
Antimicrobials are small molecules that can inhibit 
or kill bacteria. These small molecules are commonly 
used as therapeutics for bacterial infections, but some 
bacteria can grow and survive despite antimicrobial 
pressures, a property known as antimicrobial resistance.  
In clinical settings, resistant bacterial infections 
decrease available treatment options and increase 
morbi dity and mortality compared with those caused 
by susceptible bacteria1–5. Resistance is observed against 
nearly all antimicrobials (Fig. 1a,b), including so-called 
last-resort antimicrobials used in life-threatening, 
multidrug-resistant infections6–10. Bacteria resistant to 
first-line antimicrobials infect 2 million people in the 
USA yearly, and these infections exact a US$20 billion 
health-care cost11–13. This problem is not isolated to the 
USA. In the European Union, antimicrobial resistance 
has accounted for >30,000 deaths and nearly 900,000 
disability-adjusted life-years14. In fact, multiple national 
and global public health organizations categorize anti-
microbial resistance as an imminent danger and uni-
formly agree that tracking its emergence and prevalence 
is critical to minimize the threat to human health14–17. 
Antimicrobial susceptibility testing (AST) is the traditional 
method for assaying antimicrobial resistance in bacteria 
(Box 1). These culture-based tests determine how well 
bacteria can grow in the presence of antimicrobials. 
AST is widely used in hospital clinical microbiology 
laboratories because it provides actionable phenotypic 
resistance data to guide patient treatment decisions. 
Although culture-based resistance determination can 
provide criti cal information for patient management 
and resistance gene epidemiology, it has drawbacks in 

implementation and information content18. Conducting 
AST requires microbiology facilities and trained clini-
cal microbiology personnel for accuracy. Additionally, 
AST is viable only for cultivable bacteria, precluding 
studies on the emergence and spread of antimicrobial  
resistance in diverse and complex microbial com-
munities with large fractions of currently uncultured 
bacteria19.

Bacterial antimicrobial resistance is usually geneti-
cally encoded (Fig.  1c). Genetically encoded anti-
microbial resistance can occur through a number of 
mechanisms, including overexpression or duplication 
of existing genes, point mutations or the acquisition of 
entirely new genes via horizontal gene transfer (HGT). 
Improvements in next-generation sequencing tech-
nologies and computational methods are facilitating 
rapid antimicrobial resistance gene identification and 
characterization in genomes and metagenomes. These 
developing technologies and methods complement 
traditional culture-based methods for clinical and 
surveillance applications and provide opportunities 
for quick and sensitive resistance determinations in 
cultivable and uncultivable bacteria. Large-scale and 
comparative studies of human, animal and environ-
mental samples have provided unprecedented insights 
into the global distribution of antimicrobial resistance 
genes and the spread of multidrug-resistant bacteria20–24, 
resistance exchange networks25 and how different habi-
tats and phylogeny affect the evolutionary dynamics of 
antimicrobial resistance worldwide26. Understanding 
and surveying genetic determinants of resistance using 
sequencing data pose unique challenges that are being 
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addressed by improved computational algorithms 
that organize genomic data and predict antimicrobial  
resistance and by improving in  vitro sequencing 
modalities.

In this Review, we discuss the strengths and weak-
nesses of current and emerging methods for studying 
resistance, including computational strategies and 
resources for resistance gene identification in genomic 
and metagenomic samples. We also describe recent 
advancements to mitigate weaknesses in resistance 
detection methods, and we highlight areas requiring 
greater focus.

Sequencing-based resistance discovery
Advancements in sequencing technologies have 
increased bacterial sequence data availability, and con-
tinually decreasing costs have made sequencing a via-
ble antimicrobial resistance surveillance tool. Several 
methods and tools have been published in recent years 
for detecting genetic determinants of antimicrobial 
resistance from whole-genome sequencing (WGS) 
and whole-metagenome sequencing (WMS) data 
(TABle 1). Organizing sequencing data is an important 
pre-processing step before antimicrobial resistance gene 
analysis. Short reads, generated by technologies such as 
Illumina, can either be processed using assembly-based 
methods, whereby sequencing reads are first assembled 
into contiguous fragments (contigs) and then annotated 
by comparing with custom or public reference databases, 
or directly analysed using read-based methods, whereby 
resistance determinants are predicted by mapping reads 
directly to a reference database (Fig. 2).

