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The production of fuels or chemicals from lignocellulose currently requires thermochemical pretreatment to release fermentable
sugars. These harsh conditions also generate numerous small-molecule inhibitors of microbial growth and fermentation, limit-
ing production. We applied small-insert functional metagenomic selections to discover genes that confer microbial tolerance to
these inhibitors, identifying both individual genes and general biological processes associated with tolerance to multiple inhibi-
tory compounds. Having screened over 248 Gb of DNA cloned from 16 diverse soil metagenomes, we describe gain-of-function
tolerance against acid, alcohol, and aldehyde inhibitors derived from hemicellulose and lignin, demonstrating that uncultured
soil microbial communities hold tremendous genetic potential to address the toxicity of pretreated lignocellulose. We recovered
genes previously known to confer tolerance to lignocellulosic inhibitors as well as novel genes that confer tolerance via unknown
functions. For instance, we implicated galactose metabolism in overcoming the toxicity of lignin monomers and identified a de-
carboxylase that confers tolerance to ferulic acid; this enzyme has been shown to catalyze the production of 4-vinyl guaiacol, a
valuable precursor to vanillin production. These metagenomic tolerance genes can enable the flexible design of hardy microbial
catalysts, customized to withstand inhibitors abundant in specific bioprocessing applications.

Many lignocellulosic feedstocks (e.g., switchgrass) are pre-
ferred to maize, sugarcane, and other traditional food crops

for the production of fuels and chemicals because they are able to
grow on marginal land, often require little attention or energy
input, and do not compete directly with the food supply (1–6).
However, lignocellulose requires harsh thermochemical pretreat-
ment methods to liberate fermentable monosaccharides (7–9),
producing an additional compendium of compounds inhibitory
to microbial growth that ultimately reduce production efficiencies
(10–12). These small-molecule inhibitors derived from lignocel-
lulose pretreatment (here called lignocellulosic inhibitors) are
typically aldehydes, organic acids, furans, or phenolics and can
originate from the cellulosic, hemicellulosic, and lignified frac-
tions of the feedstock (11–15).

Engineering hardier microbial production hosts with elevated
tolerance to these inhibitors offers potential to ameliorate the
toxic effects of these compounds without incurring the high pro-
cess costs associated with detoxifying the lignocellulosic hydroly-
sate (16, 17). Unfortunately, the modes of toxicity of many of
these toxins are poorly described, and genes conferring tolerance
to many of these compounds have not been identified (18, 19). An
expanded catalog of tolerance-conferring genotypes may shed
light on mechanisms of toxicity and enable synthetic biology ap-
proaches for the design of diverse production hosts with broad-
spectrum tolerance.

Soil microorganisms, including white-rot fungi (20) and many
bacteria (21), are likely a valuable reservoir of genetic elements
that confer tolerance to lignocellulosic inhibitors and next-gener-
ation biofuels (22–25). Indeed, our previous work using large-
insert (40- to 50-kb) functional metagenomic libraries identified
three such genes conferring improved tolerance to two biomass
inhibitors (19). Characterization of these large-insert libraries re-
quired numerous rounds of sequencing to assemble tolerance-
conferring DNA fragments, followed by transposon mutagenesis

and targeted subcloning to identify the three causal tolerance
genes on the two fragments interrogated. These time- and cost-
intensive methods are not feasible strategies for discovering genes
conferring tolerance to many inhibitors, and accordingly, we ap-
plied a higher-throughput approach.

We functionally interrogated 16 agricultural and grassland
soils for their repertoire of lignocellulosic inhibitor tolerance-con-
ferring genotypes (26–28). Since our earlier work with large-insert
libraries demonstrated that tolerance phenotypes can be con-
ferred by individual open reading frames (ORFs) (19), we elected
to construct small-insert (1- to 5-kb) metagenomic libraries,
which allow screening with greater clone diversity and sampling
depth compared to screening with large-insert libraries (29, 30).
To facilitate the interrogation of large, diverse clone libraries with
direct application to bioprocessing goals, we performed func-
tional selections in Escherichia coli, as it exhibits high transforma-
tion efficiencies and is a leading producer of advanced biofuels
and commodity chemicals (31–34).
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MATERIALS AND METHODS
Construction of soil metagenomic libraries. Construction of soil metag-
enomic libraries was performed exactly as described in previous work
(28). Briefly, metagenomic DNA was extracted from soils (see Table S1 in
the supplemental material) using the PowerMax soil DNA isolation kit
(MoBio Laboratories), and 10 g was used for the construction of a given
library. Small-insert metagenomic libraries were created by shearing this
DNA into 1- to 5-kb fragments before ligation into the pZE21 expression
vector (35) and electroporation into E. coli MegaX cells (Invitrogen).
These cells do not contain the TetR repressor, and therefore, expression
from the PLtetO-1 promoter of pZE21 is constitutive. Titers of libraries
were determined by plating out 0.1 �l and 0.01 �l of recovered cells onto
Luria-Bertani (LB) agar (5 g yeast extract, 5 g NaCl, 10 g tryptone, 12 g
agar in 1 liter of water) plates containing 50 �g/ml kanamycin (Kan). For
each library, insert size distribution was estimated by gel electrophoresis
of PCR products obtained by amplifying the insert from 12 randomly
picked clones using primers flanking the HincII site of the multiple clon-
ing site of the pZE21MCS1 vector (which contains a selectable marker for
kanamycin resistance). The average insert size across all libraries was de-
termined to be 2,000 bp, and library size estimates were calculated by
multiplying the average PCR-based insert size by the number of CFU from
titer determination after transformation recovery. The rest of the recov-
ered cells were inoculated into 50 ml of LB medium containing 50 �g/ml
kanamycin and grown overnight. The overnight culture was frozen with
15% glycerol and stored at �80°C for subsequent selection.

