Facebook language predicts depression in medical records

Johannes C. Eichstaedta,b,1,2, Robert J. Smithb,1, Raina M. Merchantb,5, Lyle H. Ungara,b, Patrick Crutchleya,b, Daniel Preotijc-Pietroa, David A. Aschb,d, and H. Andrew Schwartze

*Positive Psychology Center, University of Pennsylvania, Philadelphia, PA 19104; bPenn Medicine Center for Digital Health, University of Pennsylvania, Philadelphia, PA 19104; cDepartment of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104; dThe Center for Health Equity Research and Promotion, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA 19104; eComputer Science Department, Stony Brook University, Stony Brook, NY 11794

Edited by Susan T. Fiske, Princeton University, Princeton, NJ, and approved September 11, 2018 (received for review February 26, 2018)

Depression, the most prevalent mental illness, is underdiagnosed and undertreated, highlighting the need to extend the scope of current screening methods. Here, we use language from Facebook posts of consenting individuals to predict depression recorded in electronic medical records. We accessed the history of Facebook statuses posted by 683 patients visiting a large urban academic emergency department, 114 of whom had a diagnosis of depression in their medical records. Using only the language preceding their first documentation of a diagnosis of depression, we could identify depressed patients with fair accuracy [area under the curve (AUC) = 0.69], approximately matching the accuracy of screening surveys benchmarked against medical records. Restricting Facebook data to only the 6 months immediately preceding the first documented diagnosis of depression yielded a higher prediction accuracy (AUC = 0.72) for those users who had sufficient Facebook data. Significant prediction of future depression status was possible as far as 3 months before its first documentation. We found that language predictors of depression include emotional (sadness), interpersonal (loneliness, hostility), and cognitive (preoccupation with the self, rumination) processes. Unobtrusive depression assessment through social media of consenting individuals may become feasible as a scalable complement to existing screening and monitoring procedures.

Significance

Depression is disabling and treatable, but underdiagnosed. In this study, we show that the content shared by consenting users on Facebook can predict a future occurrence of depression in their medical records. Language predictive of depression includes references to typical symptoms, including sadness, loneliness, hostility, rumination, and increased self-reference. This study suggests that an analysis of social media data could be used to screen consenting individuals for depression. Further, social media content may point clinicians to specific symptoms of depression.
uniquely determines a combination of true and false positive rates that form the points of a receiver operating characteristic (ROC) curve; overall prediction performance can be summarized as the area under the ROC curve. To yield interpretable and fine-grained language variables, we extracted 200 topics by using latent dirichlet allocation (LDA; ref. 16), a method akin to factor analysis but appropriate for word frequencies. We trained a predictive model based on the relative frequencies with which patients expressed these topics, as well as one-word and two-word phrases, obtaining an area under the curve (AUC) of 0.69, which falls just short of the customary threshold for good discrimination (0.70). As shown in Fig. 1, language features outperform other posting features and demographic characteristics, which do not improve predictive accuracy when added to the language-based model.

How do these prediction performances compare against other methods of screening for depression? Noyes et al. (17) assessed the concordance of screening surveys with diagnoses of depression recorded in EMRs as in this study; the results are shown in Fig. 2 together with our Facebook model. The results suggest that the Facebook prediction model yields prediction accuracies comparable to validated self-report depression scales.

Previous work observed that depressed users are more likely to tweet during night hours (6). However, patients with and without a diagnosis of depression in our study differed only modestly in their temporal posting patterns (diurnally and across days of the week; AUC = 0.54). Post length and posting frequency (metafeatures) were approximately as predictive of depression in the medical record as demographic characteristics (AUCs of 0.59 and 0.57, respectively), with the median annual word count across posts being 1,424 words higher for users who ultimately had a diagnosis of depression (Wilcoxon W = 26,594, P = 0.002). Adding temporal pattern features and metafeatures to the language-based prediction model did not substantially increase prediction performance, suggesting that the language content captures the depression-related variance in the other feature groups.

