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Commensal gut bacterial communities (microbiomes) are 
predicted to influence human health and disease1,2. Neonatal 
gut microbiomes are colonized with maternal and environ-
mental flora and mature toward a stable composition over 2–3 
years3,4. To study pre- and postnatal determinants of infant 
microbiome development, we analyzed 402 fecal metage-
nomes from 60 infants aged 0–8 months, using longitudinal 
generalized linear mixed models (GLMMs). Distinct microbi-
ome signatures correlated with breastfeeding, formula ingre-
dients, and maternal gestational weight gain (GWG). Amino 
acid synthesis pathway accretion in breastfed microbiomes 
complemented normative breastmilk composition. Prebiotic 
oligosaccharides, designed to promote breastfed-like micro-
flora5, predicted functional pathways distinct from breastfed 
infant microbiomes. Soy formula in six infants was positively 
associated with Lachnospiraceae and pathways suggesting 
a short-chain fatty acid (SCFA)-rich environment, includ-
ing glycerol to 1-butanol fermentation, which is potentially 
dysbiotic. GWG correlated with altered carbohydrate degra-
dation and enriched vitamin synthesis pathways. Maternal 
and postnatal antibiotics predicted microbiome alterations, 
while delivery route had no persistent effects. Domestic 
water source correlates suggest water may be an underap-
preciated determinant of microbiome acquisition. Clinically 
important microbial pathways with statistically significant 
dietary correlates included dysbiotic markers6,7, core entero-
type features8, and synthesis pathways for enteroprotective9 
and immunomodulatory10,11 metabolites, epigenetic media-
tors1, and developmentally critical vitamins12, warranting 
further investigation.

Commensal gut microbes contribute to pathogen exclusion, 
nutrient acquisition, and immune recognition, thereby prevent-
ing or modulating multiple human pathologies1,2. Understanding 
determinants of early microbiome establishment can guide health-
promotion and disease-prevention efforts.

Human milk provides optimal infant nutrition12, and favors 
gut Bifidobacterium and Lactobacillus spp4,13. While commercial 
formulas closely approximate breastmilk composition12,14, and 
galacto- and fructo-oligosaccharides (GOS and FOS, respectively) 
are designed to mimic human milk oligosaccharides5, breastfed 

and formula-fed infant gut microbiomes remain distinct4,12. The 
impact of specific formula ingredients on gut microbiome acquisi-
tion is underdetermined.

To test the hypothesis that specific formula components alter the 
taxa and gene-encoded functions of developing gut microbiomes, 
we whole-metagenome shotgun sequenced 402 frozen fecal samples 
collected monthly from 60 healthy twins (median gestational age, 
37 weeks) from birth to 8 months3,13 (Supplementary Table 1). We 
constructed longitudinal GLMMs for taxa and genetically encoded 
functional pathways (for brevity, hereafter referred to as ‘pathways’) 
inferred using MetaPhlAn2 and HUMAnN2; all P values are two-
tailed, from maximum-likelihood GLMMs Tukey-corrected for 
multiple comparisons (Methods and Supplementary Tables 2–7). 
This study, approved by the Human Research Protection Office of 
Washington University School of Medicine, complied with all ethical 
regulations. Written informed consent was obtained for all subjects.

We identified multiple known determinants of gut microbi-
ome assembly, confirming the validity of our approach. (Fig. 1 
and Supplementary Fig. 1)4,15–17. Alpha diversity (Shannon index) 
correlated positively with time (n =​ 402 samples, P <​ 0.001) and 
fruit/vegetable exposure (n =​ 160, P =​ 0.011), and negatively with 
maternal intrapartum ampicillin-sulbactam (n =​ 46, P =​ 0.005) and 
any postnatal antibiotics (n =​ 49, P =​ 0.043). Bifidobacteriaceae 
enrichment correlated with >​50% breastfeeding (n =​ 75, P =​ 0.003) 
and lifetime GOS exposure (n =​ 204, P =​ 0.005). Lachnospiraceae 
increased with time (n =​ 402, P <​ 0.001) and decreased with 
any breastfeeding (n =​ 125, P =​ 0.014), Enterobacteriaceae 
decreased with time (n =​ 402, P <​ 0.001) and GOS (n =​ 204, 
P =​ 0.003), and Bacteroidaceae decreased with Cesarean delivery  
(n =​ 227, P =​ 0.003) and increased with fruit/vegetable exposure 
(n =​ 160, P =​ 0.004).