Determining MICs of lignocellulosic inhibitors. MICs for solid and liq-
uid toxicity assays were determined separately, each in LB medium using E.
coli MegaX cells (DH10B-derived) containing an empty pZE21MCS vec-
tor. Initial MIC predictions were informed by previous work (13–15, 19)
and tested using LB medium formulated with 50 �g/ml kanamycin and a
range of concentrations for each inhibitor spanning the predicted MIC
(typically, four inhibitor concentrations were chosen for agar MICs and
seven for liquid MICs). For agar MIC determination, overnight cultures
were plated using glass sterile beads and growth was monitored at 37°C for
2 days. For liquid MICs, a 2.5% inoculum of mid-log culture was added to
200 �l of broth medium and growth was monitored in 96-well plates
using the Synergy H1 microplate reader (BioTek Instruments) for up to 5
days at 37°C. If an empirically determined MIC fell between two tested
concentrations, a subsequent round of MIC determination was per-
formed to narrow the step size between putative MICs. If the MIC fell
outside the initial tested range, the initial assay was repeated to set bound-
aries for a MIC estimate and a third assay was performed to narrow the
MIC further. Because the range of inhibitor concentrations chosen for
the first round of MIC testing varied across compounds, so, too, did the
resolution for the final rounds of MIC determination.

Functional selections for tolerance to lignocellulosic inhibitors. For
each soil metagenomic library, selections for tolerance to each of the 20
inhibitors tested were performed on LB agar containing 50 �g/ml kana-
mycin and supplemented with concentrations of lignocellulosic inhibitor
outlined in Table S2 in the supplemental material. For each metagenomic
library, the number of cells plated on each type of selective medium rep-
resented 10 times the number of unique CFU in the library, as determined
from titers during library creation. After plating (using sterile glass beads),
selections for compound tolerance were incubated at 37°C for up to 5 days
to allow the growth of tolerant E. coli transformants. If microbial growth
was observed, cells were collected in two ways to interrogate tolerance-
conferring genotypes: (i) by picking and validating individual transfor-
mants, as described below, or (ii) by collecting all microbial growth. For
the latter method, after individual transformants were picked, all remain-
ing transformants from a single plate (soil by inhibitor selection) were
collected by adding 750 �l of 15% LB-glycerol to the plate and scraping
with an L-shaped cell scraper (Fisher Scientific catalog no. 03-392-151) to
gently remove colonies from the agar. The liquid “plate scrape culture”
was then collected, and this process was performed a second time to en-
sure that all colonies were removed from the plate. The bacterial cells were

then stored at �80°C before PCR amplification of metagenomic frag-
ments and Illumina library creation.

Picking individual transformants and verifying tolerance pheno-
types. After microbial growth was observed, but before total growth was
collected, between four and 10 individual colonies were picked from a
positive selection, amplified in LB broth with 50 �g/ml kanamycin
(LB-Kan broth), and stored in 96-well plates with 15% glycerol at �80°C.
These picked clones were subsequently subjected to liquid growth assays
in Mueller-Hinton (MH) broth (2 g beef infusion solids, 1.5 g starch,
17.5 g casein hydrolysate, pH 7.4, in a final volume of 1 liter) supple-
mented with 50 �g/ml kanamycin and containing MICs of the compound
on which the clones were originally selected, per Table S2 in the supple-
mental material. Before liquid growth assays, clones were passaged twice
through LB-Kan broth by transfer with a 96-pin stamp transfer tool (each
passage was allowed to grow overnight) to eliminate residual glycerol
from freezer stocks. To test for tolerance in liquid medium, cultures were
stamp transferred into 96-well plates containing 250 �l of medium with
inhibitory compound and growth was profiled by absorbance measure-
ments at 600 nm (optical density at 600 nm [OD600]) taken every 20 min
using the Synergy H1 microplate reader (BioTek Instruments) for up to 4
days at 37°C. Clones positive for growth were rearrayed, stored at �80°C,
and subjected to a second round of liquid growth assays, performed ex-
actly as described above. Only clones showing growth in both liquid
growth assays were considered tolerant and maintained for downstream
analyses.