Comparison with Previous Prediction Studies. In our sample, patients with and without a diagnosis of depression in the medical record were balanced at a 1:5 ratio to simulate true depression prevalence. In previous work, this balance has been closer to 1:1 (e.g., 0.94:1 in ref. 7, 1:78:1 in ref. 6). When limiting our sample to balanced classes (1:1), we obtain an AUC of 0.68 and F_1 score (the harmonic mean of precision and recall) of 0.66, which is comparable to the F_1 scores of 0.65 reported in ref. 7 and 0.68 reported in ref. 6 based on Twitter data and survey-reported depression. The fact that language content captures the depression-related variance in the other feature groups is consistent with what has been seen in previous work (6, 7, 18). However, this work shows that social media can predict diagnoses in medical records, rather than self-report surveys.

Predicting Depression in Advance of the Medical Record. We sought to investigate how far in advance Facebook may be able to yield a prediction of future depression. To that end, we considered language data for depressed patients from seven 6-mo windows preceding the first documentation of depression (or its matched time for controls) for the subset of 307 users who had at least 20 words in all seven windows. The results, shown in Fig. 3, suggest that the closer in time the Facebook data are to the documentation of depression, the better their predictive power, with data from the 6 mo immediately preceding the documentation of depression yielding an accuracy (i.e., AUC) of 0.72, surpassing the customary threshold of good discrimination (0.70). These results lend plausibility to the estimates of predictive power because one would expect just such a temporal trend. A minimal prediction of future depression (AUC = 0.62) above chance ($P = 0.002$) can be obtained approximately 3 mo in advance (3–9-mo window). Although this prediction accuracy is relatively modest, it suggests that, perhaps in conjunction with other forms of unobtrusive digital screening, the potential exists to develop burdenless indicators of mental illness that precede the medical documentation of depression (which may often be delayed) and which, as a result, could reduce the total extent of functional impairment experienced during the depressive episode.

Language Markers of Depression. To better understand what specific language may serve as markers of future depression and underlay the prediction performances of the aforementioned machine learning models, we determined how users with and

*Noyes et al. (17) sought to benchmark claims data against self-report depression scales as the criterion variable in a sample of 1,551 elderly adults; we have derived the points given in Fig. 2 from the confusion matrices they published. They included the ICD-9 codes used in this study (296.2 and 311) among their "extended set" of codes.

Fig. 1. Prediction performances of future diagnosis of depression in the EMR based on demographics and Facebook posting activity, reported as cross-validated out-of-sample AUCs.

Fig. 2. ROC curve for a Facebook activity-based prediction model (all predictors combined; blue), and points as combinations of true and false positive rates reported by Noyes et al. (17) for different combinations of depression surveys (a and b, 9-item Mini-International Neuropsychiatric Interview—Major Depressive Episode Module; c and d, 15-item Geriatric Depression Scale with a cutoff >6) and time windows in Medicare claims data (a and c, within 6 mo before and after survey; b and d, within 12 mo).
without a diagnosis of depression differed in the expression of the 200 data-driven LDA topics derived from their text. In Fig. 4, we show the 10 topics most strongly associated with future depression status when controlling for age, gender, and race. 7 (of 200) topics were individually significant at \(P < 0.05 \) with Benjamini–Hochberg correction for multiple comparisons.

To complement this data-driven approach, we also examined the use of 73 prespecified dictionaries (lists of words) from the Linguistic Inquiry and Word Count (LIWC) software (2015; ref. 19) that is widely used in psychological research. Nine LIWC dictionaries predicted future depression status at Benjamini–Hochberg-corrected significance levels controlling for demographics (Table 1).

