
Colorado Stream Health Assessment Framework

Brad Johnson, Johnson Environmental Consulting and Mark Beardsley, EcoMetrics

A holistic health assessment tool for stream management and restoration planning

Colorado Water Plan

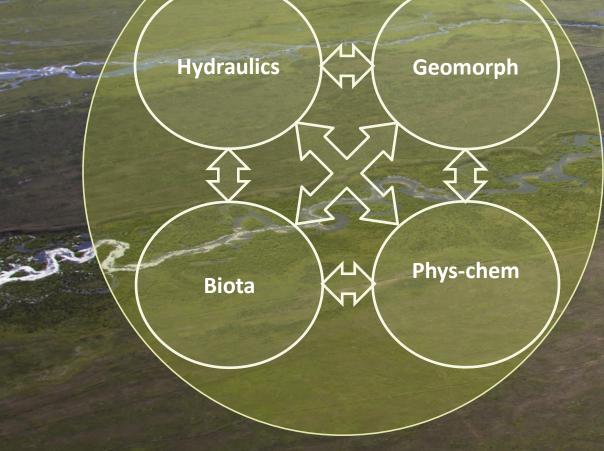
HEADWATERS

COLORADO FOUNDATION FOR WATER EDUCATION | WINTER 2015

Colorado's Water Plan

Why We Need It Now

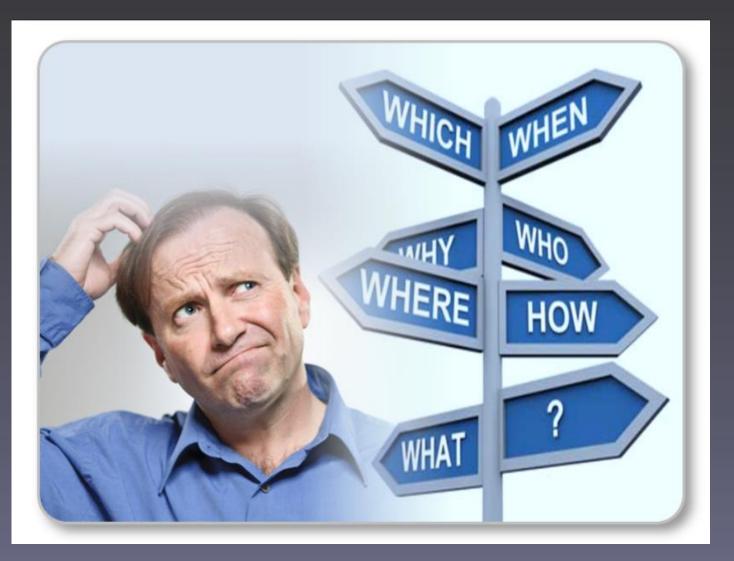
Plus...What it took to get the first draft of a state roadmap for water to the governor


To Do: Assess your water future and get involved in 2015

Stream Management Plans

The Colorado Water Plan says that Stream Management Plans should (paraphrased):

- Involve stakeholders
- Assess existing biological, hydrological, and geomorphological conditions;
- Identify flows and other physical conditions needed to support environmental and recreational water uses
- Incorporate environmental and recreational values
- Identify and prioritize alternative management actions to achieve measurable progress toward management objectives


Holistic River Health Assessment

The roll of holistic health assessment:

- Describe condition
- Help diagnose causes of impairment
- Assist in prescribing treatments
- Communicate with stakeholders and educate them on issues and solutions
- Set the stage to implement treatments

Where do I get one of those?

Development of Health Assessment Technology

1990's

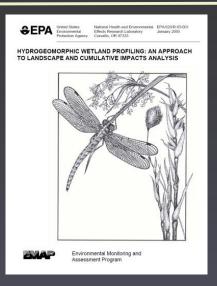
DOCUMENTATION OF REFERENCE CONDITIONS IN THE SLOPE

WETLANDS OF THE SOUTHERN ROCKY MOUNTAINS

REFERENCE DATABASE, SITE DESCRIPTIONS, AND REVISED FUNCTIONAL MODELS

J. Bradley Johnson, Ph D

Fort Collins, CO 8057


Submitted a

Colorado Department of Natural Resources

March 31, 2001

otection Agency, Region

U.S. En

2005

Colorado Department of Transportation's

2008

FUNCTIONAL ASSESSMENT OF COLORADO WETLANDS (FACWet) METHOD

USER MANUAL - Version 3.0

April 2013

EcoMetrics

Brad Johnson Department of Biology Colorado State University

Mark Beardsley and Jessica Doran EcoMetrics, LLC

2011

ASSESSMENT FRAMEWORK FOR WETLAND COMPENSATORY MITIGATION

Syllabus for a Watershed Approach to Mitigation Project Review

June 2011 (Version 1.6)