Amplification of metagenomic DNA fragments from selected trans-
formants. Amplification of metagenomic fragments from picked trans-
formants was performed by PCR, using 1 �l of cells from overnight cul-
ture. A sample PCR mixture consisted of 1 �l of template, 2.5 �l of
ThermoPol reaction buffer (New England BioLabs), 0.5 �l of 10 mM
deoxynucleotide triphosphates (dNTPs; New England BioLabs), 0.5 �l of
Taq polymerase (New England BioLabs; 5 U/�l), 3 �l of a custom primer
mix (see Table S3 in the supplemental material), and 17.5 �l of nuclease-
free H2O to bring the final reaction volume to 25 �l. PCR mixtures were
then amplified using the following thermocycler conditions: 94°C for 10
min and 35 cycles of 94°C for 5 min, 55°C for 45 s, 72°C for 5.5 min, and
72°C for 10 min. The amplified metagenomic inserts were then purified
using the QIAquick 96-well PCR purification kit (Qiagen), per the man-
ufacturer’s recommendations. After purification, total eluate for frag-
ments from colonies on the same selection was pooled for Illumina library
preparation and sequencing, resulting in 50 pools, each representing a
unique selection.

Amplification of metagenomic DNA fragments from total bacterial
growth. Freezer stocks of plate scrape cultures from positive selections
were thawed, and 200 to 250 �l of cells was pelleted by centrifugation at
13,000 rpm for 2 min and gently washed with 1 ml of nuclease-free H2O.
Cells were then pelleted again and resuspended in 20 to 25 �l nuclease-
free water (1/10 original volume), frozen at �20°C, and then thawed to
promote cell lysis. Subsequently, 2.5 �l of thawed resuspensions was used
as the template for amplification of resistance-conferring DNA fragments
by PCR with Taq DNA polymerase (New England BioLabs) exactly as
described above, except that 25 cycles of PCR, rather than 35, were per-
formed.

Illumina sample preparation and sequencing. Pooled amplicons
from picked colonies and amplified metagenomic inserts from total bac-
terial growth were processed similarly as previously described (28). For
each input, 500 ng of PCR product was sheared to 150- to 200-bp frag-
ments using nine 10-minute cycles of 30 s on and 30 s off on the Bioruptor
XL sonicator (high-power setting). The ends of sheared DNA fragments
were blunted with T4 DNA ligase and polymerase (New England Bio-
Labs), and barcoded adapters were ligated to blunt fragments by T-A
cloning with T4 DNA ligase (New England BioLabs). Next, 10 �l of adapt-
er-ligated samples was combined into pools of 12 samples and concen-
trated by elution through a Qiagen MinElute PCR purification column.
DNA sized 300 to 400 bp was purified by gel extraction, and adapter-
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ligated samples were enriched by PCR using 12.5 �l 2� Phusion HF
master mix, 1 �l of 10 �M Illumina PCR primer mix, and 2 �l of purified
DNA as the template in a 25-�l PCR mixture. PCR proceeded as follows:
30 s at 98°C followed by 17 cycles of 98°C for 10 s, 65°C for 30 s, and 72°C
for 30 s before a final 5-min extension at 72°C. Finally, a 9 pM sample was
used for Illumina HiSeq 101-bp sequencing with the HiSeq 2500 platform
at GTAC (Genome Technology Access Center, Washington University in
St. Louis, MO, USA).

Assembly and annotation of metagenomic contigs. Illumina paired-
end sequence reads were binned by barcode (perfect match required),
such that independent selections were assembled and annotated in paral-
lel. Metagenomic DNA fragments from each selection were assembled
using PARFuMS (parallel annotation and reassembly of functional met-
agenomic selections), a tool developed for the high-throughput assembly
and annotation of functional metagenomic selections (36). Assembly with
PARFuMS consists of three iterations of variable job size with the short-
read assembler Velvet (37), two iterations of assembly with PHRAP (38),
and custom scripts to clean sequence reads, remove chimeric assemblies,
and link contigs by coverage and common annotation, as described pre-
viously (36). In total, 116 sequencing libraries were assembled with PAR-
FuMS, encompassing 84 unique selections (for 32 selections, picked col-
onies and total bacterial growth were sequenced and assembled
separately). Fifty-two selections yielded metagenomic fragments greater
than 500 bp, totaling 1,932 metagenomic contigs assembled. To annotate
these contigs, we predicted ORFs using the gene-finding algorithm
MetaGeneMark (39) and predicted gene function by searching the amino
acid sequences against the TIGRFAMs (40) and Pfam (41) profile HMM
databases with HMMER3 (42). MetaGeneMark was run using default
gene-finding parameters while hmmscan (HMMER3) was run with the
option “-cut_ga,” requiring that genes meet profile-specific gathering
thresholds (rather than a global, more permissive, default log odds cutoff)
before receiving annotation. The hit with the best E value was used to
designate an annotation, and ORFs over 350 bp were used in downstream
analyses.

