
MTConnect Application
Development

Leveraging Web
Technologies

Background
• Benjamin Kiefer

– University of Waterloo B. Asc – Mechatronics
– Pratt & Whitney – Controls Software

• Jared Evans

– University of Waterloo B. Asc
– Apple Inc – HW Engineering Manager

• MAJiK Systems

– Dynamic Real-Time Web Applications for Manufacturers

Why Use Web Applications in Manufacturing

• Available to everyone within your organization

• Operating System Independent

• Reliable, real-time information

Why MTConnect is a Good Fit

• Based off of HTTP Protocol

• RESTful Interface

• XML document schema to represent data

Structure of a Web Application
• Clients
• Application Server
• Data/API Server
• Database
• Other Data Sources

Application Server Data/API Server

Database

Clients Clients Data Sources

Data Sources
• Traditional Web Applications:

– People are the source of all data
• Emerging Trends:

– Web-Enabled Devices, Servers, and ‘Agents’
provide data as well as people

– API Design becomes a huge factor for anyone
creating a scalable web app

HTTP Protocol
• Foundation of the World Wide Web
• Application Level Protocol
• Uses TCP for its transport layer protocol
• Request-Response Based Protocol
• Uses a Client-Server Model

RESTful Interface
Representational State Transfer
• Stateless – Client’s responsibility to track its own

state
• Uniform Interface – Resources and Information

always accessed the same way
• Scalability and Performance – Separation of data

and User Interface

HTTP REST Example

https://www.facebook.com/search/bwkiefer/friends

https://www.google.ca/search?q=mtconnect+institute

https://www.facebook.com/search/bwkiefer/friends
https://www.google.ca/search?q=mtconnect+institute
https://www.google.ca/search?q=mtconnect+institute

MTConnect Example

http://agent.mtconnect.org/current?path=//Controller

Developing with REST
• Language Independent

• Distributes Computing Load

• Standardizes API and Data Representation for

faster development

Developing Using MTConnect
• Your application is the ‘Client’, the MTConnect

Agent is the ‘Server’
• Your Application requests data from the

MTConnect Agent based on your needs
• Agent responds with requested data
• Your application parses data and completes

necessary actions

MTConnect Overview

MTConnect
Standard

Agent

Adapte
r

CNC
Machine

MTConnect App

Adapte
r

CNC
Machine

Adapte
r

Sensor

Adapte
r

HMI

Agent

D
at

a
Fl

ow

MTConnect Basics
• Probe – Describes Agent’s Devices, Components, and Data Items

• Assets – Things associated with a device that are not a component

• Sample – Retrieves values for components’ Data Items

• Current – Retrieves current values for components’ Data Items

Data Hierarchy within the Agent

http://mtcup.org/wiki/Data_Items

Configuring an Agent
• Source Code - https://github.com/mtconnect/cppagent

• Agent.cfg – Boost C++ File Format that tells the agent

where the adapters it is connecting to should be located

• Devices.xml – Same format as an MTConnectDevices
document. Data served by adapter should match a
DataItem tag in Devices.xml

https://github.com/mtconnect/cppagent

Components and Data Items
Adapter Data Output:
 2013-05-13T16:00:05.0000Z|mode|AUTOMATIC
Agent DataItem:
 <DataItem type="CONTROLLER_MODE" category="EVENT" id="p2" name="mode"/>

Agent tries to map Adapter data to a DataItem that
has an ID, Name, or Source that matches Adapter Key

Running an Agent from your
Command Line

• Build MTConnect Agent

• Agent.cfg

• Devices.xml

• Run Mtconnect Agent

• Try http://127.0.0.1:5000/probe

What Data Are You Interested In?
• Sample – Values read from the Device at a certain

time

• Event – State or Message from the Device

• Condition – Device’s Health/Ability to Function

MTConnect XML Format
MTConnectDevices

Devices

Device

Components

Axes

Rotary [C]

DataItems

DataItem [Cvel]

Constraints

Linear [X]

DataItems

DataItem [Xpos]

Linear [Y]

