MTConnect® Standard
Part 4.1 – Cutting Tools
Version 1.5.0

Prepared for: MTConnect Institute
Prepared on: December 2, 2019
The Association for Manufacturing Technology (AMT) owns the copyright in this MT-Connect Specification or Material. AMT grants to you a non-exclusive, non-transferable, revocable, non-sublicensable, fully-paid-up copyright license to reproduce, copy and re-distribute this MTConnect Specification or Material, provided that you may only copy or redistribute the MTConnect Specification or Material in the form in which you received it, without modifications, and with all copyright notices and other notices and disclaimers contained in the MTConnect Specification or Material.

If you intend to adopt or implement an MTConnect Specification or Material in a product, whether hardware, software or firmware, which complies with an MTConnect Specification, you shall agree to the MTConnect Specification Implementer License Agreement (“Implementer License”) or to the MTConnect Intellectual Property Policy and Agreement (“IP Policy”). The Implementer License and IP Policy each sets forth the license terms and other terms of use for MTConnect Implementers to adopt or implement the MTConnect Specifications, including certain license rights covering necessary patent claims for that purpose. These materials can be found at www.MTConnect.org, or by contacting mailto:info@MTConnect.org.

MTConnect Institute and AMT have no responsibility to identify patents, patent claims or patent applications which may relate to or be required to implement a Specification, or to determine the legal validity or scope of any such patent claims brought to their attention. Each MTConnect Implementer is responsible for securing its own licenses or rights to any patent or other intellectual property rights that may be necessary for such use, and neither AMT nor MTConnect Institute have any obligation to secure any such rights.

This Material and all MTConnect Specifications and Materials are provided “as is” and MTConnect Institute and AMT and each of their respective members, officers, affiliates, sponsors and agents, make no representation or warranty of any kind relating to these materials or to any implementation of the MTConnect Specifications or Materials in any product, including, without limitation, any expressed or implied warranty of noninfringement, merchantability, or fitness for particular purpose, or of the accuracy, reliability, or completeness of information contained herein. In no event shall MTConnect Institute or AMT be liable to any user or implementer of MTConnect Specifications or Materials for the cost of procuring substitute goods or services, lost profits, loss of use, loss of data or any incidental, consequential, indirect, special or punitive damages or other direct damages, whether under contract, tort, warranty or otherwise, arising in any way out of access, use or inability to use the MTConnect Specification or other MTConnect Materials, whether or not they had advance notice of the possibility of such damage.
Table of Contents

1 Purpose of This Document 2

2 Terminology and Conventions 3
 2.1 Glossary 3
 2.2 Acronyms 8
 2.3 MTConnect References 8

3 Cutting Tool and Cutting Tool Archetype 9
 3.1 XML Schema Structure for CuttingTool and CuttingToolArchetype 9
 3.2 Common Attributes for CuttingTool and CuttingToolArchetype 11
 3.3 Common Elements for CuttingTool and CuttingToolArchetype 13
 3.3.1 Description Element for CuttingTool and CuttingToolArchetype 13

4 CuttingToolArchetype Information Model 14
 4.1 Attributes for CuttingToolArchetype 18
 4.2 Elements for CuttingToolArchetype 18
 4.2.1 CuttingToolDefinition Element for CuttingToolArchetype 19
 4.2.1.1 Attributes for CuttingToolDefinition 19
 4.2.1.2 Elements for CuttingToolDefinition 20
 4.2.1.3 ISO13399 Standard 20
 4.2.2 CuttingToolLifeCycle Element for CuttingToolArchetype 20

5 CuttingTool Information model 21
 5.1 Attributes for CuttingTool 21
 5.2 Elements for CuttingTool 21
 5.2.1 CuttingToolLifeCycle Elements for CuttingTool Only 22
 5.2.1.1 CutterStatus Element for CuttingToolLifeCycle 22
 5.2.1.1.1 Status Element for CutterStatus 23
 5.2.1.2 ToolLife Element for CuttingToolLifeCycle 25
 5.2.1.2.1 Attributes for ToolLife 26
 5.2.1.2.2 type Attribute for ToolLife 26
 5.2.1.2.3 countDirection Attribute for ToolLife 27
 5.2.1.3 Location Element for CuttingToolLifeCycle 27
 5.2.1.3.1 Attributes for Location 28
 5.2.1.3.2 type Attribute for Location 28
 5.2.1.3.3 positiveOverlap Attribute for Location 29
 5.2.1.3.4 negativeOverlap Attribute for Location 29
 5.2.1.4 ReconditionCount Element for CuttingToolLifeCycle 29
 5.2.1.4.1 Attributes for ReconditionCount 29
 5.2.2 CuttingToolArchetypeReference Element for Cutting Tool 30
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cutting Tool Schema</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Cutting Tool Parts</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Cutting Tool Composition</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Cutting Tool, Tool Item, and Cutting Item</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>Cutting Tool, Tool Item, and Cutting Item 2</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>Cutting Tool Measurements</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>Cutting Tool Asset Structure</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>Cutting ToolDefinition Schema</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>CutterStatus Schema</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>ToolLife Schema</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>Location Schema</td>
<td>27</td>
</tr>
<tr>
<td>12</td>
<td>ReconditionCount Schema</td>
<td>29</td>
</tr>
<tr>
<td>13</td>
<td>Cutting ToolArcheTypeReference Schema</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>Cutting ToolLifeCycle Schema</td>
<td>32</td>
</tr>
<tr>
<td>15</td>
<td>ProcessSpindleSpeed Schema</td>
<td>35</td>
</tr>
<tr>
<td>16</td>
<td>ProcessFeedRate Schema</td>
<td>36</td>
</tr>
<tr>
<td>17</td>
<td>Measurement Schema</td>
<td>38</td>
</tr>
<tr>
<td>18</td>
<td>Cutting Tool Measurement Diagram 1</td>
<td>40</td>
</tr>
<tr>
<td>19</td>
<td>Cutting Tool Measurement Diagram 2</td>
<td>41</td>
</tr>
<tr>
<td>20</td>
<td>CuttingItems Schema</td>
<td>44</td>
</tr>
<tr>
<td>21</td>
<td>CuttingItem Schema</td>
<td>46</td>
</tr>
<tr>
<td>22</td>
<td>ItemLife Schema</td>
<td>49</td>
</tr>
<tr>
<td>23</td>
<td>Cutting Tool</td>
<td>52</td>
</tr>
<tr>
<td>24</td>
<td>Cutting Item</td>
<td>52</td>
</tr>
<tr>
<td>25</td>
<td>Cutting Item Measurement Diagram 3</td>
<td>53</td>
</tr>
<tr>
<td>26</td>
<td>Cutting Item Drive Angle</td>
<td>53</td>
</tr>
<tr>
<td>27</td>
<td>Cutting Tool Measurement Diagram 1 (Cutting Tool, Cutting Item, and Assembly Item – ISO 13399)</td>
<td>60</td>
</tr>
<tr>
<td>28</td>
<td>Cutting Tool Measurement Diagram 2 (Cutting Tool, Cutting Item, and Assembly Item – ISO 13399)</td>
<td>61</td>
</tr>
<tr>
<td>29</td>
<td>Cutting Tool Measurement Diagram 3 (Cutting Item – ISO 13399)</td>
<td>61</td>
</tr>
<tr>
<td>30</td>
<td>Cutting Tool Measurement Diagram 4 (Cutting Item – ISO 13399)</td>
<td>62</td>
</tr>
<tr>
<td>31</td>
<td>Cutting Tool Measurement Diagram 5 (Cutting Item – ISO 13399)</td>
<td>62</td>
</tr>
<tr>
<td>32</td>
<td>Cutting Tool Measurement Diagram 6 (Cutting Item – ISO 13399)</td>
<td>63</td>
</tr>
<tr>
<td>33</td>
<td>Shell Mill Side View</td>
<td>64</td>
</tr>
<tr>
<td>34</td>
<td>Indexable Insert Measurements</td>
<td>64</td>
</tr>
<tr>
<td>35</td>
<td>Step Mill Side View</td>
<td>67</td>
</tr>
<tr>
<td>36</td>
<td>Shell Mill with Explicate Loci</td>
<td>69</td>
</tr>
<tr>
<td>37</td>
<td>Step Drill with Explicate Loci</td>
<td>71</td>
</tr>
<tr>
<td>38</td>
<td>Shell Mill with Different Inserts on First Row</td>
<td>73</td>
</tr>
</tbody>
</table>
List of Tables

Table 1: Attributes for CuttingTool and CuttingToolArchetype .. 11
Table 2: Common Elements for CuttingTool and CuttingToolArchetype .. 13
Table 3: Elements for CuttingToolArchetype ... 18
Table 4: Attributes for CuttingToolDefinition ... 19
Table 5: Values for format attribute of CuttingToolDefinition ... 20
Table 6: Elements for CuttingTool .. 21
Table 7: Elements for CutterStatus .. 23
Table 8: Values for Status Element of CutterStatus ... 23
Table 9: Attributes for ToolLife .. 26
Table 10: Values for type of ToolLife ... 27
Table 11: Values for countDirection ... 27
Table 12: Attributes for Location .. 28
Table 13: Values for type of Location ... 28
Table 14: Attributes for ReconditionCount ... 29
Table 15: Attributes for CuttingToolArchetypeReference ... 30
Table 16: Elements for CuttingToolLifeCycle .. 33
Table 17: Attributes for ProcessSpindleSpeed ... 35
Table 18: Attributes for ProcessFeedRate ... 36
Table 19: Attributes for Measurement .. 39
Table 20: Measurement Subtypes for CuttingTool .. 41
Table 21: Attributes for CuttingItems .. 45
Table 22: Attributes for CuttingItem ... 47
Table 23: Elements for CuttingItem ... 48
Table 24: Attributes for ItemLife ... 50
Table 25: Values for type of ItemLife ... 51
Table 26: Values for countDirection ... 51
Table 27: Measurement Subtypes for CuttingItem ... 53
1 Purpose of This Document

This document, *MTConnect Standard: Part 4.1 - Cutting Tools* of the MTConnect Standard, establishes the rules and terminology to be used by designers to describe the function and operation of cutting tools used within manufacturing and to define the data that is provided by an `Agent` from a piece of equipment. This part of the Standard also defines the structure for the XML document that is returned from an `Agent` in response to a `probe` request.