We observed emotional language markers of depressed mood (topic: tears, cry, pain; standardized regression coefficient \(\beta = 0.15; P < 0.001 \)), loneliness (topic: miss, much, baby; \(\beta = 0.14; P = 0.001 \)) and hostility (topic: hate, ugh, fuckin; \(\beta = 0.12; P = 0.012 \)). The LIWC negative emotion (\(\beta = 0.14; P = 0.002 \)); most frequent words: smh, fuck, hate) and sadness dictionaries (\(\beta = 0.17; P < 0.001 \), miss, lost, alone) captured similar information.

We observed that users who ultimately had a diagnosis of depression used more first-person singular pronouns (LIWC dictionary: \(\beta = 0.19; P < 0.001 \)); I, my, me), suggesting a preoccupation with the self. First-person singular pronouns were found by a recent meta-analysis (20) to be one of the most robust language markers of cross-sectional depression (meta-analytic \(r = 0.13 \)) and by a preliminary longitudinal study a marker of future depression, as observed in this study (21). Although there is substantial evidence that the use of first-person singular pronouns is associated with depression in private writings (22), this study extends the evidence for this association into the semi-public context of social media.

Cognitively, depression is thought to be associated with perseveration and rumination, specifically on self-relevant information (23), which manifests as worry and anxiety when directed toward the future (21). In line with these conceptualizations, we observed language markers suggestive of increased rumination (topic: mind, alot, lot; \(\beta = 0.11; P = 0.009 \)) and anxiety (LIWC dictionary: \(\beta = 0.08; P = 0.043 \); scared, upset, worry), albeit not meeting Benjamini–Hochberg-corrected significance thresholds.

Depression often presents itself with somatic complaints in primary care settings (24, 25). In our sample, we observed that the text of users who ultimately received a diagnosis of depression contained markers of somatic complaints (topic: hurt, head, bad; \(\beta = 0.15; P < 0.001 \); LIWC dictionary, health: \(\beta = 0.11; P = 0.004 \); life, tired, sick). We also observed increased medical references (topic: hospital, pain, surgery; \(\beta = 0.20; P < 0.001 \)), which is consistent with the finding that individuals with depression are known to visit the ED more frequently than individuals without depression (26).

Discussion

Our results show that Facebook language-based prediction models perform similarly to screening surveys in identifying patients with depression when using diagnostic codes in the EMR to identify diagnoses of depression. The profile of depression-associated language markers is nuanced, covering emotional (sadness, depressed mood), interpersonal (hostility, loneliness), and cognitive (self-focus, rumination) processes, which previous research has established as congruent with the determinants and consequences of depression. The growth of social media and continuous improvement of machine-learning algorithms suggest that social media-based screening methods for depression may become increasingly feasible and more accurate.

We chose to examine depression because it is prevalent, disabling, underdiagnosed, and treatable. As a major driver of medical morbidity and mortality, it is important to more thoroughly diagnose and treat depression across the population. Patients with depression exhibit poorer medical outcomes after acute inpatient care, increased utilization of emergency care resources, and increased all-cause mortality (25–28). Identifying patients at an earlier stage in their mental

1A language prediction model using only the 200 LDA topics (and not the relative frequencies of words and phrases) reaches an accuracy of AUC of 0.65, so the topics capture most of the language variance.

‡No topic or dictionary is negatively associated with future depression status (controlling for demographic characteristics) at significance levels corrected for multiple comparisons. The 10 LDA topics most negatively associated with depression status are shown in SI Appendix, Fig. S1. They cover language suggestive of gratitude, faith, school and work, and fitness and music consumption (SI Appendix, Table S1 includes an extended set of LIWC associations).
illness through novel means of detection creates opportunities for patients to be connected more readily with appropriate care resources. The present analysis suggests that social media-based prediction of future depression status may be possible as early as 3 mo before the first documentation of depression in the medical record.