Assembly-based methods. The de  novo assembly 
of WGS of bacterial genomes from short-read data is 
generally performed by De Bruijn graph (DBG)-based 
assemblers such as SPAdes27, Velvet28, ABySS29 and 
SOAPdenovo30. In this approach, sequencing reads are 
divided into shorter overlapping sub-sequences (called 
k-mers) of length k (where k is less than the read length) 
and are used to form a network graph. The assem-
blers then reconstruct the genome sequence by find-
ing an optimum path (euler’s path) through the graph  
that visits each edge once (see reF.31 for more infor mation 
on DBG-based assembly). Although the DBG approach 
is computationally efficient in handling high-volume 
sequencing data, it is greatly affected by errors introduced 
during sequencing32. Errors in sequencing data intro-
duce false k-mers in the graph, resulting in fragmented 
assemblies. Several assemblers (for example, SPAdes 
and Velvet) heuristically eliminate these errors before 
finding a Euler’s path in the graph31,33. Assembling WMS 
data is more complicated than single-isolate assembly 
(Fig. 2a), as the algorithms need to account for unknown  
abundances of different organisms with unknown phylo-
genetic relationships32. In single-genome assembly,  
uniform sequencing coverage across the genome is 
used by assemblers to correct sequencing errors and to 
identify repetitive sequences and plasmids — several  
assemblers exploit the higher coverage of plasmids 
owing to copy number to distinguish between chromo-
some and plasmid sequences in isolate genomes34–37 — 
but uneven coverage of different organisms in WMS 
data makes detecting repeats difficult. Long stretches 
of identical sequences in unrelated species further com-
plicate assembly by making it difficult to assign reads 
to a particular species. Thus, algorithms developed for 
single-genome assembly cannot be directly applied to 
assemble metagenomes. Several metagenome-specific 
assemblers have been developed to overcome these 
challenges, either by partitioning or optimizing the 
graph for uneven sequencing depths32. Some notable 
metagenomic assemblers are IDBA-UD38, MEGAHIT39, 
MetaSPAdes40 and MetaVelvet41 (extensions of SPAdes 
and Velvet for metagenomes). The CAMI project42,  

Antimicrobial susceptibility 
testing
(AST). Challenge of bacteria 
with antimicrobials to 
determine whether they have 
phenotypic antimicrobial 
resistance.

Box 1 | culture-based susceptibility testing

Bacterial culture has a long history as an integral part of clinical microbiology115. 
researchers cultivate bacteria on agar plates or in liquid broth to probe bacterial 
phenotypes and to discover novel bacterial functions. Hospital clinical microbiology 
laboratories can use data gained in these assays to inform clinical treatment decisions.

current techniques
For phenotypic testing, bacteria are isolated from patient or environmental samples 
by non-selective or selective agar plating for pure colonies. Isolated bacteria are then 
directly challenged with antimicrobials to test for antimicrobial resistance. In liquid 
media microbroth dilution antimicrobial susceptibility testing (ast), bacteria are 
challenged with decreasing antimicrobial concentrations to find the concentration 
at which they grow successfully. The lowest antibiotic concentration that inhibits the 
bacterial growth is called the minimum inhibitory concentration. solid media 
techniques use antimicrobial Kirby–Bauer disc diffusion116 or gradient diffusion strips117 
to measure the clearance of the bacteria from the source of the antimicrobial. the area 
around the antimicrobial disc or strip is called the zone of inhibition (culture-based 
phenotypic testing is reviewed in detail elsewhere118). standards published by the 
Clinical and Laboratory Standards Institute (CLSI) or the European Committee on AST 
(EUCAST) are used to convert minimum inhibitory concentrations or zones of inhibition 
measurements to categorical resistance determinations.