The data associated with these cutting tools will be retrieved from multiple sources that are responsible for providing their knowledge of an *MTConnect Asset*.
2 Terminology and Conventions

Refer to Section 2 of *MTConnect Standard Part 1.0 - Overview and Fundamentals* for a dictionary of terms, reserved language, and document conventions used in the MTConnect Standard.

2.1 Glossary

CDATA

General meaning:

An abbreviation for Character Data.

CDATA is used to describe a value (text or data) published as part of an XML element.

For example, "This is some text" is the CDATA in the XML element:

```
<Message ...>This is some text</Message>
```

Appears in the documents in the following form: CDATA

NMTOKEN

The data type for XML identifiers.

Note: The identifier must start with a letter, an underscore "_" or a colon. The next character must be a letter, a number, or one of the following ".", ",", ",", ":". The identifier must not have any spaces or special characters.

Appears in the documents in the following form: NMTOKEN

XML

Stands for eXtensible Markup Language.

XML defines a set of rules for encoding documents that both a human-readable and machine-readable.

XML is the language used for all code examples in the MTConnect Standard.

Refer to http://www.w3.org/XML for more information about XML.

Agent

Refers to an MTConnect Agent.

Software that collects data published from one or more piece(s) of equipment, organizes that data in a structured manner, and responds to requests for data from client
software systems by providing a structured response in the form of a **Response Document** that is constructed using the **semantic data models** defined in the Standard.

Appears in the documents in the following form: **Agent**

Asset

General meaning:

Typically referred to as an **MTConnect Asset**.

An **MTConnect Asset** is something that is used in the manufacturing process, but is not permanently associated with a single piece of equipment, can be removed from the piece of equipment without compromising its function, and can be associated with other pieces of equipment during its lifecycle.

- Used to identify a storage area in an **Agent**

See description of **buffer**

- Used as an **Information Model**

Used to describe an **Information Model** that contains the rules and terminology that describe information that may be included in electronic documents representing **MTConnect Assets**.

The **Asset Information Models** defines the structure for the **Assets Response Document**.

Individual **Information Models** describe the structure of the **Asset Documents** represent each type of **MTConnect Asset**. Appears in the documents in the following form: **Asset Information Models** or (asset type) **Information Model**

- Used when referring to an **MTConnect Asset**:

Refers to the information related to an **MTConnect Asset** or a group of **MTConnect Assets**.

Appears in the documents related to an **MTConnect Asset** or a group of **MTConnect Assets**.

- Used as an XML container or element:

 - When used as an XML container that consists of one or more types of **Asset** XML elements.

 Appears in the documents in the following form: **Assets**.

 - When used as an abstract XML element. It is replaced in the XML document by types of **Asset** elements representing individual **Asset** entities.

 Appears in the documents in the following form: **Asset**.

- Used to describe information stored in an **Agent**;

 Identifies an electronic document published by a data source and stored in the **assets buffer** of an **Agent**.
Appears in the documents in the following form: Asset Document.

Used as an XML representation of an MTConnect Response Document:

Identifies an electronic document encoded in XML and published by an Agent in response to a Request for information from a client software application relating to MTConnect Assets.

Appears in the documents in the following form: MTConnectAssets.

Used as an MTConnect Request:

Represents a specific type of communications request between a client software application and an Agent regarding MTConnect Assets.

Appears in the documents in the following form: Asset Request.

Used as part of an HTTP Request:

Used in the path portion of an HTTP Request Line, by a client software application, to initiate an Asset Request to an Agent to publish an MTConnectAssets document.

Appears in the documents in the following form: asset.

Asset Document

An electronic document published by an Agent in response to a Request for information from a client software application relating to Assets.

Attribute

A term that is used to provide additional information or properties for an element.

Appears in the documents in the following form: attribute.

buffer

General meaning:

A section of an Agent that provides storage for information published from pieces of equipment.

Used relative to Streaming Data:

A section of an Agent that provides storage for information relating to individual pieces of Streaming Data.

Appears in the documents in the following form: buffer.

Used relative to MTConnect Assets:

A section of an Agent that provides storage for Asset Documents.

Appears in the documents in the following form: assets buffer.
Data Entity

A primary data modeling element that represents all elements that either describe data items that may be reported by an Agent or the data items that contain the actual data published by an Agent.

Appears in the documents in the following form: **Data Entity**

Document

General meaning:

A piece of written, printed, or electronic matter that provides information.

Used to represent an **MTConnect Document**

Refers to printed or electronic document(s) that represent a Part(s) of the MTConnect Standard.

Appears in the documents in the following form: **MTConnect Document**

Used to represent a specific representation of an **MTConnect Document**

Refers to electronic document(s) associated with an Agent that are encoded using XML; **Response Documents** or **Asset Documents**

Appears in the documents in the following form: **MTConnect XML Document**

Used to describe types of information stored in an Agent

In an implementation, the electronic documents that are published from a data source and stored by an Agent

Appears in the documents in the following form: **Asset Document**

Used to describe information published by an Agent

A document published by an Agent based upon one of the **semantic data models** defined in the MTConnect Standard in response to a request from a client.

Appears in the documents in the following form: **Response Document**

Equipment Metadata

See **Metadata**

HTTP Request

In the MTConnect Standard, a communications command issued by a client software application to an Agent requesting information defined in the **HTTP Request** Line.

Appears in the documents in the following form: **HTTP Request**
HTTP Request Line

In the MTConnect Standard, the first line of an HTTP Request describing a specific Response Document to be published by an Agent.

Appears in the documents in the following form: HTTP Request Line.

Information Model

The rules, relationships, and terminology that are used to define how information is structured.

For example, an information model is used to define the structure for each MTConnect Response Document; the definition of each piece of information within those documents and the relationship between pieces of information.

Appears in the documents in the following form: Information Model.

MTConnect Document

See Document.

MTConnect Request

A communication request for information issued from a client software application to an Agent.

Appears in the documents in the following form: MTConnect Request.

MTConnect XML Document

See Document.

Request

A communications method where a client software application transmits a message to an Agent. That message instructs the Agent to respond with specific information.

Appears in the documents in the following form: Request.

Response Document

See Document.

semantic data model

A methodology for defining the structure and meaning for data in a specific logical way.

It provides the rules for encoding electronic information such that it can be interpreted by a software system.

Appears in the documents in the following form: semantic data model.
Streaming Data

The values published by a piece of equipment for the Data Entities defined by the Equipment Metadata. Appears in the documents in the following form: Streaming Data.

Valid Data Value

One or more acceptable values or constrained values that can be reported for a Data Entity. Appears in the documents in the following form: Valid Data Value(s).

XML Schema

In the MTConnect Standard, an instantiation of a schema defining a specific document encoded in XML.

2.2 Acronyms

AMT

The Association for Manufacturing Technology

2.3 MTConnect References

3 Cutting Tool and Cutting Tool Archetype

There are two Information Models used to represent a cutting tool, CuttingToolArchetype and CuttingTool. The CuttingToolArchetype represent the static cutting tool geometries and nominal values as one would expect from a tool catalog and the CuttingTool represents the use or application of the tool on the shop floor with actual measured values and process data. In Version 1.3.0 of the MTConnect Standard it was decided to separate out these two concerns since not all pieces of equipment will have access to both sets of information. In this way, a generic definition of the cutting tool can coexist with a specific assembly Information Model with minimal redundancy of data.

3.1 XML Schema Structure for CuttingTool and CuttingToolArchetype

The Figure shows the XML schema that applies to both the CuttingTool Information Model and the CuttingToolArchetype Information Model.
Figure 1: Cutting Tool Schema
Note: The use of the XML element CuttingToolDefinition has been DEPRECATED in the CuttingTool schema, but remains in the CuttingToolArchetype schema.

The following sections contain the definitions of CuttingTool and CuttingToolArchetype and describe their unique components. The following are the common entities for both elements.

