
INTRODUCTION

- The impairment of visual functions is one of the most common complaints following mild traumatic brain injury (mTBI) (Greenwald, Kapoor, & Singh, 2012, Kapoor & Ciuffreda, 2002).
- Previous studies have found evidence that TBI can affect early cortical visual processing, e.g. first and second-order stimuli (Spiegel et al., 2016) and stereopsis (Schmidtmann et al., 2017).
- TBIs are diffuse and can affect medial and anterior temporal lobes, areas also associated to face recognition (Bigler et al., 2002).

AIM

We aimed to investigate the influence of mTBI on face recognition using an equivalent noise paradigm.

METHODS

- Face identity sensitivity was measured as a function of external noise, defined as face identity noise.
- Face identity thresholds were measured between a mean face and two different identities.
- Synthetic face stimuli were generated using a software (FaceGen Modeller 3.5; Singular Inversions Inc., 2016), which allowed us to precisely control the amount of identity noise for a given face identity.
- Various face identity noise levels, e.g. a twin, sibling, cousin or distant relative (four noise levels) were created for each morph level between a mean face and the two individual identities (Kyle & Lea).

RESULTS

- Thresholds – Univariate ANOVA (Group): F_{1,38} = 8.349, p = .004.
- One-Way ANOVA (Control vs. TBI): internal noise: F_{2,34} = 2.924, p = .097; efficiency: F_{2,34} = 5.937, p = .021

DISCUSSION

- mTBI affects the ability to recognize faces.
- Thresholds are increased for all noise levels.
- According to LAM, internal noise is not increased in TBI patients.
- The efficiency is decreased in the TBI group.
- The efficiency parameter β indicates how well the visual system makes use of the noisy input information.
- i.e. better processing strategies applied to the input give higher efficiencies, approaching the ideal observer which uses the best possible strategy.

REFERENCES

FINANCIAL SUPPORT

This research was funded by the Psychological Health and Traumatic Brain Injury Research Program of the U.S. Department of Defense under award W81XWH-14-1-0320. Views and opinions of and endorsements by the authors do not reflect those of the US Army or the Department of Defense.