Breastfed infant gut microbiomes accrued amino acid synthe-
sis pathways that complemented breastmilk’s changing amino acid 
content14, suggesting that parallel milk and microbiome develop-
ment may reflect physiologic adaptation (Fig. 2). Majority-breastfed 
(>​50%) infant gut microbiomes (n =​ 75) had significantly more 
methionine (P <​ 0.001), branched-chain amino acids (BCAA, 
isoleucine/leucine/valine, P =​ 0.020), cysteine/serine (P =​ 0.012), 
threonine (P =​ 0.004), and arginine (P =​ 0.023) synthesis pathways. 
All synthesis pathways enriched in breastfed microbiomes except 
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Fig. 1 | Taxonomic composition of infant fecal microbiota. a, Relative abundance of genera, grouped by month, diet, and delivery route. Samples are 
grouped horizontally by month of life, diet (breastfeeding, cow’s milk formula, soy formula), and delivery route. All genera with ≥​2% relative abundance 
in any sample are included, sorted vertically by phylum and relative contribution to the aggregate community of all subjects. b, Diversity and major taxa 
by age and diet. Boxplots (boxes representing IQRs with median shown in black) portray alpha diversity (Shannon index) and relative abundance of 
Bifidobacteriaceae, Lachnospiraceae, and Enterobacteriaceae over time, separated by diet type: majority breastfeeding (n =​ 75 samples), cow’s milk formula 
feeding (n =​ 295), and soy formula feeding (N =​ 32). Diversity increases with age (P <​ 0.001) and soy (P =​ 0.036). Bifidobacteriaceae correlated positively 
with breastfeeding (P =​ 0.003) and negatively with soy (P <​ 0.001). Lachnospiraceae increased in association with time (P <​ 0.001) and soy (P <​ 0.001) and 
decreased with breastfeeding (P =​ 0.014). Enterobacteriaceae decreased with time (P <​ 0.001) and GOS in cow’s milk formula (P =​ 0.003). All P values are 
from multivariate longitudinal maximum-likelihood GLMMs, Tukey-corrected for multiple comparisons (Supplementary Table 3). c, Principal Coordinate 
Analysis (PCoA) plot of taxonomic families, colored by major taxa. PCoA plots of taxonomic families based on the Bray–Curtis dissimilarity index for all 
samples (n =​ 402) are shaded from low (purple) to high (green) relative abundance of Bifidobacteriaceae, Lachnospiraceae, and Enterobacteriaceae, 
highlighting three distinct clusters. Sequential multivariate analysis of variance (adonis in R, two-tailed) yielded R2 values of 0.37 for Bifidobacteriaceae 
(P =​ 0.001), 0.13 for Lachnospiraceae (P =​ 0.001), and 0.11 for Enterobacteriaceae (P =​ 0.001); residual R2 from a multivariate model including only these 
three taxa was 0.38. PC1 (principal coordinate axis 1) explains 39.6% of the variance; PC2 (principal coordinate axis 2) explains 18.6% of the variance.
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Fig. 2 | Dynamic development of amino acid synthesis pathways. a, Selected amino acid synthesis pathways, by age and diet (breastfeeding versus 
formula). b, Selected amino acid synthesis pathways, by age and diet (breastfed, cow’s milk formula fed, soy formula fed). Scatterplots of normalized 
abundance (CPM) of selected amino acid synthesis pathways versus infant age are shaded according to diet type. In plot a, mostly breastfeeding (n =​ 75 
samples) is compared with mostly formula feeding (n =​ 327); in plot b, current majority breastfeeding (n =​ 75), cow’s milk formula feeding (n =​ 295), and 
soy formula feeding (n =​ 32) are compared. Regression lines with 95% confidence interval shading (light gray) are drawn using the loess method in R.  
All P values are two-tailed, from multivariate longitudinal maximum-likelihood GLMMs Tukey-adjusted for multiple comparisons (Supplementary Table 3). 
c, Known reference ranges for human milk total amino acid (TAA) content. Published TAA reference ranges in term breastmilk are plotted in comparison 
with US Department of Agriculture standards for infant formula to contextualize panels a and b. The line graph plots normative human milk TAA content 
over time for colostrum (origin), transitional milk (0.5 months), and at 2 months and 4 months postdelivery (see Table 4 in ref. 14). The bar plot shows 
predicted differences in total amino acid content between US Department of Agriculture 2009 standards for infant formula and mature human milk  
(see Table 8 in ref. 14), divided by normative values for human milk; a +​ 0.36 value for methionine indicates that formula has 36% more methionine  
(mg per total N) than human milk. N, nitrogen; NS, not significant.
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cysteine/serine correspond to amino acids less concentrated in 
breastmilk than in standard infant formula14,18. Breastfed microbial 
arginine and BCAA synthesis pathways increased sharply after birth 
and plateaued at ~ 60 d, coinciding precisely with normative declin-
ing amino acid content as breastmilk transitions from colostrum to 
mature milk14 (Fig. 2). Breastmilk is low in methionine and cysteine 
in all lactation stages14; breastfed microbiomes had more methio-
nine and cysteine synthesis pathways at all time points. Histidine 
and tryptophan are more abundant in breastmilk than in formula14, 
and breastfed microbiomes had significantly fewer histidine-purine-
pyrimidine (P =​ 0.046) and tryptophan-precursor chorismate 
(P <​ 0.001)19 synthesis pathways. Glutamate and glutamic acid are 
abundant in breastmilk14, and glutamate synthesis pathways (PWY-
5505), though too sparse to model, were almost exclusive to formula-
fed microbiomes (n =​ 114, 90% of total). Lysine was an exception to 
milk–microbe complementarity. Infant formulas have more lysine 
than breastmilk, yet formula-fed microbiomes had more lysine 
synthesis pathways (P =​ 0.003). Lysine synthesis pathways mapped 
to Bacteroides and to Firmicutes genera (Supplementary Table 4);  
formula-associated enrichment probably reflects accelerated micro-
biome maturation following breastfeeding cessation4,13.

Milk–microbiome complementarity may be physiologically rele-
vant to neonatal and infant protein balance12,14. Although breastmilk’s 
amino acid content declines postpartum14 and formula composi-
tion is static, normative serum arginine, cysteine, and methionine 
concentrations decline almost identically in breastfed and formula-
fed infants20, suggesting a ‘gap’ that might be filled by microbially 
produced amino acids. Breastfeeding-enriched metabolic path-
ways could mechanistically explain some of its known benefits11,12. 
Arginine and cysteine might prevent serious infections10,11 and bio-
tin, for which synthesis pathways are enriched in breastfed infants 
(P =​ 0.006), inhibits pathogenic Escherichia coli adherence9. Many 
breastfeeding-associated amino acid synthesis pathways mapped 
to Bifidobacterium spp., an exceptionally successful breastfed gut 
colonizer. Breastfeeding-correlated enrichment of Bifidobacterium-
identified amino acid synthesis pathways in a pattern contempora-
neous and complementary to human milk maturation might reflect 
ancestral coevolution with commensal microbiota.

GOS and FOS are added to formulas to promote breastfed-like 
microbial communities5. Although lifetime GOS exposure corre-
lated with Bifidobacteriaceae enrichment, prebiotics did not uni-
formly predict breastfed-like functional pathways, highlighting 
current technologic limitations of formula design and manufac-
turing (Supplementary Fig. 2). Concurrent GOS and FOS expo-
sure (n =​ 26) predicted increased microbial BCAA (P <​ 0.001) and 
threonine (P =​ 0.038) synthesis pathways, mimicking breastfeed-
ing. Lifetime GOS exposure (n =​ 204) predicted decreased tyrosine 
(P =​ 0.004), cysteine/serine (P =​ 0.003), and arginine-polyamine 
(P =​ 0.040) synthesis pathways, opposing breastfeeding. In all mod-
els, prebiotic coefficients approximately equaled or exceeded those 
for breastfeeding. Pathways depleted with GOS exposure primarily 
belonged to Enterobacteriaceae (Supplementary Table 4); discor-
dant GOS and breastfeeding correlates might reflect GOS-related 
decrease in Enterobacteriaceae5.