3.2 Common Attributes for CuttingTool and CuttingToolArchetype

Table 1: Attributes for CuttingTool and CuttingToolArchetype

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp</td>
<td>The time this MTConnect Asset was last modified. Always given in UTC. The timestamp MUST be provided in UTC (Universal Time Coordinate, also known as GMT). This is the time the Asset data was last modified. timestamp is a required attribute.</td>
<td>1</td>
</tr>
<tr>
<td>assetId</td>
<td>The unique identifier of the instance of this tool. This will be the same as the toolId and serialNumber in most cases. The assetId SHOULD be the combination of the toolId and serialNumber as in toolId. serialNumber or an equivalent implementation dependent identification scheme. assetId is a required attribute. assetId is a permanent identifier that will be associated with an MTConnect Asset for its entire life.</td>
<td>1</td>
</tr>
<tr>
<td>serialNumber</td>
<td>The unique identifier for this assembly. This is defined as an XML string type and is implementation dependent. serialNumber is a required attribute.</td>
<td>1</td>
</tr>
</tbody>
</table>
Continuation of Table 1

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>toolId</td>
<td>The identifier for a class of Cutting Tools. This is defined as an XML string type and is implementation dependent. toolId is a required attribute.</td>
<td>1</td>
</tr>
<tr>
<td>deviceUuid</td>
<td>The piece of equipments UUID that supplied this data. This is an optional element references to the UUID attribute given in the Device element. This can be any series of numbers and letters as defined by the XML type NMTOKEN.</td>
<td>1</td>
</tr>
<tr>
<td>manufacturers</td>
<td>An optional attribute referring to the manufacturer(s) of this Cutting Tool, for this element, this will reference the Tool Item and Adaptive Items specifically. The Cutting Items manufacturers’ will be an attribute of the CuttingItem elements. The representation will be a comma (,) delimited list of manufacturer names. This can be any series of numbers and letters as defined by the XML type string.</td>
<td>0..1</td>
</tr>
<tr>
<td>removed</td>
<td>This is an indicator that the Cutting Tool has been removed from the piece of equipment. removed is a required attribute. If the MTConnect Asset is marked as removed, it will not be visible to the client application unless the includeRemoved=true parameter is provided in the URL. If this attribute is not present it MUST be assumed to be false. The value is an xsi:boolean type and MUST be true or false.</td>
<td>0..1</td>
</tr>
</tbody>
</table>
3.3 Common Elements for CuttingTool and CuttingToolArchetype

Table 2: Common Elements for CuttingTool and CuttingToolArchetype

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>An element that can contain any descriptive content. This can contain configuration information and manufacturer specific details. This element is defined to contain mixed content and XML elements can be added to extend the descriptive semantics of MTConnect Standard.</td>
<td>0..1</td>
</tr>
</tbody>
</table>

3.3.1 Description Element for CuttingTool and CuttingToolArchetype

Description MAY contain mixed content, meaning that an additional XML element or plain text may be provided as part of the content of the description tag. Currently Description contains no attributes.
4 CuttingToolArchetype Information Model

The CuttingToolArchetype Information Model will have the identical structure as the CuttingTool Information Model illustrated in Figure 1, except for a few entities. The CuttingTool will no longer carry the CuttingToolDefinition, this MUST only appear in the CuttingToolArchetype. The CuttingToolArchetype MUST NOT have measured values and MUST NOT have any of the following items: Cutter-Status, ToolLife values, Location, or a ReconditionCount.

MTConnect Standard will adopt the ISO 13399 structure when formulating the vocabulary for Cutting Tool geometries and structure to be represented in the CuttingToolArchetype. The nominal values provided in the CuttingToolLifeCycle section are only concerned with two aspects of the Cutting Tool, the Cutting Tool and the Cutting Item. The Tool Item, Adaptive Item, and Assembly Item will only be covered in the CuttingToolDefinition section of this document since this section contains the full ISO 13399 information about a Cutting Tool.

Figure 2: Cutting Tool Parts

The Figure 2 illustrates the parts of a Cutting Tool. The Cutting Tool is the aggregate of all the components and the Cutting Item is the part of the tool that removes the material from the workpiece. These are the primary focus of the MTConnect Standard.
Figure 3: Cutting Tool Composition

Figure 3 provides another view of the composition of a Cutting Tool. The Adaptive Items and Tool Items will be used for measurements, but will not be modeled as separate entities. When we are referencing the Cutting Tool we are referring to the entirety of the assembly and when we provide data regarding the Cutting Item we are referencing each individual item as illustrated on the left of the previous diagram.

Figure 4 and *Figure 5* further illustrates the components of the Cutting Tool. As we compose the Tool Item, Cutting Item, Adaptive Item, we get a Cutting Tool. The Tool Item, Adaptive Item, and Assembly Item will only be in the `CuttingToolDefinition` section that will contain the full ISO 13399 information.
Figure 4: Cutting Tool, Tool Item, and Cutting Item

Figure 5: Cutting Tool, Tool Item, and Cutting Item 2
Figure 4 and Figure 5 use the ISO 13399 codes for each of the measurements. These codes will be translated into the MTConnect Standard vocabulary as illustrated below. The measurements will have a maximum, minimum, and nominal value representing the tolerance of allowable values for this dimension. See below for a full discussion.

![Figure 6: Cutting Tool Measurements](Image)

The MTConnect Standard will not define the entire geometry of the Cutting Tool, but will provide the information necessary to use the tool in the manufacturing process. Additional information can be added to the definition of the Cutting Tool by means of schema extensions.

Additional diagrams will reference these dimensions by their codes that will be defined in the measurement tables. The codes are consistent with the codes used in ISO 13399 and have been standardized. MTConnect Standard will use the full text name for clarity in the XML document.

![Figure 7: Cutting Tool Asset Structure](Image)

The structure of the MTConnectAssets header is defined in MTConnect Standard Part 1.0 - Overview and Fundamentals of the Standard. A finite number of MTConnect Assets will be stored in the Agent. This finite number is implementation specific and will depend on memory and storage constraints. The standard will not prescribe the number or capacity requirements for an implementation.
4.1 Attributes for CuttingToolArchetype

Refer to Section 3.2 - Common Attributes for CuttingTool and CuttingToolArchetype for a full description of the attributes for CuttingToolArchetype Information Model.

4.2 Elements for CuttingToolArchetype

The elements associated with CuttingToolArchetype are given in Table 3. Each element will be described in more detail below and any possible values will be presented with full definitions. The elements MUST be provided in the following order as prescribed by XML. At least one of CuttingToolDefinition or CuttingToolLifeCycle MUST be supplied.

Table 3: Elements for CuttingToolArchetype

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>An element that can contain any descriptive content. This can contain configuration information and manufacturer specific details. This element is defined to contain mixed content and XML elements can be added to extend the descriptive semantics of MTConnect Standard.</td>
<td>0..1</td>
</tr>
<tr>
<td>CuttingToolDefinition</td>
<td>Reference to an ISO 13399.</td>
<td>0..1</td>
</tr>
<tr>
<td>CuttingToolLifeCycle</td>
<td>Data regarding the use of this tool. The archetype will only contain nominal values.</td>
<td>0..1</td>
</tr>
</tbody>
</table>
4.2.1 CuttingToolDefinition Element for CuttingToolArchetype

Figure 8: CuttingToolDefinition Schema

The CuttingToolDefinition contains the detailed structure of the Cutting Tool. The information contained in this element will be static during its lifecycle. Currently we are referring to the external ISO 13399 standard to provide the complete definition and composition of the Cutting Tool as defined in Section 6.1 - CuttingToolLifeCycle.

4.2.1.1 Attributes for CuttingToolDefinition

Table 4: Attributes for CuttingToolDefinition

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>format</td>
<td>Identifies the expected representation of the enclosed data. format is an optional attribute. Valid values of format are - XML, EXPRESS, TEXT, or UNDEFINED. If format is not specified, the assumed format is XML.</td>
<td>0..1</td>
</tr>
</tbody>
</table>

4.2.1.1.1 format Attribute for CuttingToolDefinition

The format attribute describes the expected representation of the enclosed data. If no value is given, the assumed format will be XML.
Table 5: Values for format attribute of CuttingToolDefinition

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XML</td>
<td>The default value for the definition. The content will be an XML document.</td>
</tr>
<tr>
<td>EXPRESS</td>
<td>The document will confirm to the ISO 10303 Part 21 standard.</td>
</tr>
<tr>
<td>TEXT</td>
<td>The document will be a text representation of the tool data.</td>
</tr>
<tr>
<td>UNDEFINED</td>
<td>The document will be provided in an undefined format.</td>
</tr>
</tbody>
</table>

4.2.1.2 Elements for CuttingToolDefinition

The only acceptable Cutting Tool definition at present is defined by the ISO 13399 standard. Additional formats **MAY** be considered in the future.

4.2.1.3 ISO13399 Standard

The ISO 13399 data **MUST** be presented in either XML (ISO 10303-28) or EXPRESS format (ISO 10303-21). An XML schema will be preferred as this will allow for easier integration with the MTConnect Standard XML tools. EXPRESS will also be supported, but software tools will need to be provided or made available for handling this data representation.

There will be the root element of the ISO13399 document when XML is used. When EXPRESS is used the XML element will be replaced by the text representation.

4.2.2 CuttingToolLifeCycle Element for CuttingToolArchetype

5 CuttingTool Information model

The CuttingTool Information Model illustrated in Figure 7 has the identical structure as the CuttingToolArchetype Information Model except for the XML element CuttingToolDefinition that has been DEPRECATED in the Cutting-Tool schema.

5.1 Attributes for CuttingTool

Refer to Section 3.2 - Common Attributes for CuttingTool and CuttingToolArchetype for a full description of the Attributes for CuttingTool Information Model.

5.2 Elements for CuttingTool

The elements associated with CuttingTool are given below. The elements MUST be provided in the order shown in Table 6 as prescribed by XML.

Table 6: Elements for CuttingTool

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>An element that can contain any descriptive content. This can contain configuration information and manufacturer specific details. This element is defined to contain mixed content and XML elements can be added to extend the descriptive semantics of MTConnect Standard.</td>
<td>0..1</td>
</tr>
<tr>
<td>CuttingToolDefinition</td>
<td>DEPRECATED for CuttingTool in Version 1.3.0. Reference to an ISO-13399.</td>
<td>0..1</td>
</tr>
</tbody>
</table>
Continuation of Table 6

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuttingToolLifeCycle</td>
<td>Data regarding the use of this tool.</td>
<td>0..1</td>
</tr>
<tr>
<td>CuttingToolArchetypeReference</td>
<td>The content of this XML element is the assetId of the Cutting-ToolArchetype document. It MAY also contain a source attribute that gives the URL of the archetype data as well.</td>
<td>0..1</td>
</tr>
</tbody>
</table>

5.2.1 CuttingToolLifeCycle Elements for CuttingTool Only

The following CuttingToolLifeCycle elements are used only in the Cutting-Tool Information Model and are not part of the CuttingToolArchetype Information Model. Refer to Section 6 - Common Entity CuttingToolLifeCycle for a complete description of the remaining elements for CuttingToolLifeCycle that are common in both Information Models. Refer also to the CuttingToolLifeCycle schema illustrated in Figure 14.