New, sequence-independent methods of resistance determination are also being 
developed. They include matrix-assisted laser desorption/ionization time of flight mass 
spectrometry (MALDI–TOF-MS)119–124, fluorescence in situ hybridization (FISH)125–129 and 
microfluidics-based techniques, which reduced AST to ~30 min in one study130–134. 
This rapid testing is especially valuable for slow-growing organisms such as Mycobacterium 
tuberculosis, for which ast can take weeks135.

challenges and remaining gaps
while ast is useful to provide phenotypic resistance results, it is low throughput. 
For each sample, a clinical microbiologist needs to culture the bacteria and to set up and 
read the AST results. This is limiting because not all health-care centres have trained 
clinical microbiologists on staff. For some bacteria (for example, M. tuberculosis), current 
laboratory diagnostic techniques feasible in low-resource areas have low sensitivity136. 
susceptibility standards are also not published for all combinations of antimicrobials 
and infection-causing, culturable bacteria. Additionally, the standards themselves are 
not uniform across different countries. Culture techniques can also fail in situations 
where multiple bacteria may cause symptomatic disease. In such cases, the cultured 
bacteria are assumed responsible, but several metagenomic studies from patient 
samples indicate that the bacteria detected in culture may not be responsible for 
disease symptoms137–140. Finally, these phenotypic methods have lower resolution in 
examining resistance determinants and provide less information about resistance gene 
epidemiology than whole-genome sequencing.

innovations
automation is rapidly being developed and implemented to conduct phenotypic assays, 
including ast141. Several systems, including VITEK142, ADAGIO143, accelerate Pheno144–147 
and others, are already moving into clinical spaces. the automated platforms have 
several key advantages, including continuous monitoring systems, sensitive optical 
instruments for measuring susceptibility results148 and standardized internal clocks. 
these advantages can speed up susceptibility results for cultured bacteria118. they may 
also increase consistency of susceptibility results across different locations and reduce 
the burden of work for clinical microbiologists. Unfortunately, these automated 
platforms can be prohibitively expensive to set up.
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now starting its second iteration43, seeks to bench-
mark these assemblers on highly complex and close 
to real data sets for users. However, currently, there 
is no single assembler that stands out as the best one 
that would accurately reconstruct known genomes and 
capture the majority of the taxonomic diversity in real 
data sets. Both biological factors (such as sample source 
and microbial community structure) and technical 
factors (such as library preparation method, sequenc-
ing depth and sequencing platform choice) affect the 
ability of an assembler to generate accurate and larger 
contigs. Thus, it is recommended to apply multiple 
assemblers on a subset of samples to determine the best  
fit for a given data set.

Following assembly, genomic or metagenomic con-
tigs are annotated for resistance determinants by pre-
dicting protein-coding regions on contigs and then 
comparing them against antimicrobial resistance refer-
ence databases using similarity-based search tools  
(for example, BLAST44, USEARCH45 or DIAMOND46). 
Although pairwise alignment between the query and 
antimicrobial resistance reference sequences is the most 
commonly applied approach for characterizing the 
resistome from contigs, an inherent bias of databases 
towards human-associated organisms is reflected in pre-
diction outputs, so choosing the appropriate databases 
to compare assembled contigs with reference sequences 
is imperative47.

Table 1 | sequencing-based tools for antimicrobial resistance detection

name Description Accessibility Year Link status

Assembly-based tools

Resfinder72 Tool for detecting acquired AR genes from 
sequenced or partially sequenced bacterial isolates

Web and/or 
standalone

2012 https://cge.cbs.dtu.dk/services/
ResFinder/

Active

ARG-ANNOT66 Tool for pairwise comparison of query sequence with 
ARG-ANNOT database

Standalone 2014 Not available Archived

RGI67 • Pairwise comparison of query sequence with the 
CARD

• Uses curated AR detection models to predict 
intrinsic resistance genes, dedicated resistance 
genes and acquired resistance from mutations in 
drug targets

Web and/or 
standalone

2015 https://card.mcmaster.ca/analyze/rgi Active

ARGs-OAP (v2)74 • Online analysis pipeline for AR genes
• Detection from metagenomic data using an 

integrated structured database of AR sequences

Web and/or 
standalone

2016 https://galaxyproject.org/use/
args-oap/

Active

ARIBA52 Tool for rapid AR genotyping directly from 
sequencing reads using curated public databases