Six infants from four families were soy-exposed; sample size 
ranged from 31–37, depending on soy formula type (+​/−​ FOS) 
and exposure type (current or lifetime; see Supplementary Table 6).  
Soy feeding predicted greater alpha diversity (Shannon index, 
n =​ 31, P =​ 0.036), low Bifidobacteriaceae (n =​ 31, P <​ 0.001), and 
high Lachnospiraceae (n =​ 32, P <​ 0.001) content; in both taxo-
nomic models, the coefficient for soy was greater than for breast-
feeding (Figs. 1b and 3 and Supplementary Fig. 3). Two soy-exposed 
twin pairs were soy-discordant, permitting comparison with a 
related control. Twins are expected to have similar microbiomes3,13, 
yet soy-discordant twin microbiomes were dissimilar, whereas 
unrelated soy-exposed microbiomes had strong resemblance.  

Soy encourages Lachnospiraceae proliferation16, but has no clear 
effect on Bifidobacteriaceae16,21. Soy formula could disfavor 
Bifidobacteriaceae via cidal effects of soy isoflavone derivatives22, 
by containing prebiotics (FOS) with weak bifidogenic properties23  
or by favoring competing taxa16. Pre-soy samples were few (n =​ 6), 
but pre–post soy comparisons did not suggest soy-mediated 
bifidobacterial suppression: soy-fed microbiomes were low in 
Bifidobacteriaceae before soy exposure.

Low pre-soy bifidobacterial content suggests that low-Bifido-
bacteriaceae microbiomes might drive soy formula selection, espe-
cially as soy feeding is usually elective24, rather than required for 
galactosemia, congenital lactase deficiency, or cow’s milk protein 
allergy25. Soy-correlated depletion of Bifidobacteriaceae-identified 
methionine (n =​ 31, P =​ 0.010) and S-adenosyl methionine (n =​ 37, 
P =​ 0.019) synthesis pathways suggests a mechanism for this effect 
(Supplementary Table 4). Low-Bifidobacteriaceae microbiomes are 
associated with infant colic, which often prompts formula changes6. 
Methionine is a plausible mediator of enteric symptoms, as it affects 
both gut epithelia26 and motility27. Indeed, methionine synthesis 
pathways positively correlated with reported diarrhea in our cohort 
(n =​ 16, P <​ 0.001), possibly representing a clinical correlate of methi-
onine’s reported prokinetic properties27. Soy protein is methionine 
deficient relative to mammalian casein and whey proteins; soy for-
mula is methionine supplemented with a free methionine content 
~125 times that of breastmilk18,24. These gut-specific effects of methi-
onine provide a biologically plausible mechanism for symptoms 
associated with low bifidobacterial and methionine synthesis path-
way content to improve after initiation of high-methionine formula.

Several soy-associated pathways—chorismate synthesis (n =​ 31, 
P <​ 0.001), lactose/galactose degradation (n =​ 37, P <​ 0.001), and 
starch degradation (n =​ 31, P <​ 0.001)—suggested SCFA-producing 
Lachnospiraceae proliferation. Soy-correlated enrichment of lysine 
synthesis (n =​ 32, P <​ 0.001), riboflavin synthesis (n =​ 32, P <​ 0.001), 
and glycerol-to-butanol fermentation (n =​ 32, P <​ 0.001) path-
ways suggested adaptation to SCFAs. Lactose/galactose and starch 
degradation pathways frequently mapped to Lachnospiraceae 
(Supplementary Table 4), and a greater proportion of chorismate 
synthesis pathways were Blautia identified post-soy exposure  
(Fig. 3c). Lysine provides an acetate and butyrate synthesis sub-
strate28, butyrate stress in Clostridium spp. induces upregulation 
of riboflavin and downregulation of methionine synthesis29, ace-
tate stress promotes glycerol-to-butanol fermentation29, and many 
microbes coregulate riboflavin synthesis genes with metabolic stress 
response modules30. Some soy-associated changes are potentially 
dysbiotic: decreased Bifidobacteriaceae and elevated glycerol-to-
1-butanol fermentation combined with high Lachnospiraceae con-
tent have been associated with inflammation, allergies, and hepatic 
steatosis2,7. These dysbiotic features raise concerns about the long-
term safety and efficacy of elective soy formula feeding.

Maternal GWG has yet-to-be determined effects on infant gut 
microbiome development15,31,32. Here, GWG (n =​ 402) predicted 
persistent enrichment of infants’ microbial glucose (P <​ 0.001) and 
glycogen (P =​ 0.005) degradation pathways, and phenylalanine 
(P =​ 0.011), cysteine/serine (P <​ 0.001), folate (P =​ 0.015), thiamine 
(P <​ 0.001), biotin (P <​ 0.001), and pyridoxine (P =​  0.009) synthesis 
pathways, after controlling for gestational age, maternal diabetes, 
and prepregnancy body mass index (BMI) (Supplementary Table 1).  
Starch degradation pathways negatively correlated with GWG 
(P =​ 0.032) The GWG distribution in our cohort roughly corre-
sponded with Institute of Medicine guidelines for twin pregnancies 
(see Methods): women with inadequate and excessive GWG fell into 
the first and fourth quartiles, respectively. GWG-correlated path-
ways plotted by age and quartile suggest that GWG-mediated effects 
persistent at 8 months are most apparent in infants born to mothers 
who gained the least weight, and low GWG appears more impactful 
with increasing gestational age (Fig. 4).
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Although true malnutrition is unlikely in our cohort, maternal 
undernutrition increases risk of oxidative injury, glucose dysregu-
lation, adiposity, and cardiovascular disease in offspring1. Several 

GWG-enriched vitamin synthesis pathways (pyridoxine, thiamine, 
folate) are critical to early infant neurodevelopment12, and thiamine 
synthesis pathways are a proposed distinguishing core ‘enterotype’ 
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feature8. GWG negatively correlates with folate synthesis pathway 
abundance in the placental microbiome33. We observed the inverse 
relationship in our population (GWG-associated folate pathway 
enrichment), perhaps representing compensation for the fetal 
microenvironment. Folic acid is a key epigenetic mediator, and 
might effectuate enduring host–microbe interactions and mediate 
fetal origins of disease1.

GWG-associated microbial metabolic pathway changes per-
sisting eight months postnatally extend current knowledge that 
GWG influences microbiome development in the first months 
of human life15,31,32 and for up to  1 year in nonhuman primates34. 
As maternal dietary records and weight gain by trimester were 
not collected, we can neither identify trimester-specific modu-
lations nor attribute GWG-associated effects to specific dietary 
variables (for example, fat content). Enduring GWG-associated 
changes independent of delivery route or breastfeeding might 
reflect altered in-utero meconium colonization35, microbe trans-
fer from caregivers36, and other genetic or environmental factors 
(for example, family feeding practices) influencing both GWG 
and infant microbiome acquisition.