5.2.1.1 CutterStatus Element for CuttingToolLifeCycle

The elements of the CutterStatus element can be a combined set of Status elements. The MTConnect Standard allows any set of statuses to be combined, but only certain combinations make sense. A CuttingTool SHOULD not be both NEW and
USED at the same time. There are no rules in the schema to enforce this, but this is left to
the implementer. The following combinations MUST NOT occur:

- NEW MUST NOT be used with USED, RECONDITIONED, or EXPIRED.
- UNKNOWN MUST NOT be used with any other status.
- ALLOCATED and UNALLOCATED MUST NOT be used together.
- AVAILABLE and UNAVAILABLE MUST NOT be used together.
- If the tool is EXPIRED, BROKEN, or NOT_REGISTERED it MUST NOT be AVAILABLE.
- All other combinations are allowed.

Table 7: Elements for CutterStatus

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>The status of the Cutting Tool. There can be multiple Status elements.</td>
<td>1..*</td>
</tr>
</tbody>
</table>

5.2.1.1 Status Element for CutterStatus

One of the values for the status of the Cutting Tool.

Table 8: Values for Status Element of CutterStatus

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW</td>
<td>A new tool that has not been used or first use. Marks the start of the tool history.</td>
</tr>
<tr>
<td>AVAILABLE</td>
<td>Indicates the tool is available for use. If this is not present, the tool is currently not ready to be used.</td>
</tr>
<tr>
<td>UNAVAILABLE</td>
<td>Indicates the tool is unavailable for use in metal removal. If this is not present, the tool is currently not ready to be used.</td>
</tr>
</tbody>
</table>
Continuing Table 8

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLOCATED</td>
<td>Indicates if this tool is has been committed to a piece of equipment for use and is not available for use in any other piece of equipment. If this is not present, this tool has not been allocated for this piece of equipment and can be used by another piece of equipment.</td>
</tr>
<tr>
<td>UNALLOCATED</td>
<td>Indicates this Cutting Tool has not been committed to a process and can be allocated.</td>
</tr>
<tr>
<td>MEASURED</td>
<td>The tool has been measured.</td>
</tr>
<tr>
<td>RECONDITIONED</td>
<td>The Cutting Tool has been reconditioned. See ReconditionCount for the number of times this cutter has been reconditioned.</td>
</tr>
<tr>
<td>USED</td>
<td>The Cutting Tool is in process and has remaining tool life.</td>
</tr>
<tr>
<td>EXPIRED</td>
<td>The Cutting Tool has reached the end of its useful life.</td>
</tr>
<tr>
<td>BROKEN</td>
<td>Premature tool failure.</td>
</tr>
<tr>
<td>NOT_REGISTERED</td>
<td>This Cutting Tool cannot be used until it is entered into the system.</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>The Cutting Tool is an indeterminate state. This is the default value.</td>
</tr>
</tbody>
</table>
5.2.1.2 ToolLife Element for CuttingToolLifeCycle

The value is the current value for the ToolLife. The value **MUST** be a number. ToolLife is an option element which can have three types, either minutes for time based, part count for parts based, or wear based using a distance measure. One ToolLife element can appear for each type, but there cannot be two entries of the same type. Additional types can be added in the future.

Figure 10: ToolLife Schema
5.2.1.2.1 Attributes for ToolLife

ToolLife has the following attributes that can be used to indicate the behavior of the tool life management mechanism.

Table 9: Attributes for ToolLife

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>The type of tool life being accumulated. MINUTES, PART_COUNT, or WEAR.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>type is a required attribute.</td>
<td></td>
</tr>
<tr>
<td>countDirection</td>
<td>Indicates if the tool life counts from zero to maximum or maximum to zero.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>The value MUST be one of UP or DOWN.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>countDirection is a required attribute.</td>
<td></td>
</tr>
<tr>
<td>warning</td>
<td>The point at which a tool life warning will be raised.</td>
<td>0..1</td>
</tr>
<tr>
<td></td>
<td>warning is an optional attribute.</td>
<td></td>
</tr>
<tr>
<td>limit</td>
<td>The end of life limit for this tool. If the countDirection is DOWN, the</td>
<td>0..1</td>
</tr>
<tr>
<td></td>
<td>point at which this tool should be expired, usually zero.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the countDirection is UP, this is the upper limit for which this tool</td>
<td></td>
</tr>
<tr>
<td></td>
<td>should be expired.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>limit is an optional attribute.</td>
<td></td>
</tr>
<tr>
<td>initial</td>
<td>The initial life of the tool when it is new.</td>
<td>0..1</td>
</tr>
<tr>
<td></td>
<td>initial is an optional attribute.</td>
<td></td>
</tr>
</tbody>
</table>

5.2.1.2.2 type Attribute for ToolLife

The value of type must be one of the following:
Table 10: Values for type of ToolLife

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINUTES</td>
<td>The tool life measured in minutes. All units for minimum, maximum, and nominal MUST be provided in minutes.</td>
</tr>
<tr>
<td>PART_COUNT</td>
<td>The tool life measured in parts. All units for minimum, maximum, and nominal MUST be provided as the number of parts.</td>
</tr>
<tr>
<td>WEAR</td>
<td>The tool life measured in tool wear. Wear MUST be provided in millimeters as an offset to nominal. All units for minimum, maximum, and nominal MUST be given as millimeter offsets as well. The standard will only consider dimensional wear at this time.</td>
</tr>
</tbody>
</table>

5.2.1.2.3 countDirection Attribute for ToolLife

The value of **countDirection** must be one of the following:

Table 11: Values for countDirection

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP</td>
<td>The tool life counts up from zero to the maximum.</td>
</tr>
<tr>
<td>DOWN</td>
<td>The tool life counts down from the maximum to zero.</td>
</tr>
</tbody>
</table>

5.2.1.3 Location Element for CuttingToolLifeCycle

Figure 11: Location Schema

Location element identifies the specific location where a tool resides in a piece of equip-
ment tool storage or in a tool crib. This can be any series of numbers and letters as defined by the XML type NMTOKEN. When a POT or STATION type is used, the value MUST be a numeric value. If a negativeOverlap or the positiveOverlap is provided, the tool reserves additional locations on either side, otherwise if they are not given, no additional locations are required for this tool. If the pot occupies the first or last location, a rollover to the beginning or the end of the index-able values may occur. For example, if there are 64 pots and the tool is in pot 64 with a positiveOverlap of 1, the first pot MAY be occupied as well.

5.2.1.3.1 Attributes for Location

Table 12: Attributes for Location

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>The type of location being identified.</td>
<td>1</td>
</tr>
<tr>
<td>type</td>
<td>type MUST be one of POT, STATION, or CRIB.</td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>type is a required attribute.</td>
<td></td>
</tr>
<tr>
<td>positiveOverlap</td>
<td>The number of locations at higher index value from this location.</td>
<td>0..1</td>
</tr>
<tr>
<td>positiveOverlap</td>
<td>positiveOverlap is a optional attribute.</td>
<td></td>
</tr>
<tr>
<td>negativeOverlap</td>
<td>The number of location at lower index values from this location.</td>
<td>0..1</td>
</tr>
<tr>
<td>negativeOverlap</td>
<td>negativeOverlap is an optional attribute.</td>
<td></td>
</tr>
</tbody>
</table>

5.2.1.3.2 type Attribute for Location

The type of location being identified.

Table 13: Values for type of Location

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POT</td>
<td>The number of the pot in the tool handling system.</td>
</tr>
<tr>
<td>STATION</td>
<td>The tool location in a horizontal turning machine.</td>
</tr>
<tr>
<td>CRIB</td>
<td>The location with regard to a tool crib.</td>
</tr>
</tbody>
</table>
5.2.1.3 postiveOverlap Attribute for Location

The number of locations at higher index values that the CuttingTool occupies due to interference. The value MUST be an integer. If not provided it is assumed to be 0.

5.2.1.4 negativeOverlap Attribute for Location

The number of locations at lower index values that the CuttingTool occupies due to interference. The value MUST be an integer. If not provided it is not assumed to be 0.

The tool number assigned in the part program and is used for cross referencing this tool information with the process parameters. The value MUST be an integer.

5.2.1.4 ReconditionCount Element for CuttingToolLifeCycle

![ReconditionCount Schema](image)

Figure 12: ReconditionCount Schema

This element MUST contain an integer value as the CDATA that represents the number of times the cutter has been reconditioned.

5.2.1.4.1 Attributes for ReconditionCount

Table 14: Attributes for ReconditionCount

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximumCount</td>
<td>The maximum number of times this tool may be reconditioned. maximumCount is a optional attribute.</td>
<td>0..1</td>
</tr>
</tbody>
</table>
5.2.2 CuttingToolArchetypeReference Element for Cutting Tool

This optional element references another MTConnect Asset document providing the static geometries and nominal values for all the measurements. This reduces the amount of data duplication as well as providing a mechanism for asset definitions to be provided before complete measurement has occurred.

5.2.2.1 source Attribute for CuttingToolArchetypeReference

Table 15: Attributes for CuttingToolArchetypeReference

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>The URL of the CuttingToolArchetype Information Model. This MUST be a fully qualified URL as in http://example.com/asset/A213155</td>
</tr>
<tr>
<td></td>
<td>0..1</td>
</tr>
</tbody>
</table>
6 Common Entity CuttingToolLifeCycle

6.1 CuttingToolLifeCycle

The life cycle refers to the data pertaining to the application or the use of the tool. This data is provided by various pieces of equipment (i.e. machine tool, presetter) and statistical process control applications. Life cycle data will not remain static, but will change periodically when a tool is used or measured. The life cycle has three conceptual parts; CuttingTool and CuttingItem identity, properties, and measurements. A measurement is defined as a constrained value that is reported in defined units and as a W3C floating point format.