In the primary care setting, a diagnosis of depression is often missed (29). The reason for such underdetection is multifactorial: depression has a broad array of possible presenting symptoms, and its severity changes across time. Primary care providers are also tasked with addressing many facets of health within a clinical visit that may be as brief as 15 min. Previous research has recommended improving detection of depression through the routine use of multistep assessment processes (30). Initial identification of individuals who may be developing depression via analysis of social media over a period of time may serve as the first step in such a process (using a detection threshold favoring high true positive rates). With the increasing integration of social media platforms, smartphones, and other technologies into the lives of patients, novel avenues are becoming available to detect depression unobtrusively. These methods include the algorithmic analysis of phone sensor, usage, and GPS position data on smartphones (31), and of facial expressions in images and videos, such as those shared on social media platforms (32, 33). In principle, these different screening modalities could be combined in a way that improves overall screening to identify individuals to complete self-report inventories (34) or be assessed by a clinician.

In the present study, patients permitted researchers to collect several years of retroactive social media data. These longitudinal data may allow clinicians to capture the evolution of depression severity over time with a richness unavailable to traditional clinical surveys delivered at discrete time points. The language exhibited by patients who ultimately developed depression was nuanced and varied, covering a wide array of depression-related symptoms. Changes in language patterns about specific symptoms could alert clinicians to specific depression symptoms among their consenting patients.

This study illustrates how social media-based detection technologies may optimize diagnosis within one facet of health. These technologies raise important questions related to patient privacy, informed consent, data protection, and data ownership. Clear guidelines are needed about access to these data, reflecting the sensitivity of content, the people accessing it, and their purpose (35). Developers and policymakers need to address the challenge that the application of an algorithm may change social media posts into protected health information, with the corresponding expectation of privacy and the right of patients to remain autonomous in their health care decisions. Similarly, those who interpret the data need to recognize that people may change what they write based on their perceptions of how that information might be observed and used.

The key contribution of this study is that it links mental health diagnoses with social media content, and that it used this linkage to reveal associations between the content and symptoms of a prevalent, underdiagnosed, and treatable condition. This suggests that, one day, the analysis of social media language could serve as a scalable front-line tool for the identification of depressed individuals. Together with the growing

Table 1. LIWC Dictionaries Associated with Depression

<table>
<thead>
<tr>
<th>LIWC dictionary</th>
<th>β</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pronouns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First pers singular (I, me)</td>
<td>0.19</td>
<td>***</td>
</tr>
<tr>
<td>Emotions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feel (perceptual process)</td>
<td>0.15</td>
<td>***</td>
</tr>
<tr>
<td>Negative emotions</td>
<td>0.14</td>
<td>**</td>
</tr>
<tr>
<td>Sadness</td>
<td>0.17</td>
<td>***</td>
</tr>
<tr>
<td>Cognitive processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrepancy</td>
<td>0.12</td>
<td>**</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health</td>
<td>0.11</td>
<td>**</td>
</tr>
</tbody>
</table>

Shown are all pronoun and psychological process LIWC 2015 dictionaries significantly associated with future depression status controlling for demographics (*P < 0.05, **P < 0.001, ***P < 0.0001; **P < 0.05 after Benjamini–Hochberg correction for multiple comparisons). Font size reflects relative prevalence of words within topics. Color shading is to aid readability and carries no meaning.

Fig. 4. Ten language topics most positively associated with a future depression diagnosis controlling for demographics (*P < 0.05, **P < 0.01, and ***P < 0.001; **P < 0.05 after Benjamini–Hochberg correction for multiple comparisons). Font size reflects relative prevalence of words within topics. Color shading is to aid readability and carries no meaning.
sophistication, scalability, and efficacy of technology-supported treatments for depression (36, 37), detection and treatment of mental illness may soon meet individuals in the digital spaces they already inhabit.