Maternal intrapartum antibiotics predicted postnatal devel-
opment of taxa and functional pathways, eclipsing the effects of 
delivery route and postnatal antibiotics (Supplementary Fig. 4). 
Maternal intrapartum ampicillin-sulbactam exposure (n =​ 46) pre-
dicted depleted histidine/purine/pyrimidine synthesis (P =​ 0.012) 
and homolactic fermentation (P <​0.001) pathways in offspring 
microbiomes. Postnatal amoxicillin exposure (n =​ 38), analo-
gous to ampicillin without sulbactam, predicted increased histi-
dine/purine/pyrimidine synthesis pathways (P =​ 0.011). Maternal 
intrapartum clindamycin exposure (n =​ 25) positively correlated 
with Lachnospiraceae (P =​ 0.008), Enterobacteriaceae (P <​ 0.001), 
and cysteine/serine (P <​ 0.001) and biotin (P =​ 0.002) synthe-
sis pathways. When used, clindamycin was given immediately  
(<​30 minutes) before Cesarean delivery in our cohort, but the 
more frequently administered cefazolin (n =​ 164) did not correlate 
with these pathways. Lack of persistent microbiome effects asso-
ciated with Cesarean delivery when corrected for confounders is 
consistent with previous reports15. Infant multivitamin with iron 
exposure (n =​ 40, Supplementary Fig. 5) predicted enriched arginine- 
polyamine (P =​ 0.018), folate (P <​ 0.001), and heme (P =​ 0.026) bio-
synthesis and homolactic fermentation pathways (P =​ 0.028).

Domestic drinking water sources had associated microbiome 
signatures (Supplementary Fig. 5); sample size depended on expo-
sure type (Supplementary Table 6). Lactose/galactose degradation 
pathways positively correlated with filtered water exposure (n =​ 42, 
P =​ 0.004); enhanced bacterial counts with home water filters 
might explain this effect37. Tap water exposure predicted decreased 
Enterobacteriaceae (n =​ 251, P =​ 0.016), glycogen degradation 
(n =​ 230, P =​ 0.006), and homolactic fermentation (n =​ 230, P =​ 0.007) 
pathways. Bottled water exposure predicted increased homolactic 
(n =​ 122, P =​ 0.002) pathways, and boiled/distilled water correlated 
with increased pyridoxine synthesis pathways (n =​ 61, P =​ 0.003). 
Together with animal data38, these patterns suggest an underappreci-
ated influence of drinking water on microbiome acquisition.

Although this DNA-based study represents genetic potential 
rather than confirmed functions, our observations are consistent 
with transcriptomic studies showing enriched arginine biosynthe-
sis transcripts in mother-fed relative to formula-fed piglets39 and 
enhanced BCAA synthesis with sialylated oligosaccharide exposure 
in mice40. Further work is required to mechanistically establish a 
causal relationship between soy exposure and soy-fed microbiome 
signatures and to definitively show that soy protein per se drives 
these changes, probably via experimental validation in microbiome-
humanized gnotobiotic mice13.

In summary, our findings suggest host–microbe metabolic 
mutualism in infancy, whereby gut microbiome gene content 

expands to counterbalance components relatively lacking in 
human milk (Supplementary Fig. 6). We propose that this milk–
microbiome synergy reflects physiologic coevolution with our 
earliest commensals, and could play a major teleological role in 
infant protein nutrition and child growth. The observed discor-
dance between microbial functional correlates of formula com-
ponents (for example, prebiotics) and breastmilk may warrant 
revised metrics for evaluating the safety and efficacy of infant for-
mulas. Soy formulas corresponded with profoundly altered taxa 
and pathways, some of which have pathologic correlates6,7. Finally, 
the association between maternal GWG and altered infant micro-
biome carbohydrate utilization and vitamin synthesis pathways 
enduring 8 months postnatally extends current knowledge that 
maternal GWG influences early microbiome acquisition. These 
data can inform further ecologic and mechanistic interrogations 
of gut microbiome development.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability, and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41591-018-0216-2.
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Methods
Study population. This study was approved by the Human Research Protection 
Office of Washington University School of Medicine in St. Louis, and it complied 
with all ethical regulations. Written informed consent was obtained from all adult 
participants and from the parents or legal guardians of all minor subjects. We 
used fecal samples that had been frozen at −​80 °C since collection at monthly 
intervals from a birth cohort of healthy twins in St. Louis, in which the mothers 
had consented to monthly fecal sample collection from birth until 2 years of 
age3,13,41–43. We selected a time interval of 0–8 months of age to capture transitions 
from breastfeeding to formula and early introduction of solid food. To minimize 
potential confounding effects of early illness or antibiotic administration, we 
excluded any neonates who received antibiotics in hospital following delivery. 
Because of this predetermined exclusion criterion, we also excluded all infants 
with a maternal history of chorioamnionitis. A total of 402 samples from 60 
infants in 31 families met our predefined coverage threshold of 5,000,000 reads 
(2,500,000 forward/reverse) before processing44, for a median of 7 samples 
per infant (interquartile range (IQR), 6–8). Demographic data are provided in 
Supplementary Table 1. We excluded neonates treated with antibiotics in the first 
week of life to avoid potential bias from early illness or antibiotic exposure; there 
were accordingly no infants with a maternal history of chorioamnionitis. Infant 
age at stool collection ranged from the day of delivery to 253 d. All infants were 
exposed to solid food by the end of the study period. The median gestational age 
was 37 weeks (IQR, 36–38), 43% of infants were delivered vaginally, and 47% of 
twins were monozygotic, 50% dizygotic, and 3% of unknown zygosity. Four infants’ 
mothers were diabetic (7%), 6 infants’ mothers developed preeclampsia (10%), and 
2 infants were born to a mother with both conditions.

DNA extraction and sequencing. We extracted fecal metagenomic DNA and a 
positive control (Zymobiomics microbial community standard D6300), and used 
a modified Nextera DNA Library Preparation Kit protocol to prepare DNA for 
Illumina-platform sequencing (NextSeq-High; ~ 400,000,000 maximum reads, 150 
cycles per read). A positive control (Zymobiomics community Standard) and a 
negative control (nuclease-free water) were included in sequencing runs. Detailed 
experimental protocols follow.