Percent identity comparisons of recovered ORFs against NCBI da-
tabase. All recovered ORFs greater than 350 bp were compared against the
NCBI protein Non-Redundant (NR) database (retrieved 15 September
2014) using BLASTX to determine the amino acid identity between recov-
ered ORFs and their nearest neighbor in an NCBI protein. For each ORF,
the NCBI entry that generated the best local alignment was used to seed
global alignments with estwise (http://dendrome.ucdavis.edu/resources
/tooldocs/wise2/doc_wise2.html). The following options were used in
global alignment: “-init global” and “-alg 333.” From this alignment,
global percent identities were calculated as the number of matched amino
acids divided by the full length of the shorter of the two sequences com-
pared.

Subcloning putative tolerance-conferring genes. Putative tolerance-
conferring genes were amplified from picked colonies twice verified for
tolerance by liquid growth assay. Plasmids (pZE21 plus a soil metag-
enomic fragment) were purified by minipreparation using a Qiagen plas-
mid purification kit and used as the template for PCR of individual toler-
ance genes. Open reading frames were amplified using PFX polymerase
(Life Technologies), with the following components in a 50-�l reaction
mixture: 1.5 �l purified plasmid as the template, PFX buffer (10 �l), 10
mM dNTPs (New England BioLabs; 1.5 �l), 50 mM MgSO4 (1 �l), PFX
enhancer solution (5 �l), polymerase (0.4 �l), 10 �M forward primer
(0.75 �l), and 10 �M reverse primer (0.75 �l). Thermocycler conditions
were as follows: 95°C for 5 min followed by 35 cycles of 95°C for 45 s, 55°C
for 45 s, and 72°C for 3.5 min, finishing with a 5-min extension at 72°C.
Reaction-specific primers can be found in Table S4 in the supplemental
material. Amplicons were then purified using RapidTip2 PCR purifica-
tion tips (Diffinity Genomics) and quantified using the BR Qubit fluo-
rometer assay kit. All PCR products were cloned 9 bp downstream of the
ribosome binding site within the pZE21 expression vector (35) and trans-
formed into E. coli MegaX cells (Invitrogen). Amplicons were then phos-

phorylated using T4 polynucleotide kinase (PNK) (Epicentre; catalog no.
P0505H) per the manufacturer’s recommendations and ligated into
pZE21 using the Fast-Link DNA ligation kit (Epicentre; catalog no.
LK11025) with suggested protocols. Subcloned constructs were trans-
formed into chemically competent E. coli MegaX by heat shock at 42°C,
and clones were verified for proper size, sequence, and orientation by
diagnostic PCR.

Quantifying tolerance genes by liquid growth assay. The putative
tolerance-conferring capability of each transformant was tested against
the inhibitor on which the genotype was identified, in LB medium sup-
plemented with kanamycin at 50 �g/ml. Growth assays were performed in
96-well plates, and inhibitor concentrations were arrayed via serial dilu-
tion in LB-Kan broth. Each construct was tested against a range of inhib-
itor concentrations generated via these dilutions; Fig. 3 depicts growth
curves at the highest inhibitor concentration for which tolerant growth
was reproducibly observed. All growth curves were performed in triplicate
and compared directly against an empty-vector control strain grown in
identical medium on the same 96-well plate. Medium was inoculated with
5 �l of cells grown to mid-log phase at a final volume of 200 �l, and plates
were sealed with a Breathe-Easy membrane (Sigma-Aldrich; catalog no.
Z380059) permeable to oxygen, carbon dioxide, and water vapor. Growth
was profiled at 37°C by absorbance measurements at 600 nm using the
Synergy-H1 microplate reader (BioTek Instruments, Inc.), under con-
stant shaking at “medium” intensity; readings were taken every 15 min for
a minimum of 48 h.

For defined-medium growth assays, M9 medium was prepared using
M9 salts (Sigma-Aldrich; catalog no. M6030) supplemented with 2 mM
MgSO4, 0.1 mM CaCl2, 10 mg/ml glucose, 50 �g/ml leucine, 50 �g/ml
thiamine, and 50 �g/ml kanamycin. For toxicity assays, stationary-phase
cultures (grown in M9 plus glucose) for each putative tolerance strain
(and control) were subcultured and grown to mid-log (OD600, 0.4 to 0.7)
using M9-plus-glucose medium. Then, 5 �l was inoculated into 200 �l of
M9-plus-glucose medium which also contained the indicated concentra-
tion of toxin (see Fig. S3 in the supplemental material). Inhibitor concen-
trations were arrayed via serial dilution, and growth assays were per-
formed in triplicate on 96-well plates; Fig. S3 in the supplemental material
depicts growth curves at the highest inhibitor concentration for which
tolerant growth was observed. Plates were handled by the BioStack auto-
mated microplate stacker, with absorbance readings taken as described
above at 37°C every 45 min for 3 days (cultures were shaken at medium
intensity for 2 min before measurement).

Nucleotide sequence accession numbers. All assembled sequences
have been deposited in GenBank and are available via the BioProject
identifier PRJNA294310 (GenBank accession numbers KT941423 to
KT943354).