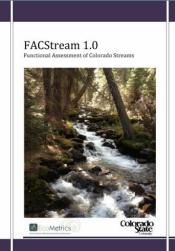
INTRODUCTION

Staff from EPA Region 8 (Denver), the U.S. Army Corps of Engineers (Denver Regulatory Office, Omaha District), the Colorado Department of Transportation, the Colorado Natural Heritage Program and Colorado State University prepared this syllabus. The syllabus cuttines an assessment framework that is used for

> compensatory mitigation is adequate to offset proposed impacts to wetlands. Compensatory mitigation is usually required to offset unavoid impacts as may be authorized by a federal Cie Water Act Section 404 permit. In addition, fluid specifies that mitigation be implemented using watershed approach." The assessment framework is based no the use of the ammonst

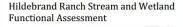
The syllabus was prepared for use by regulatory agency staff, consultants and the regulated commities. It is a relatively concese outline of the make intigration deterministions. It is not a comprehensive development of those procedures and indicators. That type of information in beer provided through training. This document can be used to guide such training. hence use of the term "syllabus."

The design of the syllabus is based somewhat on the Washington Department of Ecology document entitled, "Selecting Wetland Mitigation Sites using the Watershed Approach" (Instudy et al., 2009). The syllabus is comprised of two sections. The first


2013

2015

April 2013 atural Heritage Program do State University Collins, CO 80523 le


Application

Park County Wetland and Stream Inventory

Mark Beardsley EcoMetrics, LLC 10/8/2016

12/15/2015 Mark Beardsley and Jessica Doran EcoMetrics

sica Doran EcoMetrics Stress & Repara Northarty, Assessment & Resharce

Slate River, Peanut Lake Reach

Assessment, Restoration, and Monitoring To Protect Peanut Lake and Improve River and Wetland Function

Mark Beardsley, M.S. December 22, 2014

Vregared for: The Crested Buthe Land Trust rimmy Juline: Mark Beaddley, Ecolemics antibulars: Andy Heeh, Japortel Mark Catherine David Schehner, CRIT Hedda Reterrao, CRIT

Sand Creek

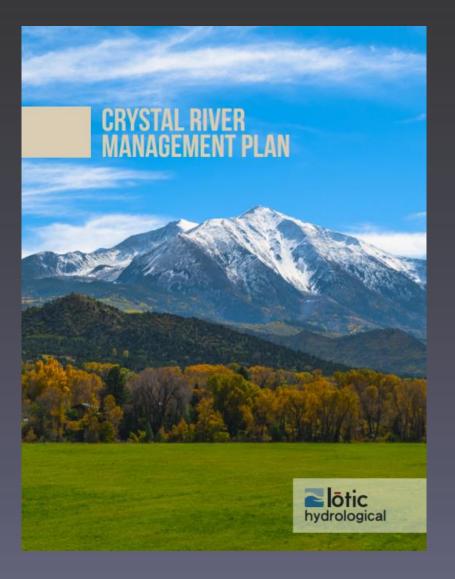
Ecological Assessment and Evaluation of Improvement Options

Mark Beardsley, M.S. EcoMetrics, LLC November 12, 2015

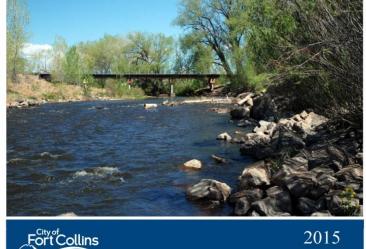
Submitted to: Sprague Sand Creek Ranch LLC

The Effectiveness of Mechanical Channel Enhancements on Impaired Streams in South Park, Colorado Using long-term monitoring to evaluate enhancement and restoration

Mark Beardsley EcoMetrics January 23, 2017


Ralston Creek Assessment Report, 2016

Prepared for Jefferson County Open Space By Jessica Doran, David Sutherland and Mark Beardsley