DNA extraction. We extracted DNA using the MoBio DNEasy PowerSoil 
Extraction Kit (Qiagen, 12888-100) according to the manufacturer’s instructions, 
with the following modification: in lieu of centrifugation, we used bead beating 
with a BioSpec Mini-BeadBeater for 4 min. Bead beating consisted of 2 min on the 
‘homogenize’ setting, 2 min on ice, and then 2 min on the ‘homogenize’ setting. A 
Zymobiomics microbial community standard (Zymobiomics, D6300) 0.75 ml was 
also extracted along with fecal DNA samples. DNA was eluted in 100 μ​l nuclease-
free water and quantitated using a Qbit fluorometer and a Qbit dsDNA HS Assay 
Kit (Invitrogen, Q32854) according to the manufacturer’s instructions.

Nextera library preparation. Fecal DNA samples were diluted to a concentration of 
0.5 ng μ​l−1, and 1 μ​l of each sample (including a nuclease-free water negative control 
and the Zymo community standard positive control) was added to a 96-well plate. 
Sequencing libraries were prepared using the Nextera DNA Library Preparation 
Kit (Illumina, FC-121-1011) protocol according to the manufacturer’s instructions, 
with the following modifications:

	A.	 Tagmentation

	 1.	 Tagmentation master mix preparation: Component: 1 reaction (μ​l), 
100 (μ​l)Tagment DNA buffer: 1.25, 125.0TDE1 enzyme: 0.125, 12.5Nucle-
ase-free water: 0.125, 12.5

	 2.	 Tagmentation master mix (1.5 μ​l) added to 1 μ​l genomic DNA in each 
well of the 96-well plate, vortexed, and centrifuged.

	 3.	 Plate covered with microseal B and incubated in a Thermocycler at 
55 °C for 15 min.

	B.	 Adapter addition
	 1.	 KAPA HiFi PCR master mix (KAPA HiFi HotStart 2x ready mix, 

KK2602/KM2605) used for addition of oligonucleotide index adapters. 
KAPA PCR MasterMix (11.2 μ​l) and 8.8 μ​l of adapters (1 μ​M) added to 
each well, vortexed, and centrifuged.

	 2.	 PCR done with following Thermocycler protocol:

	 i.	 72 °C, 3 min
	 ii.	 98 °C, 5 min
	 iii.	98 °C, 10 s
	 iv.	63 °C, 30 s
	 v.	 72 °C, 30 s
	 vi.	go to iii 13 ×​ 72 °C, 5 min
	 vii.4 °C, forever

	C.	 PCR cleanup

	 1.	 Added 22.5 μ​l AmpPure XP beads to PCR reaction (Agencourt 
A63881)

	 2.	 Incubated 5 min at room temperature
	 3.	 Separated beads for 2 min on magnetic stand
	 4.	 Removed supernatant
	 5.	 Washed beads twice with 200 μ​l 80% ethanol
	 6.	 Air-dried for 15 min
	 7.	 Added 30 μ​l resuspension buffer (10 mM Tris-Cl, 1 mM EDTA, 0.05% 

Tween-20 (pH 8.0)), pipetted mix
	 8.	 Incubated at room temperature for 5 min
	 9.	 Separated beads on magnetic plate for 2 min
	 10.Transferred 27 μ​l supernatant to new plate
	 11.Quantitated DNA with Qubit HS dsDNA Assay kit  

(Invitrogen, Q32854)

Illumina sequencing. 

	A.	 Library pooling: after quantitation, sequencing libraries were pooled in trip-
licate to minimize the effects of pipetting error. Schema for pooling included 
the following rules: 

	 1.	 Target of 5 ng DNA per sample, per pool
	 2.	 If calculated volume for 5 ng <​1 μ​l, samples were diluted (2 ×​, 5 ×​, 10 ×​, 

or 20 ×​) so the volume was >​1 μ​l
	 3.	 Triplicate pools quantitated with Qubit HS dsDNA Assay kit (Invitro-

gen, Q32854)
	 4.	 Each pool was added to a single pool to make an equimolar solution, 

and diluted to a concentration of 2 ng μ​l−1

	 5.	 Pool submitted for Illumina platform sequencing (MiSeq flowcell) as a 
~ 500,000-read spike-in sample; reads analyzed to determine evenness of 
sample distribution. If needed, a fourth corrective pool was pipetted and 
added to the solution to ensure adequate read coverage (>​2,500,000 for 
both forward and reverse) for all samples.

	B.	 Sequencing

Pooled samples diluted to 2 ng μ​l−1 with nuclease-free water (~10 μ​M based 
on expected fragment size) were submitted for Illumina platform sequencing 
(NextSeq-High; ~400,000,000 maximum reads) with 150 cycles per read. 
Sequence data were returned as a .fastq file with reads demultiplexed according to 
oligonucleotide adapter indexes.

Clinical data collection. Clinical data were collected from medical records at the 
time of delivery, monthly parental surveys at the time of stool sample collection, 
and outpatient pediatric records, and securely stored on a RedCap database. 
Parental questionnaires, infant medical records, and formula manufacturers’ labels 
provided a detailed clinical and dietary dataset (including symptoms, medications, 
and introduction of new foods) associated with each sample. Parental dietary 
reports included infant formula brands, solid foods, and water sources, as well as 
fields for reporting daily or weekly frequency of each dietary exposure from the 
Centers for Disease Control and Prevention Infant Feeding Practices Study II45. 
As exclusive breastfeeding was rare in this twin cohort, infants were classified as 
breastfed if their parents reported >​50% of their feeds as breastmilk in the survey 
associated with a given stool sample. All breastfed infants received maternal milk; 
there were no reported exposures to banked or donated human milk. Medication 
exposures reported on parental surveys were confirmed with medical records from 
the child’s primary care physician. Information from the manufacturer’s label for 
each infant formula was used to generate a suite of variables representing exposure 
to specific formula ingredients (for example, lactose, sucrose, soy protein, GOS, 
FOS); full details are below.

Clinical data analytic specifications. Clinical data deidentified of any protected 
health information was collected from medical records at the time of delivery, 
monthly parental surveys at the time of stool sample collection, and outpatient 
pediatric medical records, and was securely stored on the RedCap database. 
Parental dietary reports included:

	A.	 Binary fields for exposure to human milk, various infant formula brands, 
foods, medications, experience of symptoms, etc.