RESULTS

We constructed 16 small-insert metagenomic libraries using soils
from two sites in the Long Term Ecological Research network:
grassland soils from Cedar Creek (CC) and agricultural soils from
Kellogg Biological Station (KBS) (26–28). Metagenomic libraries
ranged in size from 1.4 to 16.9 Gb (see Table S1 in the supplemen-
tal material) and were selected for tolerance to one of 20 com-
pounds (15 common lignocellulosic inhibitors and five current
and next-generation biofuels) on solid medium at the MIC of each
compound against the E. coli host (see Table S2). Growth was
monitored for 5 days, with tolerance identified to seven of 20
compounds (four lignocellulosic inhibitors and three fuels). Tol-
erance appeared to be largely compound specific (as opposed to
library or soil specific), indicating that for most compounds,
edaphic properties did not influence the ability to capture a toler-
ance phenotype (Fig. 1). For a subset of the 13 compounds where
tolerant clones were not identified, organisms within the soil are
known to metabolize the chemical (23, 43), and in at least one
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instance, tolerance to 2-furoic acid has been transferred to E. coli
using soil-derived large-insert metagenomic libraries (19). Thus,
the absence of tolerant growth in our experiments does not signify
the absence of these properties within the soil microbial commu-
nity or the inability to transfer the trait to E. coli. Instead, it is likely
that tolerance to these compounds either requires the action of
multiple, distal genes or is encoded by genes at low to intermediate

abundance, such that the functional gene was not incorporated
into the original metagenomic libraries. Alternative strategies
(e.g., in situ enrichment of soil communities [44, 45]) are likely
required to expand both the number of compounds to which tol-
erance is observed and the diversity of tolerance-conferring genes
recovered.

Some selections yielded unambiguous tolerance phenotypes,
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FIG 1 Functional selections of 16 soil metagenomes for tolerance to 20 inhibitory compounds. (A) Gray cells designate selections where a tolerance phenotype
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individual clones were twice validated for tolerance in liquid medium. (B) Structures of the inhibitors and fuels used in functional selections.
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defined as punctate colonies on experimental plates (those with
metagenomic libraries) and no observable growth on matched,
empty-vector controls. In other cases, small satellite colonies sur-
rounded larger, likely bona fide tolerant clones. This phenotype
may result from a larger colony that detoxifies the compound and
allows for the survival of nearby nontolerant cells (e.g., see Fig. S1
in the supplemental material). Accordingly, further validation was
often required to distinguish truly tolerant clones from back-
ground. As a means of validation, 483 colonies from the 99 selec-
tions that showed a positive phenotype (Fig. 1) were randomly
selected and verified for tolerance by passage through liquid me-
dium containing MICs of the appropriate compound (see Table
S2). In total, 132 clones from 50 selections reproducibly exhibited
a tolerance phenotype across two independent liquid growth as-
says and were selected for downstream analyses (Fig. 1).

For 66 of the 99 positive selections (�67%), all bacterial
growth from solid selection plates was collected and putative tol-
erance-conferring metagenomic fragments were amplified by
PCR and prepared in Illumina sequencing libraries. These 66 li-
braries were barcoded by selection and combined with another 50
libraries constructed from tolerance-conferring DNA fragments
amplified from the 132 verified tolerant clones, also barcoded by
selection. The 116 sequencing libraries included (i) 34 selections
where total growth, but not verified clones, was interrogated; (ii)
18 selections where only verified clones were sequenced; and (iii)
32 selections where data of both types were generated. All 116
libraries were sequenced and assembled using PARFuMS (36),
with 52 of 84 selections yielding at least one assembled contig
longer than 500 bp (Fig. 1). In total, 1,932 metagenomic frag-
ments were assembled (N50 of �1.35 kb) containing 2,283
ORFs which generally appeared unlike sequences deposited in
public repositories, consistent with past observations from soil
metagenomes (28, 46–51). The average amino acid identity of
all 2,283 ORFs to their closest homolog in the NCBI database
was 52.7% � 19.0% (mean � standard deviation) (Fig. 2).

The most comprehensive sequence data were available for se-
lections using furfuryl alcohol, ferulic acid, and furfural, and we
focused downstream work on sequences identified from selec-
tions using these compounds. These chemicals encompass alco-
hol, acid, and aldehyde inhibitors and include structures derived
from both the hemicellulosic and lignified fractions of lignocellu-
lose.

Glyoxylase resistance proteins were the most common func-
tion identified in furfural selections (see Table S5 in the supple-
mental material), which are archetypal aldehyde-detoxifying en-

zymes (52). The heterologous expression of a glyoxalase in E. coli
from the soil bacterium Pseudomonas putida has been demon-
strated to improve tolerance and fuel yield in the presence of the
aldehyde inhibitor methylglyoxal (53), but our data are the first to
implicate a putative lactoylglutathione lyase in furfural tolerance.
From selections on furfuryl alcohol, we recovered ORFs with
vague or uncharacterized predicted function (e.g., HD domain
and domain of unknown function [DUF] 20 [see Table S5]).
Given the sequence divergence of the cloned soil metagenome
from known functions (Fig. 2), vague or unassignable annotations
are not surprising and may be particularly common with selec-
tions using furfuryl alcohol given the compound’s poorly charac-
terized modes of toxicity (14).