Materials and Methods

Participant Recruitment and Data Collection. This study was approved by the institutional review board at the University of Pennsylvania. The flow of the data collection is described in ref. 14. In total, 11,224 patients were approached in the ED over a 26-mo period. Patients were excluded if they were under 18 y old, suffered from severe trauma, were incoherent, or exhibited evidence of severe illness. Of these, 2,903 patients consented to share their social media data and their EMRs, which resulted in 2,679 (92%) unique users. These EMRs were not specific to the ED but covered all patient encounters across the entire health care system. A total of 1,175 patients (44%) were able to log in to their Facebook accounts, and our Facebook app was able to retrieve any Facebook information and posts for as much as 6 y earlier, ranging from July 2008 through September 2015. These users shared a total of 949,530 Facebook statuses, which we used to model the 200 LDA topics.

From the health system’s EMRs, we retrieved demographic data (age, sex, and race) and prior diagnoses (by ICD-9 codes). We considered patients as having a diagnosis of depression if their EMRs included documentation of ICD codes 296.2 (Major Depression) or 311 (Depressive Disorder, not elsewhere classified), resulting in 176 in 176 patients with any Facebook language (base rate 176/1,175 = 15.0%, or 1.568). Of the 176 depressed patients, 114 (63%) had at least 500 words in status updates preceding their first documentation of a diagnosis of depression. A total of 49 patients had no language preceding their first documentation, suggesting that, for 28% of the sample, their first documentation of depression preceded joining or the posting on Facebook. Notably, a depression-related ICD code could reflect self-report by the patient of a history of depression and did not necessarily imply clinical assessment or current depressive symptoms, treatment, or management (Trinh et al. (15) suggest that using ICD codes as a proxy for a diagnosis of depression is feasible with moderate accuracy).

To model the application in a medical setting and control for annual patterns in depression, for each patient with depression, we randomly selected another five patients without a history of depression who had at least 500 words in status updates preceding the same day as the first recorded diagnosis of depression. This yielded a sample of 114 × 5 × 114 = 684 patients who shared a total of 524,292 Facebook statuses in the included temporal window.1 We excluded one patient from the sample for having less than 500 words after excluding unicode tokens (such as emojis), for a final sample of 683 patients.

Sample Description. Sample characteristics are shown in Table 2. Among all 683 patients, the mean age was 29.9 y (SD = 8.57); most were female (76.7%) and black (70.1%). Depressed patients were more likely to have posted more words on Facebook (difference between medians 3,374 words; Wilcoxon W = 27,712; P = 0.014) and be female (61, n = 583) = 7.18; P = 0.007, matching national trends in presentational use of urban academic EDs (26, 38, 39).

Word and Phrase Extraction. We determined the relative frequency with which users used words (unigrams) and two-word phrases (bigrams) by using our open-source Python-based language analysis infrastructure (dlatk,wwbp.org). We retained as variables the 5,381 words and phrases that were used by at least 20% of the sample across their 524,292 Facebook statuses.

Table 2. Sample Descriptives

<table>
<thead>
<tr>
<th>Sample description</th>
<th>Depressed</th>
<th>Nondepressed</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of subjects</td>
<td>114</td>
<td>569</td>
<td></td>
</tr>
<tr>
<td>Mean age (SD)</td>
<td>36.9 (8.1)</td>
<td>29.7 (8.65)</td>
<td></td>
</tr>
<tr>
<td>Female, %</td>
<td>69.8</td>
<td>74.7</td>
<td>**</td>
</tr>
<tr>
<td>Black, %</td>
<td>67.1</td>
<td>69.1</td>
<td></td>
</tr>
<tr>
<td>Mean word count (SD)</td>
<td>17,784 (27,736)</td>
<td>14,802 (21,789)</td>
<td>*</td>
</tr>
<tr>
<td>Median word count</td>
<td>6,105</td>
<td>2,861</td>
<td>*</td>
</tr>
</tbody>
</table>

With a ridge penalty and their hyperparameters were fit within 9 folds and overfitting (similar to ref. 42). In this cross-validation procedure, the data are randomly partitioned into 10 stratified folds, keeping depressed users and their five “control users” within the same fold. Logistic regression models with a ridge penalty and their hyperparameters were fit within 9 folds and evaluated across the remaining held-out fold. The procedure was repeated 10 times to estimate an out-of-sample probability of depression for every patient. Varying the threshold of this probability for depression classification uniquely determines a combination of true and false positive rates that form the points of a ROC curve. We summarize overall prediction performance as the area under this ROC curve (i.e., AUC), which is suitable for describing classification accuracies over unbalanced classes.