	B.	 Fields for frequency of exposure to a food type, expressed either as the num-
ber of times an infant received a food per day, or per week

	C.	 Free text options

To transform dietary information into data that were usable in statistical 
models, the following steps were followed:

	A.	 All frequency information listed as exposures per day was converted into 
exposures per week for convenience.

	B.	 Percentages of feeds composed of formula were calculated from parental 
reports of number of formula feeds per week and number of breastfeeds per 
week. A binary variable for ‘Mostly Breastfeeding’ was also generated if the 
percentage of breastfeeds was >​50%.

	C.	 Carbohydrate, protein, and prebiotic (GOS, FOS) ingredients were 
determined for each infant formula according to the manufacturer’s label 
(Supplementary Table 7). Binary variables for exposure to each ingredient at 
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each time point were generated according to the brand(s) of formula(s) the 
parents had reported, and the manufacturers’ labels. If parents reported using 
any brand of formula on the survey associated with a stool sample, binary 
variables for ingredients in that formula were coded as ‘1’, even if the parents 
otherwise recorded that the infant was exclusively breastfed (that is, if parents 
reported 100% breastfeeds, but filled in Enfamil Lipil as a formula they 
selected, the infant was coded as mostly breastfed, but exposed to the ingredi-
ents in Enfamil Lipil). If there was ambiguity in the specific brand of formula, 
then missing values were recorded for binary variables (for example, if it 
was unclear whether an infant was given Enfamil Lipil or Enfamil Premium, 
Lactose and Cow’s milk Formula, which are present in both, would be coded 
as ‘1’ but GOS and Polydextrose, which were only present in Premium, were 
recorded as missing). Twin siblings were assumed to have concordant feeding 
practices unless the parents specified otherwise.

	D.	 Prebiotic variables were assigned according to exposure to neither, one, or 
both prebiotics (GOS and FOS):

	 a.	GOS: exposure to GOS, regardless of concurrent FOS 
exposure

	 b.	 FOS: exposure to FOS, regardless of concurrent GOS exposure
	 c.	 Only GOS: exposure to GOS with no concurrent FOS exposure
	 d.	 Only FOS: exposure to FOS with no concurrent GOS exposure. Only 

found in soy formulas.
	 e.	 GOS/FOS: concurrent exposure to GOS and FOS.

	E.	 Solid food binary variables were aggregated as follows: 

	 a.	 Fruit or vegetable exposure →​ Fruit/Veg variable; positive if either 
Fruit or Vegetables were positive

	 b.	 Meat, fish, or egg exposure →​ MeatFishEggs variable; positive if any of 
the components were positive

	 c.	 Juice or sweetened drink exposure →​ JuiceSweetDrink variable; posi-
tive if either component was positive

	 d.	 Cereal or starch exposure →​ CerealStarch variable; positive if either 
component was positive

	 e.	 An AnyDairy variable was created for exposure to any dairy product, 
including cow’s milk formula

	F.	 For binary variables reflecting current exposure to a food, medication, or in-
gredient, a second binary variable was generated reflecting lifetime exposure 
to that food, medication, or ingredient (exposure at any point previously).

	G.	 Sample size for all binary variables is listed in Supplementary Table 6.
	H.	 Continuous variables (day of life, maternal weight gain, gestational age, 

weight) were log10-transformed before statistical analysis. Sample size for all 
continuous variables is 402.

Sequence data processing. A predetermined minimum sequencing depth 
of 5,000,000 raw reads (2,500,000 forward/reverse) per sample was required 
for inclusion in the study. Reads were trimmed using Trimmomatic 
(trimmomatic/0.33, minimum length =​ 60), and human DNA contamination 
was removed using Deconseq (Deconseq/0.4.3-chr38). We used MetaPhLan 2 
(metaphlan2/2.2.0)46 to extract taxonomic data, and HUMAnN2 (humann2/0.9.4)47 
to identify microbial functions. All taxonomic data are reported as relative 
abundance; all functional data were normalized to counts per million (CPM) using 
the humann2_renorm_table function. Full details are below.

Quality control. Only samples with >​2,500,000 raw reads in each direction  
(>​5,000,000 total raw reads) were included in this study. Supplementary Fig. 7 
shows reads by subject age (months) and the distribution of samples included 
in the study by age in months There was no systematic bias in raw reads by 
age. Neonates and infants <​3 months had fewer successful samples than infants 
3–8 months of age, with neonates having the lowest number of samples that met 
our quality threshold. The median number of raw reads per sample was 11,300,000 
(IQR, 6,300,000); the median number of reads following trimming and filtering 
human DNA was 9,200,000 (IQR, 5,600,000).

We trimmed reads using Trimmomatic48 (trimmomatic/0.33), with the 
following specifications:
•	 PE –phred33
•	 SLIDINGWINDOW:6:10
•	 LEADING:13
•	 TRAILING:13
•	 MINLEN:60

We eliminated human sequences using Deconseq/0.4.3-chr3849. All analyses 
were performed on trimmed and decontaminated samples. Decontaminated 
sequence data were publicly deposited to protect the privacy of human 
subjects (Bioproject identity PRJNA473126, accession codes SAMN09259835–
SAMN09260236).

Taxonomic data extraction. We used MetaPhlAn246 (metaphlan2/2.2.0) to extract 
taxonomic data from quality-filtered reads, with the following specifications:

•	 mpa_pkl ${mpa_dir}/db_v20/mpa_v20_m200.pkl
•	 bowtie2db ${mpa_dir}/db_v20/mpa_v20_m200

Control samples (both a negative control and a positive control from a Zymo 
community standard) were included in all sequencing runs; the community 
standard failed in the fifth run. There were no taxa identified from the negative 
control samples. Although there was some bias in the community standard (Gram-
negative organisms overrepresented, Gram-positive underrepresented), probably 
reflective of bias in DNA extraction, the results were highly reproducible, which 
is reassuring for analysis of longitudinal trends. There were small proportions 
(relative abundance <​0.1%) of taxa identified in the community standard sample 
that were not part of the theoretical community composition: Nauvomozyma 
unclassified, Pantoea unclassified, and Eremothecium unclassified (Supplementary 
Table 8). Nauvomozyma and Eremothecium were not identified in any fecal 
samples, and Pantoea unclassified was only found in a relatively small number 
of fecal samples (n =​ 73 out of 402). There were no taxa identified in the negative 
control sample. Community standard and negative control results did not suggest 
any systemic contamination.