The most frequently recovered genes from ferulic acid selec-
tions were homologous to galE, a UDP-glucose 4-epimerase
which catalyzes the interconversion between UDP-glucose and
UDP-galactose (54) (see Table S5 in the supplemental material).
Interestingly, many substituted phenolic compounds inhibit
UDP-glucose 4-epimerases (54, 55). Functional deficiencies in
these enzymes result in cell wall defects (in the absence of galac-
tose) (56) or cell death (in the presence of galactose, a component
of plant hemicellulose [6]) (57). The overexpression of galE ho-
mologs may rescue the native UDP-glucose 4-epimerase of E. coli
in the presence of ferulic acid, a guaiacyl phenolic compound.
Given the structural diversity of phenolic compounds capable of
inhibiting GalE (54, 55), its rescue may represent a generalized
strategy for engineering tolerance toward products of lignin hy-
drolysate. Indeed, the overexpression of galE homologs confers
tolerance against the syringyl phenolic monomer syringaldehyde
(19) and the substituted aromatic menadione (58) when ex-
pressed in E. coli.

To identify individual ORFs that confer a tolerance phenotype
and to quantify an ORF’s impact on tolerance when removed
from its native genetic context (as would occur in engineered pro-
duction strains), we subcloned ORFs from their original metag-
enomic fragment and assayed for tolerance to the compound on
which the gene was originally selected. We prioritized functions
predicted to encompass broad mechanistic diversity, amplifying
ORFs from colonies previously verified for tolerance (rather than
from total bacterial growth on functional selections), as this al-
lowed us to select transformants that displayed strong tolerance
phenotypes. Across furfuryl alcohol, ferulic acid, and furfural se-
lections, we cloned 23 predicted ORFs from 14 assembled contigs,
seven of which were confirmed to provide tolerance when re-
moved from their native context, spanning all three compounds
(Fig. 3; see also Table S6 in the supplemental material). No toler-
ance-conferring gene impaired growth when expressed in the ab-
sence of inhibitor (see Fig. S2), suggesting that these genotypes do
not generally reduce fitness and are therefore suitable for biopro-
cessing applications.

Two genes with unknown function conferred tolerance to fe-
rulic acid and furfuryl alcohol, with shortened lag times and in-
creased growth rates when expressed heterologously in E. coli
compared to empty-vector controls (Fig. 3B and G). This high-
lights the potential of uncharacterized gene products from the soil
metagenome to impact bioprocessing applications. We also iden-
tified two thymidylate synthases, homologs of ThyA and ThyX,
which confer furfural tolerance (Fig. 3E and F). These enzymes
catalyze the production of deoxythymidine monophosphate
(dTMP) from dUMP, and their detection is consistent with pre-
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vious work demonstrating that ThyA overexpression confers fur-
fural tolerance on ethanologenic E. coli (59). We show that ho-
mologs of both ThyA and ThyX provide furfural tolerance, even
though these enzymes are evolutionarily unrelated and function
via different reductive mechanisms (60).

A phenolic acid decarboxylase (PadC) with perfect amino acid
identity to homologs from the genus Pantoea (NCBI GenInfo
number 497939809) was cloned and confirmed to confer toler-
ance to ferulic acid, a lignin monomer (Fig. 3A). Ferulic acid de-
carboxylases are of high industrial interest, as they catalyze the
conversion of ferulic acid to 4-vinyl guaiacol, an important pre-
cursor for vanillin production with approximately 30 times the
value of ferulic acid (61). Indeed, multiple groups have expressed
PadC homologs in E. coli and have shown that these enzymes can
produce 4-vinyl guaiacol from ferulic acid (61, 62). In contrast to
previous work, which suggested that expressing a phenolic acid
decarboxylase impaired the growth of E. coli and other Gram-
negative bacteria (62), we demonstrate improved ferulic acid tol-
erance when expressing the decarboxylase (Fig. 3A). Toxicity dif-
ferences between our study and previous work may result from
differences in PadC expression level or the time course used in
growth assays (PadC confers delayed ferulic acid tolerance at some
inhibitor concentrations [see Fig. S3A in the supplemental mate-
rial]). Nonetheless, PadC holds the potential to couple biomass
detoxification with the production of the high-value chemical
4-vinyl guaiacol, offering a means to offset costs associated with
biomass conversion.