Retool

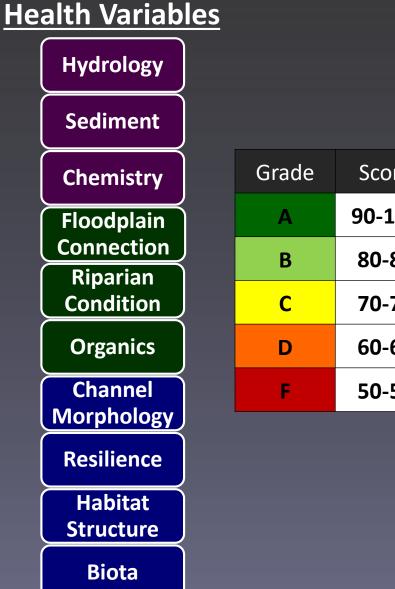
River Health Assessment Framework Cache la Poudre River

Colorado STREAM HEALTH ASSESSMENT FRAMEWORK

Creating and Implementing a Health Assessment Framework for your Stream

The COSHAF Process Diagram

Create Stream Specific SHAF



Grade Variables / Subvariables Report Card and Stressor Matrices

Carton and the

CO Stream Health Assessment Framework: Introduction

Hydrology Sediment Chemistry Floodplain Riparian Organics Morphology Resilience Structure **Biota**

Grade	Score	Impairment						
Α	90-100	None						
В	80-89	Mild						
С	70-79	Significant						
D	60-69	Severe						
F	50-59	Profound						

Customize the COSHAF to your Stream or Watershed

Variable

Black Box

- **ASSESSMENT QUESTIONS**
- Management goals
- Assessment aims & purpose
 - Data resources
 - Data gaps
- Known issues in watershed

Sub-variable

Sub-variable

 Parameters and Methods

 Parameters and Methods

Potential COSHAF Subvariables

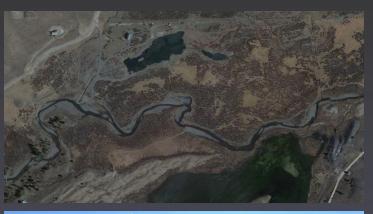
		Total volume						
eq	Flow	Peak flow						
	regime	Base flow						
		Rate of change						
		Land sources						
Watershed	Sediment regime	Channel sources						
S		Continuity						
Ite		Temperature						
Ş	Water quality	Nutrients						
>		Chemical Condition						
		Buffer capacity						
	Landscape	Terrestrial connectivity						
		Aquatic connectivity						
C	Floodplain	High Frequency						
a.	connectivity	Medium Frequency						
Riparian	Riparian Condition	Riparian Condition						
	Organic material	Wood						
	Organic material	Detritus						
		Planform						
	Morphology	Dimension						
C		Profile						
L E		Resistance						
Morphology Stability	Stability	Equilibrium						
		Resilience						
	Physical structure	Macrohabitat						
		Microhabitat						
	Trophic Structure	Trophic structure						