Functional data extraction. We used Humann247 (humann2/0.9.4) to identify genes 
and functional pathways from short-read data, with the following specifications:
•	 input-format fastq
•	 search-mode uniref50
•	 bypass-translated-search
•	 bypass-prescreen
•	 gap-fill off

We used the function humann2_renorm_table to convert gene and pathway 
output into normalized CPM.

All models are performed on community-wide counts of MetaCyc-identified 
functional pathways47,50. Individual pathways contributing to aggregate families 
are detailed in Supplementary Table 2. The proportion of functional pathways 
identified as homologous to specific genera are summarized in Supplementary 
Table 4. To model the abundance of pathways related to synthesis of a specific 
metabolite (for example, clinical predictors of arginine synthetic pathway 
abundance instead of just the abundance of arginine synthesis I or arginine 
synthesis IV), pathways that were related to a specific metabolite were aggregated 
by summing the normalized community-wide abundance.

Statistical analysis. Statistical analysis and generation of figures was performed in 
R using the vegan, ape, ggplot2, lme4, lmerTest, MuMin, and multcomp packages. 
Alpha-diversity is reported as the Shannon index, determined from species-level 
abundance using the vegan diversity() function. PCoA plots were generated from 
a Bray–Curtis dissimilarity matrix of family-level taxa generated using the vegan 
vegdist() and ape pcoa() functions. Sequential multivariate analysis of variance 
was performed using the vegan adonis() function. All GLMMs in this study are 
maximum-likelihood generalized linear mixed models generated using the lme4 
lmer() function, and because the close resemblance between twins’ microbial 
communities represents an important potential confounding factor3,13,42, we 
controlled for twin status by including both family and subject (time | subject) as 
mandatory random effects in all models.

Time, in log(days) was a mandatory fixed effect in all longitudinal GLMMs; 
all other fixed effects were back-fitted using a stepwise approach, according 
to the following schema. As the effects of some clinical variables (for example, 
specific formula ingredients) on the developing gut microbiome are completely 
unknown, we began the model-fitting process agnostic to which clinical variables 
would significantly correlate with microbiome features, and screened all variables 
for inclusion. To broadly screen for covariation between clinical variables and 
microbiome features, for every taxonomic or pathway variable, we created two 
arrays of metadata corresponding to the values above and below the median (relative 
abundance or normalized CPM). We then applied a two-tailed test to compare 
these two arrays (t-test for continuous variables and Fisher’s exact test for binary 
variables) and included all metadata variables with a screening P value <​0.05 in a 
first-approximation GLMM. Because of the potential effects of Cesarean delivery 
and breastfeeding on the developing microbiome, they were always included in the 
first-approximation GLMM, even if they did not pass the screening test.

Maternal weight variables represented a special case, with multiple potential 
confounding variables15,31,32,35,51–53. GWG would ideally be classified as normal, 
inadequate, or excessive according to maternal prepregnancy BMI and estimated 
gestational age of delivery, according to Institute of Medicine guidelines54. 
However, such calculations are established only for singleton pregnancies, with 
provisional guidelines available for total weight gain in twin gestation. Thus, in 
our twin population, we attempted to control for confounding variables such 
as prepregnancy BMI, gestational age, maternal diabetes, and preeclampsia, by 
modifying our model selection pathway so that prepregnancy BMI and gestational 
age at delivery were always included in our first-approximation GLMM, even if 
they did not pass the initial screening test. The GWG distribution in our cohort 
roughly corresponded with provisional Institute of Medicine guidelines for GWG 
in twin pregnancies (16.8–24.5 kg for normal prepregnancy BMI, 14.1–22.7 kg 
for overweight prepregnancy BMI, 11.3–19.1 kg for obese prepregnancy BMI)54. 
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All mothers with inadequate GWG were in the first quartile of our population 
(2–15 kg), while the fourth quartile from our population (26–33 kg) represented 
excessive weight gain irrespective of prepregnancy BMI. Additional information 
can be found in Supplementary Table 1.

First-approximation GLMM was then back-fitted with the lmerTest step() 
function, and the MuMin rsquaredGLMM() function as a preferred post hoc 
test for goodness of fit. All P values are two-tailed, and are adjusted for multiple 
comparisons using the multcomp glht() function (tension =​ Tukey)55. Parameters 
for all GLMMs are in Supplementary Table 1, and statistically significant 
coefficients are summarized in Supplementary Table 5. Full details are below.

Statistical modeling. All maximum-likelihood longitudinal GLMMs were 
constructed using the lme4, lmerTest, MuMin, and multcomp packages in R. For 
all taxonomic and functional pathways, the model formulae took the format of:

lmer(PathwayOrTaxon ~ (1 | Family) +​ (0 +​ log(day of life) | Subject) +​ log(day 
of life) +​ x +​ y +​ …​., REML =​ FALSE, data =​ df)

Family and (time | subject) were mandatory random effects and time was a 
mandatory fixed effect in all models.

Fixed effects were back-fitted according to the following schema:

	1.	 Screening for candidate variables

	 a.	 For each outcome variable of interest (pathway or taxon abundance), 
the median was determined.

	 b.	 Two arrays of clinical variables were created; one associated with values 
above the median for the pathway or taxon of interest, and one associated 
with values below the median.

	 c.	 To screen for covariation of clinical variables with the outcome variable 
of interest, a two-tailed t-test was done for all continuous clinical vari-
ables, and a two-tailed Fisher’s exact test was done for all binary clinical 
variables. This screening test was performed to select candidate variables 
for inclusion in a longitudinal GLMM. No statistical conclusions were 
made on the basis of this screening test, as this simple screen could not 
correct for repeated sampling over time, familial effects, and correction 
for confounding variables.

	 d.	 All clinical variables with P <​ 0.05 on initial t-test or Fisher’s exact test 
screening were considered candidate variables for inclusion in the next 
naive model-fitting set.

	 e.	 Day of life, delivery route, and breastfeeding (>​50%) were always 
included in the set of candidate variables, regardless of significance in the 
initial variable screening step.

	 f.	 If any maternal weight variable (maternal prepregnancy BMI or 
maternal GWG) came through the initial screening step, then maternal 
prepregnancy BMI, maternal GWG, and infant gestational age at delivery 
were all included in the set of candidate variables, due to the potential for 
confounding effects.