Standalone 2017 https://github.com/sanger-pathogens/
ariba

Active

PointFinder73 Web tool for WGS-based detection of AR associated 
with chromosomal point mutations in bacterial 
pathogens

Web and/or 
standalone

2018 https://cge.cbs.dtu.dk/services/
ResFinder/

Active

NCBI-AMRFinder Tool for identification of acquired resistance genes 
using NCBI’s curated AR database and curated 
collection of HMMs

Standalone 2018 https://www.ncbi.nlm.nih.gov/
pathogens/antimicrobial-resistance/
AMRFinder/

Active

Read-based tools

SRST2 (reF.50) Tool for direct mapping of reads to curated AR 
databases

Standalone 2014 https://github.com/katholt/srst2 Active

SEAR54 Cloud-compatible pipeline and web interface for 
rapidly detecting AR genes directly from sequencing 
reads

Web and/or 
standalone 
(archived)

2015 https://github.com/will-rowe/SEAR Archived

ShortBRED61 Tool to profile protein families in the metagenomic 
data using short peptide marker sequences

Standalone 2015 http://huttenhower.sph.harvard.edu/
shortbred

Active

PATRIC176 A unique resource for studying AR Web 2016 www.patricbrc.org Active

SSTAR177 Tool to identify known, putative new alleles and 
truncated versions of existing AR genes from WGS 
data

Standalone 2016 https://github.com/tomdeman- 
bio/Sequence-Search-Tool- 
for-Antimicrobial-Resistance-SSTAR-

Active

KmerResistance51 Program that compares the co-occurrence of k-mers 
from raw reads with k-mers from multiple databases

Web 2016 https://cge.cbs.dtu.dk/services/
KmerResistance/

Active

GROOT56 Software that enables resistome profiling 
by mapping metagenomic reads to graph 
representation of reference gene sets

Standalone 2018 https://github.com/will-rowe/groot Active

DeepArgs110 A deep-learning approach for predicting AR genes 
from metagenomic data

Web 2018 https://bench.cs.vt.edu/deeparg Active

AR , antimicrobial resistance; ARG-ANNOT, Antibiotic Resistance Gene Annotation; CARD, Comprehensive Antibiotic Resistance Database; GROOT, Graphing 
Resistance Out of Metagenomes; HMM, hidden Markov model; NCBI, National Center for Biotechnology Information; PATRIC, Pathosystems Resource Integration 
Center ; RGI, Resistance Gene Identifier ; SEAR , Search Engine for Antimicrobial Resistance; ShortBRED, Short, Better Representative Extract Dataset;  
WGS, whole-genome sequencing.

Horizontal gene transfer
(HgT). Passage of resistance 
genes from one bacterium to 
another when neither bacteria 
is the parent or daughter cell. 
This process usually occurs 
through transduction, 
conjugation or transformation.

Metagenomes
Collections of genes from all 
organisms of a given habitat or 
sample.
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Given sufficient coverage, assembly-based meth-
ods can construct whole genomes or large contigs with 
protein-coding genes, regulatory sequence information 
and the complete surrounding genomic context. This 
information can be used to study co-associated genes 
and biological pathways that are involved in resistance 
determination. Assembly and annotation of WMS data 
can identify antimicrobial resistance genes that are 
more divergent from and lack homology to known 
sequences in the reference databases. However, the pro-
cess of de novo assembly and annotation is computa-
tionally expensive, time consuming and requires higher 
genome coverage than reference-based assembly or 
read mapping-based methods, which can be difficult to 
achieve for all samples, specifically when dealing with 
metagenomic samples with high microbial diversity and 
uneven taxonomic composition.

Read-based methods. Antimicrobial resistance genes 
in a sample can be detected without genome assem-
bly either by aligning reads to the reference databases 
using pairwise alignment tools such as Bowtie2 (reF.48) 
or BWA49, or by splitting reads into k-mers and mapping 
them to the reference databases.