COSHAF Customization – Hydrology Example

FACStream/Crystal Poudre Yampa

- Total Annual Flow
- Peak Flow
- Base Flow
- Variability

- Peak Flow
- Base Flow
- Rate of Change


- Total Annual Flow
- Peak Flow
- Base Flow
- Rate of Change

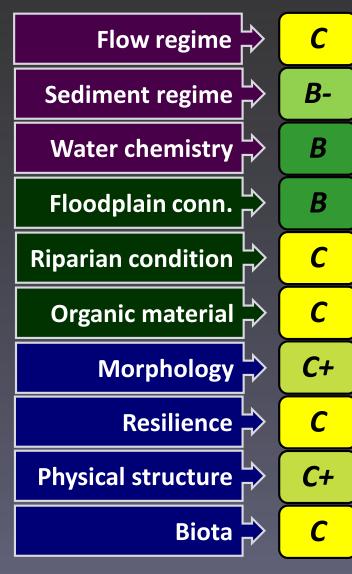
Sub-variable Grading Guidelines

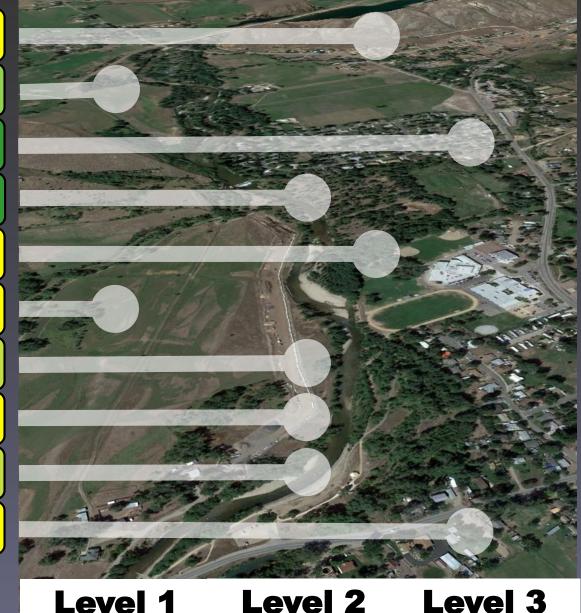
Grade	Impairment	Base Flow	VS
	_	Grade	Description
A	None		Base flow magnitude is ample to provide all the functions necessary for a healthy and resilient
В	Mild	A	river ecosystem. There are no dry-ups or other significant stressors and aquatic life is never stressed by altered base flow.
С	Significant		Base flow magnitude is less than optimal with minimal effects on stream function. Aquatic life is
D	Severe		never critically stressed by altered base flow. Base flows support habitat availability and
		В	functional needs of aquatic life. Flows less than 35 CFS occur less than 50 days per year and on
F	Profound		less than 50% of days in winter on average. Flows less than 10 CFS occur less than 5 days per year and on less than 10% of days in winter on average. There are no periods of no flow.
		С	Base flow alterations are short in duration, or are during times of the season when stream functions are minimally stressed. Base flows support aquatic life needs most of the time, but poor habitat availability and water quality may occur intermittently. Flows less than 35 CFS occur less than 100 days per year and on less than 50% of days in winter on average. Flows less than 10 CFS occur less than 10 days per year and on less than 10% of days in winter on average. There are no periods of no flow.
		D	Altered base flow patterns are common and measurably affect stream function. Flows less than 35 CFS occur less than 150 days per year on average. Flows less than 10 CFS occur less than 100 days per year and on less than 60% of days in winter on average. There are less than 20 days per year with no flow on average.
		F	Altered base flow patterns have critically reduced stream function, including eliminating native or desired species, violating water quality standards, and/or other irreversible changes. Flows less than 10 CFS occur more than 100 days per year and on less than 60% of days in winter on average. There are 20 or more days per year with no flow on average.
		³ Correspo	nds to values contained in the Ecological Response Model (ERM).