	2.	 Naive model fitting
	 a.	 As binary variables were in two formats (current exposure to an 

ingredient versus lifetime exposure to an ingredient), two models were 
fitted: one for current exposure, one for lifetime exposure. Demographic 
variables (for example, maternal age, infant birthweight, day of life) were 
included in all models.

	 b.	 If variables were supersets of other variables (for example, ‘Maternal 
Intrapartum antibiotics’ is a superset of ‘Maternal Ampicillin’ and ‘Mater-
nal Cefazolin’), the supersets and subsets were not included in the same 
model; instead, a specific model (with only subset variables) and a general 
model (with only superset variables) were created.

	 c.	 Maximum-likelihood GLMMs of all candidate variables identified in 
step 1 were created using the lmer() function in the lme4 package.

	 d.	 The step() function in the lmerTest package was used to back-fit max-
imum-likelihood GLMMs for all candidate variables, with a significance 
cut-off of 0.05 for retaining fixed effects.

	 e.	 Pseudo-R2 was determined using r.squaredGLMM() in the  
MuMin package.

	3.	 Testing for contribution of interaction terms
	 a.	 If the correlation matrix of the output model showed any values >​0.1 

or <​−​0.1, between infant age and another variable, an interaction term 
for that variable and infant age (x ×​ log (day of life)) was added to the 
set of candidate variables, and back-fitting with the step() function was 
repeated.

	 b.	 Pseudo-R2 was determined using r.squaredGLMM() in the  
MuMin package.

	4.	 Model comparison
	 a.	 The best model was selected from the set of back-fitted models associ-

ated with a given outcome variable, which included a current-exposure 
model and a lifetime-exposure model. If superset/subset variables were 
part of the candidate set, then the current- and/or lifetime-exposure 
models were also divided into specific and general models. Pseudo-R2 was 
prioritized as a post hoc test to select the best model.

	5.	 Adjustment for multiple comparisons

	 a.	 The glht() function in the multcomp package55 was used to ad-
just P values in the preferred model for multiple comparison 
(lincfit =​ mcp(tension =​ ‘Tukey’)).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. Example code is available at https://bitbucket.org/
alaricwdsouza/twindiet/src/master/TwinDiet_ModelFittingExample.R.

Data availability
Sequence data supporting these findings have been deposited, along with relevant 
clinical metadata, in the SRA under BioProject ID PRJNA473126, with primary 
BioSample accession codes SAMN09259835–SAMN09260236 (study SRP148966). 
Source data for Figs. 1–4 are available online. Any additional data generated  
and analyzed in this study are available from the corresponding author upon 
reasonable request.
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upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.



2

nature research  |  reporting sum
m

ary
April 2018

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Sequence data supporting these findings have been deposited, along with relevant clinical metadata, in the SRA under Bioproject ID PRJNA473126 (https://
www.ncbi.nlm.nih.gov/bioproject/PRJNA473126), with the primary accession codes SAMN09259835-SAMN09260236 (https://trace.ncbi.nlm.nih.gov/Traces/sra/?
study=SRP148966). Source data for Figures 1-4 are provided online with the paper. Any additional data generated and analyzed in this study are available from the 
corresponding author upon reasonable request.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Because the expected effect sizes for clinical variables of interest (e.g. formula ingredients) correlating with microbial taxa and functions is 
unknown, a true power calculation could not be performed. However, our population cohort (N=60), sampling interval (monthly from 0-8 
months), and samples successfully whole-genome sequenced (N=402) , is comparable to other published studies of gut microbiome 
development that were able to detect statistically significant associations of clinical variables with microbiome taxa and functions. For 
example, Backhed et al, Cell Host and Microbe, 2015 had a larger population (N=98 mothers and infants), but lower resolution longitudinal 
sampling, with samples collected at birth, 4 months, and 12 months. Similarly, Chu et al, Nature Medicine, 2017 had a larger population (two 
matched cohorts of N=81), but a smaller number of fecal samples selected for whole-genome sequencing (N=69 meconium samples, and 
infant and maternal stools). Due to these authors' successful analysis of comparable datasets, it was reasonable to conclude that the sample 
size of our study was appropriate for investigating the effects of pre- and post-natal clinical factors on early gut microbiome maturation.

Data exclusions No data that met our predetermined sequencing threshold (>= 5 million total reads prior to processing) were excluded. 

Replication In this longitudinal cohort study, statistical modeling of multiple distinct taxonomic groups and metabolic pathways showed similar patterns 
and trends, consistently identifying major determinants of functional microbiome maturation (breastfeeding, soy formula exposure, 
prebiotics, antibiotics, domestic water source, maternal gestational weight gain). Our taxonomic modeling independently confirmed several 
known determinants of gut microbiome establishment, replicating others' prior work in the field, and confirming the utility of our approach. 

Randomization This was a longitudinal cohort study with no intervention applied; randomization is not applicable

Blinding This was a longitudinal cohort study with no intervention applied; blinding is not applicable

Reporting for specific materials, systems and methods
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Population characteristics 402 samples were included from 60 twin infants in thirty-one families, for a median of 7 samples per infant (IQR 6-8). Infant age 
at stool collection ranged from the day of delivery to 253 days. The median gestational age at delivery was 37 weeks (IQR 36-38), 
43% of infants were delivered vaginally, and 57% were born via Cesarean section. 48% of infants were male and 52% were 
female. 17% of the infants were Black, 83% were white. 3% of infants were Hispanic, and 97% were non-Hispanic. and 47% of 
twins were monozygotic, 50% dizygotic, and 3% of unknown zygosity. Four infants’ mothers were diabetic (7%), six infants’ 
mothers developed preeclampsia (10%), and two infants were born to a mother with both conditions. Additional detailed 
population characteristics are included in Supplemental Table S1 and S6

Recruitment This study was approved by the Human Research Protection Office of Washington University School of Medicine in St. Louis, and 
complied with all ethical regulations. Written consent was obtained from each adult and a parent or guardian of each minor 
subject. We used fecal samples that had been frozen at -80 C since collection at monthly intervals from a birth cohort of healthy 
twins in St. Louis, in which the mothers had consented to monthly fecal sample collection from birth until two years of age. 
Selecting a population of twins may introduce bias as the mothers are at higher risk for complications of pregnancy (e.g. 
preeclampsia, diabetes), more likely to deliver via Cesarean section, and more likely to deliver prematurely. To avoid potential 
bias from early illness and antibiotic administration, we excluded any infants who received antibiotics in the immediate postnatal 
period. 
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