SRST2 (reF.50) is one widely used tool that aligns reads 
to a custom reference database using Bowtie2 to predict 
antimicrobial resistance genes in the sample. Alternatively, 
KmerResistance51 splits reads into k-mers, maps them and  
counts the co-occurrence of k-mers between reads and a 
reference database to predict resistance genes and asso-
ciated species. Both methods can identify antimicrobial 
resistance genes even in the presence of contaminants 
(for example, background noise in the raw reads owing 
to the presence of laboratory or host contamination) and 
in samples for which insufficient reads are available for 
de novo assembly, but they cannot predict antimicrobial 
resistance conferred by single-nucleotide polymorphisms 
(SNPs). By contrast, ARIBA52 uses a hybrid approach 
where reference sequences in the database are first clus-
tered using CD-HIT53 before sequences from each cluster 
are assembled independently. Resulting contigs are then 
compared with the closest reference to identify allelic 
variants. Additionally, ARIBA provides information on 
whether genes are complete or fragmented and reports 
sequence variants along with their potential effects (for 
example, missense, nonsense or frameshift mutations and 
small insertions and deletions (indels)). Clustering refer-
ence sequences and using a representative sequence from 
the cluster to map reads considerably reduce ambiguous 
alignments54, but using a single linear representative locus 
masks subtle yet important variation between subtypes 
and subfamilies of genes within clusters54,55. To account 
for this information loss, Graphing Resistance Out of 
Metagenomes (GROOT)56, a newly established tool for 
resistome profiling of metagenomes, builds a variation 
graph for reference gene sets and aligns sequence reads 
to these graphs. Variation graphs are bidirectional acyclic 
sequence graphs that represent overall sequence variation 
within a given population. The alignment of reads against 
variation graphs effectively removes reference bias and 
facilitates accurate annotation of antimicrobial resist-
ance genes. Before aligning sequences against a variation 

graph, traversals within the graphs are indexed by either 
Burrows–Wheeler transform or hash-map (minHash), 
indexing algorithms that considerably improve the 
mapping rate of large-scale sequencing reads to  
the graphs48,57. The read-based approach is generally fast 
and less computationally demanding because it bypasses 
de novo assembly, protein-coding gene prediction and 
pairwise alignment to public databases. For this rea-
son, read-based methods have gained traction in recent 
years, especially in clinical diagnostics where conduct-
ing real-time sequencing-based resistance prediction  
is crucial.

Choosing the right approach. Presently, there is no 
consensus on which sequence analysis approach is bet-
ter, and the choice of analysis mainly depends on the 
type of sequencing (WGS versus WMS), availability of 
computational resources and the study objective. Both 
approaches have trade-offs, as assembly causes informa-
tion loss compared with direct read analysis58 but enables 
identification of protein-coding genes and for investiga-
tion of upstream and downstream regulatory elements, 
whereas direct read analysis lacks the positional infor-
mation required to analyse upstream and downstream 
factors of identified resistance genes. New sequencing 
technologies, such as long-read sequencing and chromo-
some conformation capture-derived assays, are helping 
to alleviate this information loss by improving assembly 
fidelity (Box 2).

The read-based approaches scale well with 
ever-increasing query sequences and antimicrobial 
resistance reference data. More importantly, they ena-
ble identification of antimicrobial resistance genes 
from low-abundance organisms present in complex 
communities, which may be missed by assembly-based 
methods owing to incomplete or poor assemblies. 
However, mapping reads directly to large data sets can 
inflate false-positive predictions, as reads derived from 
protein-coding sequences may spuriously align to other 
genes as a result of local sequence homology59. Thus, it 
is important that the reference databases are compre-
hensive and contain all variants of the reference genes. 
Database choice is especially critical when identifying 
antimicrobial resistance genes from large and complex 
communities such as soil and ocean, as novel or distant 
homologues of antimicrobial resistance genes pres-
ent in understudied, less characterized environmental 
 communities may be missed.

Well-studied sample types, such as the human gut, are 
now extensively characterized, even for low-abundance  
microorganisms and, thus, read-based approaches 
can be more confidently applied60. However, analysis 
of diverse samples is confounded by the lack of refer-
ence sequences, so the antimicrobial resistance genes 
in these environments are likely underestimated. To 
address this problem, a marker-based method, Short, 
Better Representative Extract Dataset (ShortBRED)61, 
was developed that enables fast and accurate profiling of 
the resistome in metagenomic data sets. ShortBRED first 
identifies marker sequences (short peptide sequences) 
representative of antimicrobial resistance protein fami-
lies from the reference database and then maps reads 

Resistance exchange 
networks
interconnected groups of 
environments or bacteria that 
transfer resistance genes with 
each other.