The CuttingToolLifeCycle contains data for the entire tool assembly. The specific CuttingItems that are part of the CuttingToolLifeCycle are contained in the CuttingItems element. Each Cutting Item has similar properties as the assembly; identity, properties, and Measurements.

The units for all Measurements have been predefined in the MTConnect Standard and will be consistent with MTConnect Standard: Part 2.0 - Devices Information Model and MTConnect Standard: Part 3.0 - Streams Information Model. This means that all lengths and distances will be given in millimeters and all angular measures will be given in degrees. Quantities like ProcessSpindleSpeed will be given in RPM, the same as the ROTARY_VELOCITY in MTConnect Standard: Part 3.0 - Streams Information Model.

6.1.1 XML Schema Structure for CuttingToolLifeCycle

The CuttingToolLifeCycle schema shown in Figure [4] is used in both the CuttingToolArchetype and CuttingTool Information Models. The only difference is that the elements CutterStatus, ToolLife, Location, and ReconditionCount are used only in the CuttingTool Information Model.
Figure 14: CuttingToolLifeCycle Schema
6.2 Elements for CuttingToolLifeCycle

The elements associated with this Cutting Tool are given in Table 16. The elements **MUST** be provided in the following order as prescribed by XML.

Table 16: Elements for CuttingToolLifeCycle

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CutterStatus</td>
<td>The status of this assembly. CutterStatus can be one of the following values: NEW, AVAILABLE, UNAVAILBLE, ALLOCATED, UNALLOCATED, MEASURED, RECONDITIONED, NOT_REGISTERED, USED, EXPIRED, BROKEN, or UNKNOWN. MUST only be used in the CuttingTool Information Model</td>
<td>1</td>
</tr>
<tr>
<td>ReconditionCount</td>
<td>The number of times this cutter has been reconditioned. MUST only be used in the CuttingTool Information Model</td>
<td>0..1</td>
</tr>
<tr>
<td>ToolLife</td>
<td>The Cutting Tool life as related to this assembly. MUST only be used in the CuttingTool Information Model</td>
<td>0..1</td>
</tr>
<tr>
<td>Location</td>
<td>The Pot or Spindle this tool currently resides in. MUST only be used in the CuttingTool Information Model</td>
<td>0..1</td>
</tr>
</tbody>
</table>
Element Description Occurrence

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProgramToolGroup</td>
<td>The tool group this tool is assigned in the part program.</td>
<td>0..1</td>
</tr>
<tr>
<td>ProgramToolNumber</td>
<td>The number of the tool as referenced in the part program.</td>
<td>0..1</td>
</tr>
<tr>
<td>ProcessSpindleSpeed</td>
<td>The constrained process spindle speed for this tool.</td>
<td>0..1</td>
</tr>
<tr>
<td>ProcessFeedRate</td>
<td>The constrained process feed rate for this tool in mm/s.</td>
<td>0..1</td>
</tr>
<tr>
<td>ConnectionCodeMachineSide</td>
<td>Identifier for the capability to connect any component of the Cutting Tool together, except Assembly Items, on the machine side. Code: CCMS</td>
<td>0..1</td>
</tr>
<tr>
<td>Measurements</td>
<td>A collection of measurements for the tool assembly.</td>
<td>0..1</td>
</tr>
<tr>
<td>CuttingItems</td>
<td>An optional set of individual Cutting Items.</td>
<td>0..1</td>
</tr>
<tr>
<td>xs:any</td>
<td>Any additional properties not in the current document model. MUST be in separate XML namespace.</td>
<td>0..n</td>
</tr>
</tbody>
</table>

6.2.1 ProgramToolGroup Element for CuttingToolLifeCycle

The optional identifier for the group of Cutting Tools when multiple tools can be used interchangeably. This is defined as an XML string type and is implementation dependent.

6.2.2 ProgramToolNumber Element for CuttingToolLifeCycle

The tool number assigned in the part program and is used for cross referencing this tool information with the process parameters. The value MUST be an integer.
6.2.3 ProcessSpindleSpeed Element for CuttingToolLifeCycle

The ProcessSpindleSpeed MUST be specified in revolutions/minute (RPM). The CDATA MAY contain the nominal process target spindle speed if available. The maximum and minimum speeds MAY be provided as attributes. If ProcessSpindleSpeed is provided, at least one value of maximum, nominal, or minimum MUST be specified.

6.2.3.1 Attributes for ProcessSpindleSpeed

Table 17: Attributes for ProcessSpindleSpeed

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum</td>
<td>The upper bound for the tool’s target spindle speed. maximum is an optional attribute.</td>
<td>0..1</td>
</tr>
<tr>
<td>minimum</td>
<td>The lower bound for the tool’s spindle speed. minimum is a optional attribute.</td>
<td>0..1</td>
</tr>
<tr>
<td>nominal</td>
<td>The nominal speed the tool is designed to operate at. nominal is an optional attribute.</td>
<td>0..1</td>
</tr>
</tbody>
</table>
6.2.4 ProcessFeedRate Element for CuttingToolLifeCycle

The ProcessFeedRate MUST be specified in millimeters/second (mm/s). The CDATA MAY contain the nominal process target feed rate if available. The maximum and minimum rates MAY be provided as attributes. If ProcessFeedRate is provided, at least one value of maximum, nominal, or minimum MUST be specified.

6.2.4.1 Attributes for ProcessFeedRate

Table 18: Attributes for ProcessFeedRate

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum</td>
<td>The upper bound for the tool’s process target feedrate. maximum is an optional attribute.</td>
<td>0..1</td>
</tr>
<tr>
<td>minimum</td>
<td>The lower bound for the tools feedrate. minimum is a optional attribute.</td>
<td>0..1</td>
</tr>
<tr>
<td>nominal</td>
<td>The nominal feedrate the tool is designed to operate at. nominal is an optional attribute.</td>
<td>0..1</td>
</tr>
</tbody>
</table>
6.2.5 ConnectionCodeMachineSide Element for CuttingToolLifeCycle

This is an optional identifier for implementation specific connection component of the Cutting Tool on the machine side. Code: CCMS. TheCDATA MAY be any valid string according to the referenced connection code standards.

6.2.6 xs:any Element for CuttingToolLifeCycle

Utilizing the new capability inXML Schema Version 1.1, there are extension points where an additional element can be added to the document without being part of a substitution group. The new elements have the restriction that they MUST NOT be part of the MT-Connect namespace and MUST NOT be one of the predefined elements mentioned above.

This allows one to add additional properties to the CuttingTool without having to change the definition of the CuttingTool or modify the standard. The new capabilities were introduced in Version 1.3 of the MTConnect Standard and necessitate using Version 1.1 ofXML Schema to make use of this form of extensible properties.

6.2.7 Measurements Element for CuttingToolLifeCycle

The Measurements element is a collection of one or more constrained scalar values associated with this Cutting Tool. TheXML element MUST be a type extension of the base types CommonMeasurement or AssemblyMeasurement. The following section defines the abstract Measurement type used in both CuttingToolLifeCycle and CuttingItem. This subsequent sections describe the AssemblyMeasurement types followed by the CuttingItemMeasurement types.

A Measurement is specific to the tool management policy at a particular shop. The tool zero reference point or gauge line will be different depending on the particular implementation and will be assumed to be consistent within the shop. MTConnect Standard does not standardize the manufacturing process or the definition of the zero point.
6.2.8 Measurement

A Measurement **MUST** be a scalar floating-point value that **MAY** be constrained to a maximum and minimum value. Since the CuttingToolLifeCycle’s main responsibility is to track aspects of the tool that change over its use in the shop, **MTC** represents the current value of the Measurement **MUST** be in the CDATA (text between the start and end element) as the most current valid value.

The minimum and maximum **MAY** be supplied if they are known or relevant to the Measurement. A nominal value **MAY** be provided to show the reference value for this Measurement.

There are three abstract subtypes of Measurement: CommonMeasurement, AssemblyMeasurement, and CuttingItemMeasurement. These abstract types **MUST NOT** appear in an MTConnectAssets document, but are used in the schema as a way to separate which measurements **MAY** appear in the different sections of the document. Only subtypes that have extended these types **MAY** appear in the MTConnectAssets XML.

Measurements in the CuttingToolLifeCycle section **MUST** refer to the entire assembly and not to an individual CuttingItem. CuttingItem measurements **MUST** be located in the measurements associated with the individual CuttingItem.

Measurements **MAY** provide an optional units attribute to reinforce the given units. The units **MUST** always be given in the predefined MTConnect units. If units are
provided, they are only for documentation purposes. nativeUnits MAY optionally be provided to indicate the original units provided for the measurements.