Grading Sub-variables

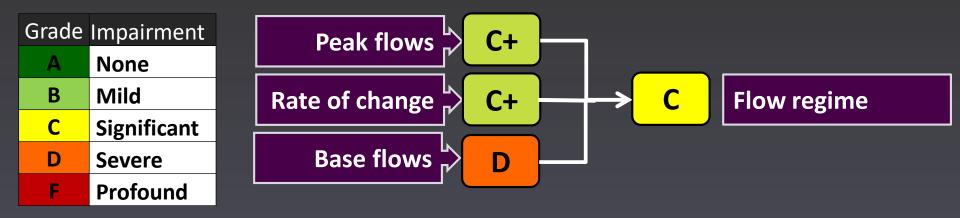
Level 1 Remote

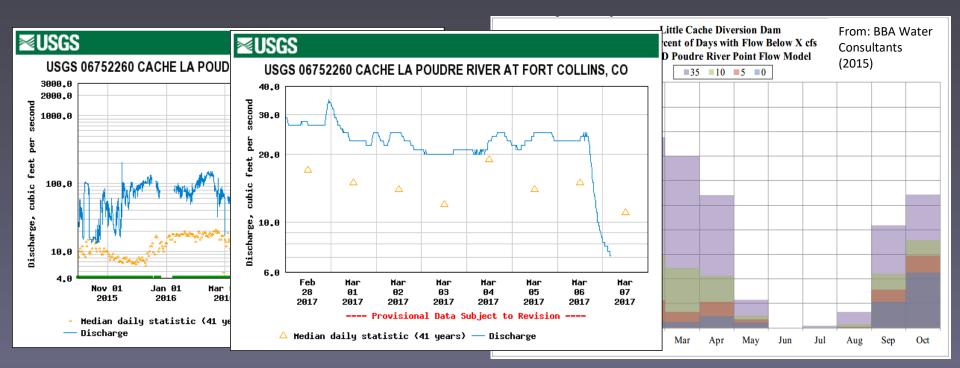
Level 2

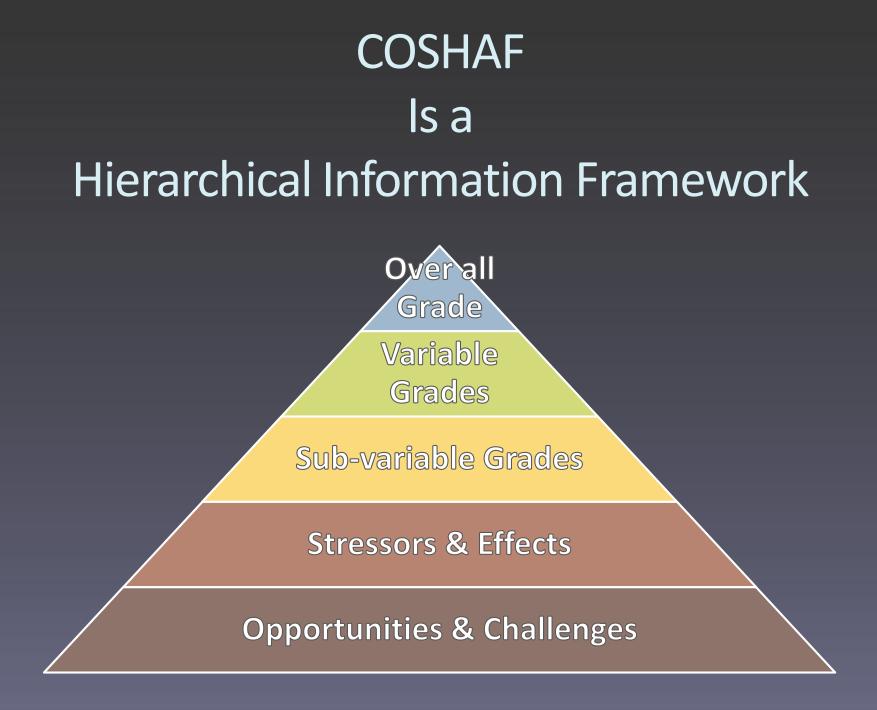

Rapid Field



Level 3 Intensive

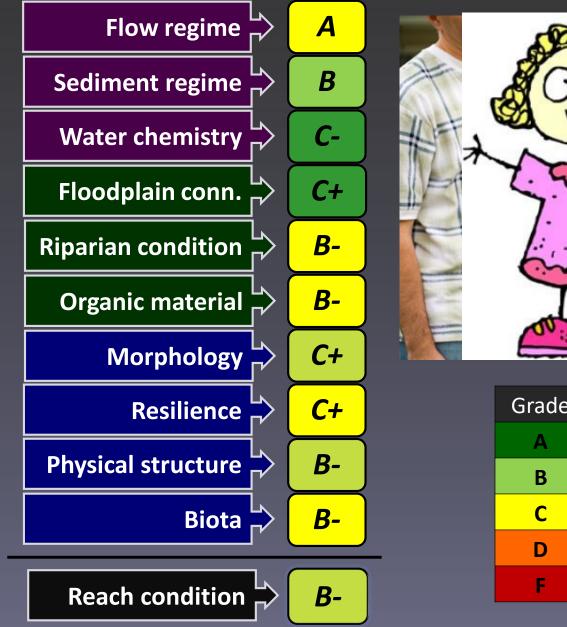



Effort levels may vary



Sub-variable Grading Guidelines & Variable

Applications and Outputs


Inventory/mappingcolorado

A PARK FOR ALL SEASONS

Reach Report Card

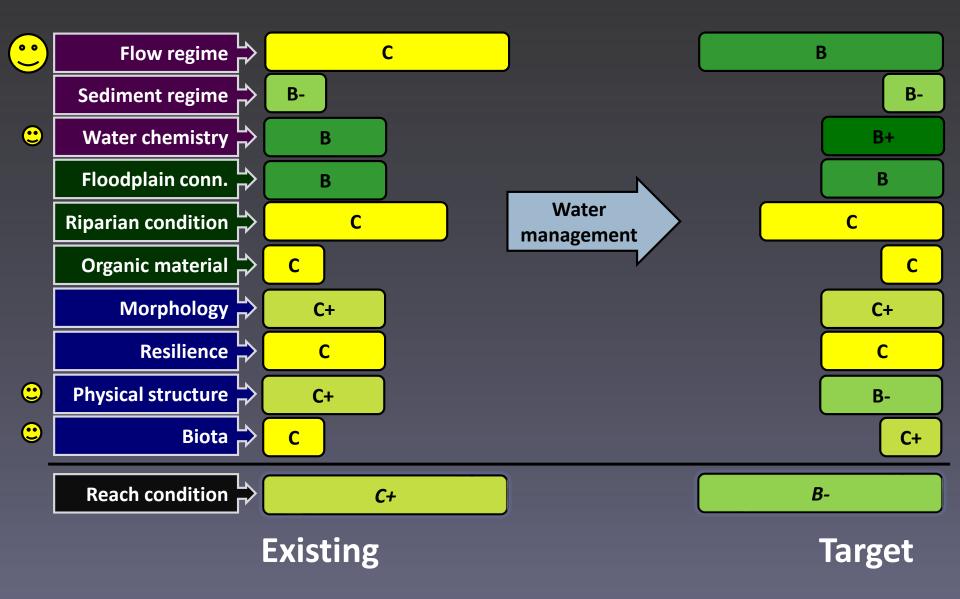
Grade	Score	Impairment
Α	90-100	None
В	80-89	Mild
С	70-79	Significant
D	60-69	Severe
F	50-59	Profound