The observed enrichment for galactose metabolism in ferulic
acid selections, particularly galE homologs (see Table S5 in the
supplemental material), suggested that the overexpression of galE
may provide ferulic acid tolerance. Consistent with this hypothe-
sis, a galE homolog conferred strong tolerance to ferulic acid when
removed from its native context; a recombinant E. coli strain ex-
pressing this gene grew robustly at concentrations of ferulic acid
entirely inhibitory to a vector-only control (Fig. 3C). Because sub-
stituted phenolics inhibit UDP-glucose 4-epimerases (54, 55), we
speculate that galE overexpression may provide tolerance by res-
cuing a compromised native UDP-glucose 4-epimerase. In
addition to galE homologs, ferulic acid selections also yielded
numerous homologs of galactokinase (galK), another nucleotide-
galactose active enzyme (see Table S5), which conferred tolerance
to ferulic acid when overexpressed (Fig. 3D). The galK homologs
identified by functional metagenomic selections all contain mu-
tations at residues predicted to eliminate galactokinase activity
(63–65) (see Table S7), suggesting that tolerance is conferred by
functionally impaired GalK variants.

Sugars are the predominant carbon source in most bioprocess-
ing applications, whereas they constitute a minor source of carbon
in LB medium compared to small peptides. To determine whether
the observed ferulic acid tolerance genes improved E. coli growth
under conditions more representative of real-world bioreactors,
we tested each tolerance gene against a panel of lignin-derived
phenolic monomers in M9 minimal medium supplemented with
glucose as the primary carbon source. These minimal medium
experiments typically reproduced the tolerance phenotypes ob-
served using LB medium, though the growth curves occasionally
differed between experiments (compare Fig. 3 to Fig. S3 in the
supplemental material). Although it is tempting to attribute these
growth differences to medium composition, other growth condi-
tions also differed between experiments (namely, periods of or-
bital shaking, as described in Materials and Methods), and we
therefore compare growth differences within, but not across, ex-
periments.

With the exception of galK, each gene conferred tolerance to
multiple phenolic monomers in minimal medium (Table 1; see
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also Fig. S3 in the supplemental material), despite being recovered
from only ferulic acid in the original selections using LB medium.
Interestingly, expression of galE conferred tolerance in both LB
medium, which contains galactose (66), and M9-plus-glucose
medium, which lacks galactose. Expressing our galK variant, how-
ever, provided tolerance only in the presence of galactose (Fig. 3;
see also Fig. S3). This is consistent with previous observations that
suggest that an impaired GalE enzyme can exhibit galactose-inde-
pendent toxicity (56) but indicates that our GalK variants likely
ameliorate only galactose-dependent forms of toxicity.

DISCUSSION

Analogous to the predicted mechanism for galE-mediated ferulic
acid tolerance, simple complementation of an impaired GalK en-
zyme could underlie the tolerance conferred by galK overexpres-
sion. Although intuitive, this hypothesis is unlikely to explain our
observed ferulic acid tolerance, as it is inconsistent with previous
observations: galK mutants rescue galE mutants (56, 67), likely by
preventing the accumulation of GalK’s reaction product, galac-
tose-1-phosphate (67). Therefore, increased GalK enzyme is ex-
pected to exacerbate the deleterious effects of an impaired GalE,
and the overexpression of a functional galK gene is unlikely to
compensate for a phenolic-inhibited GalE.

Instead, we hypothesize that the tolerance-conferring GalK
variants may exhibit a dominant negative phenotype. For in-
stance, a GalK variant may be catalytically inactive and yet able to
inhibit E. coli’s native GalK by competition for substrate, relieving
galactose-1-phosphate accumulation and ameliorating the galac-
tose-dependent toxicity associated with an impaired GalE. Sup-
porting this hypothesis, each of the five full-length galK homologs
assembled from ferulic acid selections contains mutations in core
motifs that are conserved across diverse bacteria, archaea, yeast,
and mammals (see Table S7 and Text S1 in the supplemental ma-
terial). In four of five cases (including in the enzyme expressed in
Fig. 3D), mutations at these residues have been shown to eliminate
galactokinase activity (63–65), with the fifth enzyme predicted to
contain an alternative start codon that would truncate a key func-
tional motif (68) (see Table S7), suggesting that loss-of-function
variants of galK provide ferulic acid tolerance. Phenolic acids are
also key toxins in bioproduction efforts that utilize the yeast Sac-
charomyces cerevisiae (11), for which GALE deficiency similarly
triggers galactose toxicity which is rescued upon GALK deletion

(69). Though phenolic acids inhibit GalE in many organisms (e.g.,
trypanosomes and mammals [55]), whether they exert toxicity via
GALE impairment in S. cerevisiae is unknown and warrants future
work.