6.2.8.1 Attributes for Measurement

Table 19: Attributes for Measurement

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>code</td>
<td>A shop specific code for this measurement. ISO 13399 codes MAY be used for these codes as well. code is a optional attribute.</td>
<td>0..1</td>
</tr>
<tr>
<td>maximum</td>
<td>The maximum value for this measurement. Exceeding this value would indicate the tool is not usable. maximum is a optional attribute.</td>
<td>0..1</td>
</tr>
<tr>
<td>minimum</td>
<td>The minimum value for this measurement. Exceeding this value would indicate the tool is not usable. minimum is a optional attribute.</td>
<td>0..1</td>
</tr>
<tr>
<td>nominal</td>
<td>The as advertised value for this measurement. nominal is a optional attribute.</td>
<td>0..1</td>
</tr>
<tr>
<td>significantDigits</td>
<td>The number of significant digits in the reported value. This is used by applications to determine accuracy of values. This MAY be specified for all numeric values. significantDigits is a optional attribute.</td>
<td>0..1</td>
</tr>
</tbody>
</table>
Continuation of Table 19

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>units</td>
<td>The units for the measurements. MTConnect Standard defines all the units for each measurement, so this is mainly for documentation sake. See MTConnect MTConnect Standard: Part 2.0 - Devices Information Model 7.2.2.5 for the full list of units. units is a optional attribute.</td>
<td>0..1</td>
</tr>
<tr>
<td>nativeUnits</td>
<td>The units the measurement was originally recorded in. This is only necessary if they differ from units. See MTConnect Standard: Part 2.0 - Devices Information Model Section 7.2.2.6 for the full list of units. nativeUnits is a optional attribute.</td>
<td>0..1</td>
</tr>
</tbody>
</table>

6.2.8.2 Measurement Subtypes for CuttingToolLifeCycle

These Measurements for CuttingTool are specific to the entire assembly and MUST NOT be used for the Measurement pertaining to a CuttingItem. Figure 18 and Figure 19 will be used to reference the assembly specific Measurements.

The Code in Table 20 will refer to the acronyms in the diagrams. We will be referring to many diagrams to disambiguate all measurements of the CuttingTool and CuttingItem.

Figure 18: Cutting Tool Measurement Diagram 1
Figure 19: Cutting Tool Measurement Diagram 2

Table 20: Measurement Subtypes for CuttingTool

<table>
<thead>
<tr>
<th>Measurement Subtype</th>
<th>Code</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BodyDiameterMax</td>
<td>BDX</td>
<td>The largest diameter of the body of a Tool Item.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>Measurement Subtype</td>
<td>Code</td>
<td>Description</td>
<td>Units</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>BodyLengthMax</td>
<td>LBX</td>
<td>The distance measured along the X axis from that point of the item closest to the workpiece, including the Cutting Item for a Tool Item but excluding a protruding locking mechanism for an Adaptive Item, to either the front of the flange on a flanged body or the beginning of the connection interface feature on the machine side for cylindrical or prismatic shanks.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>DepthOfCutMax</td>
<td>APMX</td>
<td>The maximum engagement of the cutting edge or edges with the workpiece measured perpendicular to the feed motion.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>CuttingDiameterMax</td>
<td>DC</td>
<td>The maximum diameter of a circle on which the defined point Pk of each of the master inserts is located on a Tool Item. The normal of the machined peripheral surface points towards the axis of the Cutting Tool.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>FlangeDiameterMax</td>
<td>DF</td>
<td>The dimension between two parallel tangents on the outside edge of a flange.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>OverallToolLength</td>
<td>OAL</td>
<td>The largest length dimension of the Cutting Tool including the master insert where applicable.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>Measurement Subtype</td>
<td>Code</td>
<td>Description</td>
<td>Units</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Shank Diameter</td>
<td>DMM</td>
<td>The dimension of the diameter of a cylindrical portion of a Tool Item or an Adaptive Item that can participate in a connection.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>Shank Height</td>
<td>H</td>
<td>The dimension of the height of the shank.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>Shank Length</td>
<td>LS</td>
<td>The dimension of the length of the shank.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>Usable Length Max</td>
<td>LUX</td>
<td>Maximum length of a Cutting Tool that can be used in a particular cutting operation including the non-cutting portions of the tool.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>Protruding Length</td>
<td>LPR</td>
<td>The dimension from the yz-plane to the furthest point of the Tool Item or Adaptive Item measured in the -X direction.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>Weight</td>
<td>WT</td>
<td>The total weight of the Cutting Tool in grams. The force exerted by the mass of the Cutting Tool.</td>
<td>GRAM</td>
</tr>
</tbody>
</table>
Continuation of Table 20

<table>
<thead>
<tr>
<th>Measurement Subtype</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FunctionalLength</td>
<td>LF</td>
<td>The distance from the gauge plane or from the end of the shank to the furthest point on the tool, if a gauge plane does not exist, to the cutting reference point determined by the main function of the tool. The CuttingTool functional length will be the length of the entire tool, not a single Cutting Item. Each CuttingItem can have an independent FunctionalLength represented in its measurements.</td>
</tr>
</tbody>
</table>

6.2.9 CuttingItems Element for CuttingToolLifeCycle

467 An optional collection of CuttingItems that SHOULD be provided for each independent edge or insert. If the CuttingItems are not present; it indicates there is no specific information with respect to each of the CuttingItems. This does not imply there are no CuttingItems – there MUST be at least one CuttingItem – but there is no specific information.

Figure 20: CuttingItems Schema
6.2.9.1 Attributes for CuttingItems

Table 21: Attributes for CuttingItems

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>The number of Cutting Item.</td>
<td>1</td>
</tr>
<tr>
<td>count</td>
<td>count is a required attribute.</td>
<td></td>
</tr>
</tbody>
</table>

6.2.10 CuttingItem

A CuttingItem is the portion of the tool that physically removes the material from the workpiece by shear deformation. The Cutting Item can be either a single piece of material attached to the CuttingItem or it can be one or more separate pieces of material attached to the CuttingItem using a permanent or removable attachment. A CuttingItem can be comprised of one or more cutting edges. CuttingItems include: replaceable inserts, brazed tips and the cutting portions of solid CuttingTools.

MTConnect Standard considers CuttingItems as part of the CuttingTool. A CuttingItems **MUST NOT** exist in MTConnect unless it is attached to a CuttingTool. Some of the measurements, such as FunctionalLength, **MUST** be made with reference to the entire CuttingTool to be meaningful.
Figure 21: CuttingItem Schema
6.2.10.1 Attributes for CuttingItem

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>indices</td>
<td>The number or numbers representing the individual Cutting Item or items on the tool. indices is a required attribute.</td>
<td>1</td>
</tr>
<tr>
<td>itemId</td>
<td>The manufacturer identifier of this Cutting Item. itemId is an optional attribute.</td>
<td>0..1</td>
</tr>
<tr>
<td>manufacturers</td>
<td>The manufacturers of the Cutting Item or Tool. manufacturers is an optional attribute.</td>
<td>0..1</td>
</tr>
<tr>
<td>grade</td>
<td>The material composition for this Cutting Item. grade is an optional attribute.</td>
<td>0..1</td>
</tr>
</tbody>
</table>

6.2.10.1.1 indices Attribute for CuttingItem

An identifier that indicates the CuttingItem or CuttingItems these data are associated with. The value MUST be a single number ("1") or a comma separated set of individual elements ("1,2,3,4"), or as a inclusive range of values as in ("1-10") or any combination of ranges and numbers as in "1-4,6-10,22". There MUST NOT be spaces or non-integer values in the text representation.

Indices SHOULD start numbering with the inserts or CuttingItem furthest from the gauge line and increasing in value as the items get closer to the gauge line. Items at the same distance MAY be arbitrarily numbered.

6.2.10.1.2 itemId Attribute for CuttingItem

The manufactures’ identifier for this CuttingItem that MAY be its catalog or reference number. The value MUST be an XML NMTOKEN value of numbers and letters.

6.2.10.1.3 manufacturers Attribute for CuttingItem

This optional element references the manufacturers of this tool. At this level the manufac-
turers will reference the CuttingItem specifically. The representation will be a comma (,) delimited list of manufacturer names. This can be any series of numbers and letters as defined by the XML type string.

6.2.10.1.4 grade Attribute for CuttingItem

This provides an implementation specific designation for the material composition of this CuttingItem.

6.2.10.2 Elements for CuttingItem

Table 23: Elements for CuttingItem

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>A free-form description of the Cutting Item.</td>
<td>0..1</td>
</tr>
<tr>
<td>Locus</td>
<td>A free form description of the location on the Cutting Tool.</td>
<td>0..1</td>
</tr>
<tr>
<td>ItemLife</td>
<td>The life of this Cutting Item.</td>
<td>0..3</td>
</tr>
<tr>
<td>Measurements</td>
<td>A collection of measurements relating to this Cutting Item.</td>
<td>0..1</td>
</tr>
</tbody>
</table>

6.2.10.2.1 Description Element for CuttingItem

An optional free form text description of this CuttingItem.

6.2.10.2.2 Locus Element for CuttingItem

Locus represents the location of the CuttingItem with respect to the Cutting Tool. For clarity, the words FLUTE, INSERT, and CARTRIDGE SHOULD be used to assist in noting the location of a CuttingItem. The Locus MAY be any free form text, but SHOULD adhere to the following rules:

- The location numbering SHOULD start at the furthest CuttingItem (#1) and work its way back to the Cutting Item closest to the gauge line.
- Flutes SHOULD be identified as such using the word FLUTE:. For example: FLUTE:
1, INSERT: 2 - would indicate the first flute and the second furthest insert from the
down of the tool on that flute.

- Other designations such as CARTRIDGE MAY be included, but should be identified
using upper case and followed by a colon (:).

6.2.10.2.3 ItemLife Element for CuttingItem

![ItemLife Schema](image)

Figure 22: ItemLife Schema

The value is the current value for the ToolLife. The value MUST be a number. Tool-
Life is an option element which can have three types, either minutes for time based, part
count for parts based, or wear based using a distance measure. One tool life can appear for
each type, but there cannot be two entries of the same type. Additional types can be added
in the future.
These is an optional attribute that can be used to further classify the operation type.

