of yet.  
 
Please note that buttons on the joystick do not automatically latch or toggle they send True when held 
and False when not held. We use Boolean arrays and Boolean Array to Number to combine the cases 
for each button press into a case structure. To maintain a mode while no buttons are pressed, we put 
the state into a feedback node, which is maintained (it sends the value to itself continuously) in case 0 
and set it to change in cases above 0 (cases above 0 correspond to button presses). This way it outputs 
the state it was already in if no buttons are pressed. 

!
In each SSI VI, every state is assigned a different behavior for the subsystem using the case structure. 
Here is where the robot’s behavior is actually determined. However, it only outputs numbers and other 
types of data. 
Skip the safety VIs, and then… 
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The output VIs are where the outputs are actually sent to the motors and other actuators. Note that in 
these VIs are some of the few places where real FRC VIs are used. 

!
!
!
!
!
!
!
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