Prediction Models. We used machine learning to train predictive models using the unigrams, bigrams, and 200 topics, using 10-fold cross-validation to avoid overfitting (similar to ref. 42). In this cross-validation procedure, the data are randomly partitioned into 10 stratified folds, keeping depressed users and their five “control users” within the same fold. Logistic regression models with a ridge penalty and their hyperparameters were fit within 9 folds and evaluated across the remaining held-out fold. The procedure was repeated 10 times to estimate an out-of-sample probability of depression for every patient. Varying the threshold of this probability for depression classification uniquely determines a combination of true and false positive rates that form the points of a ROC curve. We summarize overall prediction performance as the area under this ROC curve (i.e., AUC), which is suitable for describing classification accuracies over unbalanced classes.

Prediction in Advance of Documentiation. We carried out the prediction as outlined earlier but truncated the available language data to time windows ranging from 0–6 mo before diagnosis (excluding the 24 h immediately before diagnosis) to 1–7, 3–9, 9–15, 15–21, 21–27, and 27–33 mo before the first documentation of depression in the medical records. We truncated the data analogously for control users. For this analysis, we limited the sample to those with data in each of the seven time windows, specifically thresholding at a total of 20 words total in each window. Because this lower threshold results in less stable measures of language use, we employed outlier removal, replacing feature observations that were more than 2 standard deviations from the mean with the feature’s mean. This resulted in 307 patients (56 depressed) with the same users represented in each of the time windows (average word counts for depressed and nondepressed users in these windows are shown in SI Appendix, Fig. S2). AUCs were tested for significance against the null distribution through permutation tests with 100,000 permutations.

Language Associations. To determine if a language feature (topic or LIWC category) was associated with (future) depression status, we individually tested it as a predictor in an in-sample linear regression model controlling for demographic characteristics (binary variables for age quartile, ethnicity, and gender), and report its standardized regression coefficient (β) with the associated significance. We explored language correlations separately by gender but found that we had insufficient power to find language correlations among male users in the sample.

1We excluded 40 users with any Facebook language from the set of possible controls if they did not have the aforementioned ICD codes but only depression-like diagnoses that were not temporally limited, i.e., recurrent Depression (296.3) or Dysthymic Disorders (300.4), Bipolar Disorders (296.4–296.8), or Adjustment Disorders or Posttraumatic Stress Disorder (309). We additionally excluded 36 patients from the possible control group if they had been prescribed any antidepressant medications (i.e., selective serotonin reuptake inhibitors) without having been given an included depression ICD code.

Differences in age and mean word count were tested for significance by using t tests, percent female and black by using χ² tests with continuity correction, and median word counts by using Wilcoxon rank-sum test with continuity correction. *P < 0.05, **P < 0.01.
Controlling for Multiple Comparisons. In addition to the customary significance thresholds, we also report whether a given language feature meets a P < 0.05 significance threshold corrected with the Benjamini-Hochberg procedure (43) for multiple comparisons.

Data Sharing. Medical record outcomes and the linked social media data are considered Protected Health Information and cannot be shared. However, for the main language features (200 DLA topics and 73 LIWC dictionaries), we are able to share mean levels and SDs for depressed and nondepressed users (deposited in Open Science Framework, https://osf.io/zeuyj/).

ACKNOWLEDGMENTS. We thank anonymous Reviewer 1 for her or his insightful suggestions. Support for this research was provided by a Robert Wood Johnson Foundation Pioneer Award; Templeton Religion Trust Grant TRT0048.