Table 24: Attributes for ItemLife

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
<th>Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>The type of tool life being accumulated. Valid Data Values: MINUTES, PART_COUNT, or WEAR. type is a required attribute.</td>
<td>1</td>
</tr>
<tr>
<td>countDirection</td>
<td>Indicates if the tool life counts from zero to maximum or maximum to zero. The value MUST be one of UP or DOWN. countDirection is a required attribute.</td>
<td>1</td>
</tr>
<tr>
<td>warning</td>
<td>The point at which a tool life warning will be raised. warning is an optional attribute.</td>
<td>0..1</td>
</tr>
<tr>
<td>limit</td>
<td>The end of life limit for this tool. If the countDirection is DOWN, the point at which this tool should be expired, usually zero. If the countDirection is UP, this is the upper limit for which this tool should be expired. limit is an optional attribute.</td>
<td>0..1</td>
</tr>
<tr>
<td>initial</td>
<td>The initial life of the tool when it is new. initial is an optional attribute.</td>
<td>0..1</td>
</tr>
</tbody>
</table>

6.2.10.2.5 type Attribute for ItemLife

The value of type must be one of the following:
Table 25: Values for type of ItemLife

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINUTES</td>
<td>The tool life measured in minutes. All units for minimum, maximum, and nominal MUST be provided in minutes.</td>
</tr>
<tr>
<td>PART_COUNT</td>
<td>The tool life measured in parts. All units for minimum, maximum, and nominal MUST be provided as the number of parts.</td>
</tr>
<tr>
<td>WEAR</td>
<td>The tool life measured in tool wear. Wear MUST be provided in millimeters as an offset to nominal. All units for minimum, maximum, and nominal MUST be given as millimeter offsets as well.</td>
</tr>
</tbody>
</table>

6.2.10.2.6 countDirection Attribute for ItemLife

The value of type must be one of the following:

Table 26: Values for countDirection

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP</td>
<td>The tool life counts up from zero to the maximum.</td>
</tr>
<tr>
<td>DOWN</td>
<td>The tool life counts down from the maximum to zero.</td>
</tr>
</tbody>
</table>

6.2.10.3 Measurement Subtypes for CuttingItem

These Measurements for CuttingItem are specific to an individual glscuttingitem and MUST NOT be used for the Measurements pertaining to an assembly. The Figure 23, Figure 24, Figure 25 and Figure 26 will be used to for reference for the CuttingItem specific Measurements.

The Code in Table 27 will refer to the acronym in the diagram. We will be referring to many diagrams to disambiguate all Measurements of the CuttingTools and CuttingItems. We will present a few here; please refer to Appendix B for additional reference material.
Figure 23: Cutting Tool

Figure 24: Cutting Item
The Cutting Item Measurements in Table 27 will refer the Figure 23, Figure 24, Figure 25 and Figure 26.

Table 27: Measurement Subtypes for Cutting Item

<table>
<thead>
<tr>
<th>Measurement Subtype</th>
<th>Code</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuttingReferencePoint</td>
<td>CRP</td>
<td>The theoretical sharp point of the Cutting Tool from which the major functional dimensions are taken.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>Measurement Subtype</td>
<td>Code</td>
<td>Description</td>
<td>Units</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>CuttingEdgeLength</td>
<td>L</td>
<td>The theoretical length of the cutting edge of a Cutting Item over sharp corners.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>DriveAngle</td>
<td>DRVA</td>
<td>Angle between the driving mechanism locator on a Tool Item and the main cutting edge.</td>
<td>DEGREE</td>
</tr>
<tr>
<td>FlangeDiameter</td>
<td>DF</td>
<td>The dimension between two parallel tangents on the outside edge of a flange.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>FunctionalWidth</td>
<td>WF</td>
<td>The distance between the cutting reference point and the rear backing surface of a turning tool or the axis of a boring bar.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>IncribedCircleDiameter</td>
<td>IC</td>
<td>The diameter of a circle to which all edges of an equilateral and round regular insert are tangential.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>PointAngle</td>
<td>SIG</td>
<td>The angle between the major cutting edge and the same cutting edge rotated by 180 degrees about the tool axis.</td>
<td>DEGREE</td>
</tr>
<tr>
<td>ToolCuttingEdgeAngle</td>
<td>KAPR</td>
<td>The angle between the tool cutting edge plane and the tool feed plane measured in a plane parallel the xy-plane.</td>
<td>DEGREE</td>
</tr>
<tr>
<td>Measurement Subtype</td>
<td>Code</td>
<td>Description</td>
<td>Units</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>ToolLeadAngle</td>
<td>PSIR</td>
<td>The angle between the tool cutting edge plane and a plane perpendicular to the tool feed plane measured in a plane parallel the xy-plane.</td>
<td>DEGREE</td>
</tr>
<tr>
<td>ToolOrientation</td>
<td>N/A</td>
<td>The angle of the tool with respect to the workpiece for a given process. The value is application specific.</td>
<td>DEGREE</td>
</tr>
<tr>
<td>WiperEdgeLength</td>
<td>BS</td>
<td>The measure of the length of a wiper edge of a Cutting Item.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>StepDiameterLength</td>
<td>SDLx</td>
<td>The length of a portion of a stepped tool that is related to a corresponding cutting diameter measured from the cutting reference point of that cutting diameter to the point on the next cutting edge at which the diameter starts to change.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>StepIncludedAngle</td>
<td>STAx</td>
<td>The angle between a major edge on a step of a stepped tool and the same cutting edge rotated 180 degrees about its tool axis.</td>
<td>DEGREE</td>
</tr>
<tr>
<td>Measurement Subtype</td>
<td>Code</td>
<td>Description</td>
<td>Units</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Cutting Diameter</td>
<td>DCx</td>
<td>The diameter of a circle on which the defined point Pk located on this Cutting Tool. The normal of the machined peripheral surface points towards the axis of the Cutting Tool.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>Cutting Height</td>
<td>HF</td>
<td>The distance from the basal plane of the Tool Item to the cutting point.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>Corner Radius</td>
<td>RE</td>
<td>The nominal radius of a rounded corner measured in the X Y-plane.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>Weight</td>
<td>WT</td>
<td>The total weight of the Cutting Tool in grams. The force exerted by the mass of the Cutting Tool.</td>
<td>GRAM</td>
</tr>
<tr>
<td>Functional Length</td>
<td>LFx</td>
<td>The distance from the gauge plane or from the end of the shank of the Cutting Tool, if a gauge plane does not exist, to the cutting reference point determined by the main function of the tool. This measurement will be with reference to the Cutting Tool and MUST NOT exist without a Cutting Tool.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>Chamfer Flat Length</td>
<td>BCH</td>
<td>The flat length of a chamfer.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>Chamfer Width</td>
<td>CHW</td>
<td>The width of the chamfer.</td>
<td>MILLIMETER</td>
</tr>
<tr>
<td>Measurement Subtype</td>
<td>Code</td>
<td>Description</td>
<td>Units</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>InsertWidth</td>
<td>W1</td>
<td>W1 is used for the insert width when an inscribed circle diameter is not practical.</td>
<td>MILLIMETER</td>
</tr>
</tbody>
</table>
Appendices

A Bibliography

Figure 27: Cutting Tool Measurement Diagram 1
(Cutting Tool, Cutting Item, and Assembly Item – ISO 13399)
Figure 28: Cutting Tool Measurement Diagram 2
(Cutting Tool, Cutting Item, and Assembly Item – ISO 13399)

Figure 29: Cutting Tool Measurement Diagram 3
(Cutting Item – ISO 13399)
Figure 30: Cutting Tool Measurement Diagram 4
(Cutting Item – ISO 13399)

Figure 31: Cutting Tool Measurement Diagram 5
(Cutting Item – ISO 13399)
Figure 32: Cutting Tool Measurement Diagram 6
(Cutting Item – ISO 13399)
C Cutting Tool Example

C.1 Shell Mill

Figure 33: Shell Mill Side View

Figure 34: Indexable Insert Measurements

Example 1: Example for Indexable Insert Measurements

```xml
<?xml version="1.0" encoding="UTF-8"?>
<MTConnectAssets
xmlns:m="urn:mtconnect.org:MTConnectAssets:1.2"
xmlns="urn:mtconnect.org:MTConnectAssets:1.2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:mtconnect.org:MTConnectAssets:1.2 http://mtconnect.org/schemas/MTConnectAssets\_1.2.xsd"
```

Steel Cutting Parameters:
Cutter Max RPM=13,300, 4 Flutes,
76.2 mm Dia (.75 Dia) 605 RPM
0.23 mm/rev (6,000 rpm)
Mm/min 144.8 (475 SFM)
Feed Rate 352 mm/min (17.2 in/min)
```xml
650  61  </Assets>
651  62  </MTConnectAssets>
```
C.2 Step Drill

![Step Drill - KMT, B732A08500HP Grade KC7315
Adapter - Parlec, C50-M12SF300-6](image)

Note: Adapter Dimensions Shown are for KMT holder which has adjustable length of +/-5mm (Drill length tolerance +/-1.0).