Increasing amounts of information

Yampa River Stream Health Report Card:								
			Below Town Seg	ment	t			
	F 1		Total volume	A				
	Flow	Α	Peak flow	A				
	regime		Base flow	A-				
~			Rate of change	A-				
Watershed	Sediment		Land sources	B -				
l's	regime	B	Channel sources	A-				
E.			Continuity	В				
/at	Water		Temperature	D				
\$	quality	C -	Nutrients	В				
	quanty		Chemical Condition	B+				
	Landscape		Buffer capacity	C+				
		B-	Terrestrial connectivity	B-				
			Aquatic connectivity	В				
	Floodplain	Ċ	High Frequency	C+				
L	connectivity	C+	Medium Frequency	B-				
Riparian	Riparian Condition	В-	Riparian Condition	В-				
R	connectivity C+ Medium Frequency Riparian B- Riparian Condition	Wood	B-					
	material	D-	Detritus	B-				
			Planform	C+				
	Morphology	C+	Dimension	B-				
			Profile	В				
F		C+	Resistance	В				
ar	Stability		Equilibrium	В				
tre			Resilience	С				
	Physical	-	Macrohabitat	B-				
	atructure	В-	Ndiawahahitat	Ъ				

Physical
structureB-MacrohabitatB-StructureB-MicrohabitatBTrophic
StructureB-Trophic structureB-

B-


River Health

Upper Yampa River, Chuck Lewis SWA Segment

				0																		
River Health Assessment						Causes of Impairment (Estimated Contribution of Stressors)																
A None	Low		C Moderate	D Hig	gh E:	F	Reach Condition tressor Contribution	Water use/management	Large dams/reservoirs (Stagecoach, Catamount)	Watershed land use	Watershed channel erosion	Irrigation runoff/ return flows	Development	Rural/agricultural land use	Aggregate mining	Road/bridge	Levees/ channelization	Bank/channel armor	Channel structures (dams/wiers)	Woody material recruitment/removal	Exotic plant species/weeds	Exotic aquatic species
1.1 2040 ft	1.2 1270	1.3 2320 ft	1. 293		1.5 2010 ft			Wat	Lar _i (Stag	≥		Irrig		Ľ.	٩		Lev	Ba	Ū	rec	Exotic	Exc
						B+	Flow Regime															
						В	Sediment Regime															
						C-	Water Quality				С	àuses c	of ten	nperatı	ure im	pairm	ent un	know	n			
						R	Landscape															
						D+	Floodplain	\bigcirc											D			
						В-	Riparian Condition			·												
						В-	Organic Material								·							
						C-	Morphology															
						C-	Stability															
						С	Physical Structure															
						С	Trophic Structure															
						С	River Health															

Evaluating alternatives

Monitoring

Colorado EWP Projects

BEFORE CONSTRUCTION

LOOKING DOWNSTREM

03 JUN 2016

DURING CONSTRUCTION

LOOKING DOWNSTREAM

THANK YOU!

Colorado State University **Colorado Water Conservation Board Colorado State Land Board Colorado Department of Transportation Colorado Parks and Wildlife** City of Fort Collins (RHAF Team) **US Environmental Protection Agency US Army Corps of Engineers Colorado Riparian Association Colorado Natural Heritage Program** Lotic Hydrological **Acclivity Associates** Otak Jessica Doran & Dave Sutherland (EcoMetrics)

Please visit the EcoMetrics Website to download FACStream materials <u>http://www.ecometricscolorado.com/functional</u> <u>-assessment.html</u>

Brad Johnson: bjohnson-jec@comcast.net Mark Beardsley: mark.ecometrics@gmail.com