We also identified two thymidylate synthase variants, ThyA
and ThyX, which can confer furfural tolerance on E. coli when
expressed heterologously. Despite furfural toxicity resulting (in
part) from NADPH starvation (59, 70), both ThyA and ThyX are
known to cause NADPH oxidation as a consequence of dTMP
synthesis, though oxidation occurs at different catalytic steps with
each enzyme. ThyA can use methylenetetrahydrofolate (MTHF)
as both a carbon donor and a reductant to synthesize dTMP from
dUMP, producing dihydrofolate (DHF). DHF must be reduced to
tetrahydrofolate (THF) before it can be recycled back into the
original methyl donor, MTHF (60, 71, 72); this reduction requires
the oxidation of NADPH. In contrast, ThyX produces THF as a
direct product of dTMP synthesis but oxidizes NADPH during
this reaction, obviating the need for DHF reduction but not
NADPH oxidation (60, 71, 72). Because both thymidylate syn-
thases result in oxidized NADPH and yet both confer furfural
tolerance when overexpressed, these enzymes likely ameliorate
furfural toxicity independently of the compound’s effect on
NADPH levels (59, 70, 73, 74).

Expression of ThyX, but not ThyA, reduces dependence on
DHF-reducing enzymes (60, 71, 72), and yet the two thymidylate
synthases confer similar levels of furfural tolerance (Fig. 3E and F).
This suggests that the furfural tolerance conferred by these en-
zymes is also independent of their differential folate-reducing ca-
pacities and implies that furfural does not inhibit folate reduction
reactions, as has been theorized elsewhere (59). Furfural is also
known to cause DNA damage (75, 76), perhaps via the induction
of reactive oxygen species (77). Accordingly, the increased furfural
tolerance that results from ThyA and ThyX overexpression may
result from an increased supply of pyrimidine deoxyribonucle-
otides to aid in DNA repair (59). Since both enzymes are expected
to increase dTMP production, this explanation for furfural-in-
duced toxicity most satisfactorily describes the similar tolerance
profiles conferred by each thymidylate synthase.

We describe gain-of-function tolerance to acid, alcohol, and
aldehyde inhibitors derived from hemicellulose and lignin, dem-
onstrating that functional selections using soil metagenomes have
tremendous potential to address the toxicity associated with ther-
mochemical lignocellulose depolymerization. Because biopro-
cessing applications are necessarily diverse and are expected to
utilize variable lignocellulosic feedstocks (8, 9, 78), our capacity to
understand and engineer tolerance into microbial catalysts must
become comparatively flexible. By performing selections against
individual chemical inhibitors, rather than actual pretreated hy-
drolysate, we identified tolerance genes that yield insight into the
mechanisms of individual inhibitor toxicity (e.g., the putative in-
hibition of GalE by phenolic compounds) and associated micro-
bial tolerance (e.g., increased pyrimidine supply to provide furan
tolerance). This strategy allows for flexible bioengineering efforts,
where custom production hosts may be designed with inhibitor
tolerance tailored particularly to their bioprocessing applications.

The toxicity associated with treated lignocellulosic hydrolysate
likely results from the combination of many inhibitors at low con-
centrations (9). In contrast, the tolerance genes that we describe
were recovered from selections on individual compounds. These
genes nonetheless hold the potential to confer broad-spectrum

TABLE 1 Summary of tolerance genes active against phenolic
inhibitorsa

Compound

Tolerance activity of ORF/genotype

ORF9/
padC

ORF12/unknown
function

ORF8/
galE

ORF7/
galK

Ferulic acid (LB medium) 	 	 	 	
Ferulic acid (M9 medium) 	 	 	 �
Vanillin 	 	 	 ND
Vanillic acid 	 	 	 �
Vanillyl alcohol 	 	 	/� �
4-Methylcatechol � 	 � �
Syringic acid 	 � 	/� �
4-Hydroxybenzoic acid 	 	 	 �
4-Hydroxybenzaldehyde 	 � � �
a All data were generated using M9 defined medium, except as indicated. 	, tolerance
conferred; �, no tolerance; 	/�, ambiguous tolerance; ND, not determined.
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tolerance. We provide several examples of genes identified on fe-
rulic acid selections that confer tolerance to many additional phe-
nolic compounds (see Fig. S3 in the supplemental material). Fu-
ture work should test combinations of genes for broad-spectrum
tolerance to synthetic inhibitor mixtures and real-world hydroly-
sates, enabling the empirical construction of custom tolerance
operons for diverse inhibitor profiles.

Despite the diversity of our functional metagenomic libraries,
selections did not identify genes for tolerance to several lignocel-
lulosic inhibitors known to be tolerated by soil microorganisms
(19, 23, 43). This outcome is likely a result of the incredible diver-
sity of soil metagenomes, which confounds efforts to identify low-
abundance genotypes. Methods to enrich these important yet low-
abundance functions should improve the capture efficiency of
functional selections and enable the discovery of new gene func-
tions (44, 45). Even without applying enrichment strategies, we
discover numerous tolerance genes active against hemicellulose-
and lignin-derived inhibitors, including genes of entirely un-
known function (e.g., Fig. 3B and G) as well as enzymes with
well-defined applications (61, 62) (e.g., PadC [Fig. 3A]). Our dis-
coveries highlight the potential for the soil metagenome to enable
process improvements in industrial biotechnology. The tremen-
dous genetic diversity in soil (28, 46–51) (Fig. 2), however, re-
mains mostly unexplored, and this potential is largely waiting to
be realized.
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