DataItems

DataItem [Ypos]

Controller

Path

DataItems

DataItem [Cvel]

<MTConnectDevices>
<Header></Header>
<Devices>

<Device>
<Axes>

<Rotary>...</Rotary>
<Linear>…</Linear>

</Axes>
</Device>

</Devices>
</MTConnectDevices>

Probing The Agent

Your
Application

MTConnect
Agent

GET Request:
http://agent.mtconnect.org/probe

200 OK

<MTConnectDevices …>
<Header>…</Header>
<Devices>

<Device name=“mill”>…</Device>
<Device name=“lathe”>…</Device>

</Devices>
</MTConnectDevices>

Store Devices
the Agent
Returns in
Device Queue

Probing Individual Devices

Your
Application

MTConnect
Agent

For Each Device in Device Queue:
GET Request:

http://agent.mtconnect.org/<deviceName>/probe

200 OK

<MTConnectDevices …>
<Header>…</Header>
<Devices>

<Device name=“deviceName”>…<Device>
</Devices>

</MTConnectDevices>

Device Queue

Current

Your
Application

MTConnect
Agent

GET Request:
http://agent.mtconnect.org/<deviceName>/current

200 OK

<MTConnectStreams …>
<Header nextSequence=“123”>…</Header>
<Streams>

<DeviceStream name=“device”>…<DeviceStream>
</Streams>

</MTConnectStreams>

Device Queue

Store
‘nextSequence’
For Each
Device in
Queue

Sample

Your
Application

MTConnect
Agent

GET Request:
http://agent.mtconnect.org/<deviceName>/sample?from=‘124’&count=100

200 OK

<MTConnectStreams …>
<Header nextSequence=“159”>…</Header>
<Streams>

<DeviceStream name=“device”>…<DeviceStream>
</Streams>

</MTConnectStreams>

Device Queue

Store
‘nextSequence’
For Each
Device in
Queue

Sample

Your
Application

MTConnect
Agent

GET Request:
http://agent.mtconnect.org/<deviceName>/sample?from=‘160’&count=100

200 OK

<MTConnectStreams …>
<Header nextSequence=“201”>…</Header>
<Streams>

<DeviceStream name=“device”>…<DeviceStream>
</Streams>

</MTConnectStreams>

Device Queue

Store
‘nextSequence’
For Each
Device in
Queue

Streaming ‘Real-Time’ with MTConnect

http://agent.mtconnect.org/sample?interval=0&heartbeat=1000

• Interval – Send data every 0 ms (if data is available)

• Heartbeat – If there is no data available, the agent must send

out a heartbeat to maintain contact with the client every 1000
ms (10 seconds is default)

http://agent.mtconnect.org/sample?interval=0&heartbeat=1000

Fault Tolerance
• Applications can be made fault tolerant by persisting

‘nextSequence’ number

• If application is disconnected from Agent, it can pick up from where
it left off after re-establishing connection

• Agent’s Buffer has finite memory. Like other application level
protocols, if Agent’s Buffer is exceeded during period that
application is disconnected, information is permanently lost

Where to Send Data
Real Time Data can be sent directly to Clients through Web
Sockets or other technology.

Historical Data can be archived to your database to be retrieved
and rendered when requested by clients.

Node-Red Demo

	MTConnect Application Development
	Background
	Why Use Web Applications in Manufacturing
	Why MTConnect is a Good Fit
	Structure of a Web Application
	Data Sources
	HTTP Protocol
	RESTful Interface
	HTTP REST Example
	MTConnect Example
	Developing with REST
	Developing Using MTConnect
	MTConnect Overview
	MTConnect Basics
	Data Hierarchy within the Agent
	Configuring an Agent
	Components and Data Items
	Running an Agent from your Command Line
	What Data Are You Interested In?
	MTConnect XML Format
	Probing The Agent
	Probing Individual Devices
	Current
	Sample
	Sample
	Streaming ‘Real-Time’ with MTConnect
	Fault Tolerance
	Where to Send Data
	Node-Red Demo