Figure 35: Step Mill Side View

Example 2: Example for Step Mill Side View

```xml
<MTConnectAssets xmlns:m="urn:mtconnect.org:MTConnectAssets:1.2"
                 xmlns="urn:mtconnect.org:MTConnectAssets:1.2"
                 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                 xsi:schemaLocation="urn:mtconnect.org:MTConnectAssets:1.2
http://mtconnect.org/schemas/MTConnectAssets\_1.2.xsd">
          sender="localhost" assetCount="2" version="1.2" instanceId="1234"/>
  <Assets>
    <CuttingTool serialNumber="1" toolId="B732A08500HP"
      <Description>
        Step Drill - KMT, B732A08500HP Grade KC7315
        Adapter - Parlec, C50-M12SF300-6
      </Description>
      <CuttingToolLifeCycle>
        <CutterStatus><Status>NEW</Status></CutterStatus>
        <ProcessSpindleSpeed nominal="5893">5893</ProcessSpindleSpeed>
        <ProcessFeedRate nominal="2.5">2.5</ProcessFeedRate>
        <ConnectionCodeMachineSide>CV50 Taper</ConnectionCodeMachineSide>
        <Measurements>
          <BodyDiameterMax code="BDX">31.8</BodyDiameterMax>
          <BodyLengthMax code="LBX" nominal="120.825" maximum="126.325"
                          minimum="115.325">120.825</BodyLengthMax>
          <ProtrudingLength code="LPR" nominal="155.75" maximum="161.25"
                            minimum="150.26">155.75</ProtrudingLength>
        </Measurements>
    </CuttingTool>
  </Assets>
</MTConnectAssets>
```

MTConnect Part 4.1: Cutting Tools - Version 1.5.0
<FlangeDiameterMax code="DF"
nominal="98.425">98.425</FlangeDiameterMax>
<OverallToolLength nominal="257.35" minimum="251.85"
maximum="262.85" code="OAL">257.35</OverallToolLength>
</Measurements>
<CuttingItems count="2">
 <CuttingItem indices="1" manufacturers="KMT" grade="KC7315">
 <Measurements>
 <CuttingDiameter code="DC1" nominal="8.5" maximum="8.521"
minimum="8.506">8.5135</CuttingDiameter>
 <StepIncludedAngle code="STA1" nominal="90" maximum="91"
minimum="89">90</StepIncludedAngle>
 <FunctionalLength code="LF1" nominal="154.286"
minimum="148.786" maximum="159.786">154.286</FunctionalLength>
 <StepDiameterLength code="SDL1" nominal="9">9</StepDiameterLength>
 <PointAngle code="SIG" nominal="135" minimum="133" maximum="137">135</PointAngle>
 </Measurements>
 </CuttingItem>
 <CuttingItem indices="2" manufacturers="KMT" grade="KC7315">
 <Measurements>
 <CuttingDiameter code="DC2" nominal="12" maximum="12.011"
minimum="12">12</CuttingDiameter>
 <FunctionalLength code="LF2" nominal="122.493"
maximum="127.993" minimum="116.993">122.493</FunctionalLength>
 <StepDiameterLength code="SDL2" nominal="9">9</StepDiameterLength>
 </Measurements>
 </CuttingItem>
</CuttingItems>
</CuttingToolLifeCycle>
</CuttingTool>
</Assets>
</MTConnectAssets>
Example 3: Example for Shell Mill with Explicate Loci

```xml
<MTConnectAssets xmlns:m="urn:mtconnect.org:MTConnectAssets:1.2"
    xmlns="urn:mtconnect.org:MTConnectAssets:1.2"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="urn:mtconnect.org:MTConnectAssets:1.2
 http://mtconnect.org/schemas/MTConnectAssets\_1.2.xsd">

    sender="localhost" assetCount="2" version="1.2" instanceId="1234"/>

  <Assets>
    <CuttingTool serialNumber="1" toolId="KSSP300R4SD43L240"
      timestamp="2011-05-11T13:55:22" assetId="KSSP300R4SD43L240.1"
      manufacturers="KMT,Parlec">

      <Description>Keyway: 55 degrees</Description>
      <CuttingToolLifeCycle>
        <CutterStatus><Status>NEW</Status></CutterStatus>
      </CuttingToolLifeCycle>
      <Measurements>
        <UsableLengthMax code="LUX" nominal="82.55" maximum="76.213">
          82.55
        </UsableLengthMax>
        <CuttingDiameterMax code="DC" nominal="76.2" maximum="76.213">
          76.2
        </CuttingDiameterMax>
      </Measurements>
    </CuttingTool>
  </Assets>
</MTConnectAssets>
```

Figure 36: Shell Mill with Explicate Loci
<CuttingDiameterMax minimum="76.187">76.2</CuttingDiameterMax>

<DepthOfCutMax code="APMX" nominal="60.96">60.95</DepthOfCutMax>

</Measurements>

<CuttingItems count="24">
 <CuttingItem indices="1" itemId="SDET43PDER8GB">
 <Locus>FLUTE: 1, ROW: 1</Locus>
 <Measurements>
 <DriveAngle code="DRVA" nominal="55">55</DriveAngle>
 </Measurements>
 </CuttingItem>

 <CuttingItem indices="2-24" itemId="SDET43PDER8GB">
 <Locus>FLUTE: 2-4, ROW: 1; FLUTE: 1-4, ROW 2-6</Locus>
 </CuttingItem>
</CuttingItems>

</CuttingToolLifeCycle>

</CuttingTool>

</Assets>

</MTConnectAssets>
C.4 Drill with Individual Loci

Figure 37: Step Drill with Explicate Loci

Example 4: Example for Step Drill with Explicate Loci

```xml
<?xml version="1.0" encoding="UTF-8"?>
<MTConnectAssets xmlns:m="urn:mtconnect.org:MTConnectAssets:1.2"
                 xmlns="urn:mtconnect.org:MTConnectAssets:1.2"
                 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                 xsi:schemaLocation="urn:mtconnect.org:MTConnectAssets:1.2 http://mtconnect.org/schemas/MTConnectAssets\_1.2.xsd">
  <Header creationTime="2011-05-11T13:55:22" assetBufferSize="1024" sender="localhost" assetCount="2" version="1.2" instanceId="1234"/>
  <Assets>
    <CuttingTool serialNumber="1" toolId="KSEM0781LD"
                 timestamp="2011-05-11T13:55:22" assetId="KSEM0781LD.1" manufacturers="KMT">
      <CuttingToolLifeCycle>
        <CutterStatus><Status>NEW</Status></CutterStatus>
        <ConnectionCodeMachineSide>HSK63A</ConnectionCodeMachineSide>
        <Measurements>
          <BodyDiameterMax code="BDX">52.75</BodyDiameterMax>
          <OverallToolLength nominal="172.29">
            <Measurements>
              <BodyDiameterMax code="BDX">52.75</BodyDiameterMax>
            </Measurements>
            <Measurements>
              <BodyDiameterMax code="BDX">52.75</BodyDiameterMax>
            </Measurements>
          </OverallToolLength>
        </Measurements>
      </CuttingToolLifeCycle>
    </CuttingTool>
  </Assets>
</MTConnectAssets>
```
<OverallToolLength code="OAL">172.29</OverallToolLength>

<UsableLengthMax code="LUX" nominal="49">49</UsableLengthMax>

<FlangeDiameterMax code="DF" nominal="62.94">62.94</FlangeDiameterMax>

</Measurements>

<CuttingItems count="3">
 <CuttingItem indices="1" itemId="KSEM0781LD" manufacturers="KMT" grade="KC7015">
 <Locus>FLUTE: 1, ROW: 1</Locus>
 <Measurements>
 <FunctionalLength code="LF1" nominal="154.42">154.42</FunctionalLength>
 <CuttingDiameter code="DC1" nominal="19.844">19.844</CuttingDiameter>
 <PointAngle code="SIG" nominal="140">140</PointAngle>
 <ToolCuttingEdgeAngle code="KAPR1" nominal="45">45</ToolCuttingEdgeAngle>
 <StepDiameterLength code="SLD1" nominal="39.8">39.8</StepDiameterLength>
 </Measurements>
 </CuttingItem>
 <CuttingItem indices="2-3" itemId="TPMT-21.52-FP" manufacturers="KMT" grade="KCM15">
 <Locus>FLUTE: 1-2, ROW: 2</Locus>
 <Measurements>
 <FunctionalLength code="LF2" nominal="112.9">119.2</FunctionalLength>
 <CuttingDiameter code="DC2" nominal="31">31</CuttingDiameter>
 </Measurements>
 </CuttingItem>
</CuttingItems>
C.5 Shell Mill with Different Inserts on First Row

Figure 38: Shell Mill with Different Inserts on First Row

Example 5: Example for Shell Mill with Different Inserts on First Row

```xml
<MTConnectAssets xmlns:m="urn:mtconnect.org:MTConnectAssets:1.2"
xmlns="urn:mtconnect.org:MTConnectAssets:1.2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:mtconnect.org:MTConnectAssets:1.2 http://mtconnect.org/schemas/MTConnectAssets_1.2.xsd">
  <Header creationTime="2011-05-11T13:55:22" assetBufferSize="1024" sender="localhost" assetCount="2" version="1.2" instanceId="1234"/>
  <Assets>
    <CuttingTool serialNumber="1" toolId="XXX" timestamp="2011-05-11T13:55:22" assetId="XXX.1" manufacturers="KMT">
      <CuttingToolLifeCycle>
        <CutterStatus><Status>NEW</Status></CutterStatus>
        <Measurements>
          <DepthOfCutMax code="APMX" nominal="47.8">47.8</DepthOfCutMax>
          <CuttingDiameterMax code="DC" nominal="50.8">50.8</CuttingDiameterMax>
          <UsableLengthMax code="LUX" nominal="78.74">78.74</UsableLengthMax>
        </Measurements>
        <CuttingItems count="9">
          <CuttingItem indices="1-3" itemId="EDPT180564PDER-LD" manufacturers="KMT">
            <Locus>FLUTE: 1-3, ROW: 1</Locus>
          </CuttingItem>
          <!-- Additional cutting items...
```
<Measurements>
 <CornerRadius code="RE" nominal="6.25">6.35</CornerRadius>
</Measurements>

<CuttingItem>
 <CuttingItem indices="4-9" itemId="EDPT180508PDER-LD"
 manufacturers="KMT">
 <Locus>FLANGE: 1-4, ROW: 2-3</Locus>
 </CuttingItem>
</CuttingItems>
</CuttingToolLifeCycle>
</Assets>
</MTConnectAssets>