Phylogeny
The evolutionary ancestral 
relationships between 
organisms.

Contigs
Contiguous sequences 
assembled from sequencing 
reads.

De Bruijn graph
(DBg). Directional graphing 
algorithm commonly used for 
short-read assembly.

Euler’s path
A walk through a directed 
graph that crosses each edge 
in the graph only once. euler’s 
path is used to reconstruct 
genome sequences from De 
Bruijn graphs.

Isolate assembly
gathering of sequencing reads 
from a bacterial isolate into 
longer contiguous sequences 
representative of their state 
within the bacterium.

Resistome
All antimicrobial resistance 
genes within a given sample of 
bacteria.

Annotation
identification and labelling of 
genes within a genome.

Burrows–Wheeler 
transform
A reversible data 
transformation algorithm to 
organize text with repeated 
sequences for efficient 
compression. This algorithm is 
implemented in bioinformatics 
software owing to frequent 
repeated sequences in 
biological data.
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to these markers to quantify the relative abundance of 
the associated antimicrobial resistance protein families. 
Several studies have applied this method to quantify 
the abundance of resistance genes in large and com-
plex metagenomic data sets, including human25,62, 
animal63 and environmental data sets64. Downstream 
analysis of resistomes from metagenomic samples can 
be performed similarly to taxonomic and functional 
 profiling. A comprehensive discussion on processing 
and analysing metagenomic samples has been previously 
published60.

Antimicrobial resistance databases
Both assembly-based and read-based approaches for the 
computational prediction of antimicrobial resistance  
in pathogens and environmental bacteria depend largely 
on curated antimicrobial resistance gene databases 
that link known genetic determinants of resistance to 
the antimicrobials they confer phenotypic resistance 
against (TABle 2). These databases usually represent  
information accumulated from multiple studies that 
include AST of bacteria harbouring specific antimicrobial  
resistance genes.

Generalized versus specialized databases. Public 
databases vary considerably in the scope of the resistance 
mechanisms19 that they cover and in the type of infor-
mation they provide for annotations. Generalized anti-
microbial resistance databases, such as the now archived 
Antibiotic Resistance Genes Database (ARDB)65 or  
the active Antibiotic Resistance Gene Annotation (ARG- 
ANNOT)66 and Comprehensive Antibiotic Resistance 
Database (CARD)67, cover broad spectrums of anti-
microbial resistance genes and mechanism information, 
whereas specialized antimicrobial resistance databases 
provide comprehensive information for specific gene 
families or species (TABle 2). For example, targeted 
databases such as Lactamase Engineering Database 
(LacED)68,69, the Lahey database of β-lactamases70, 
National Center for Biotechnology Information (NCBI)  
β-Lactamase Alleles Initiative, and the Comprehensive  
β-Lactamase Molecular Annotation Resource (CBMAR)71 
focus on β-lactamases, a family of antimicrobial resist-
ance enzymes that facilitate hydrolysation of the key  
β-lactam rings in β-lactam antimicrobials, thus pro-
tecting the bacteria from the antimicrobial activity. 
Resfinder72 is a web-based and standalone tool for 
detecting acquired antimicrobial resistance genes from 
sequenced or partially sequenced bacterial isolates 
(TABle 1). Unlike other databases that require contigs  
as an input, Resfinder72 also accepts short reads as an 
input for comparison against known acquired resist-
ance genes in bacterial genomes. In 2017, Resfinder72 
updated its web-based service to enable identification of 
chromo somal mutations using PointFinder73. However, 
the identification of antimicrobial resistance-conferring 
chromosomal mutations is available for only a limited 
set of pathogenic microorganisms (Campylobacter, 
Escherichia coli, Mycobacterium tuberculosis, Neisseria 
gonorrhoeae, Plasmodium falciparum and Salmonella). 
Similar to Resfinder72, CARD67 offers its own tool, 
known as Resistance Gene Identifier (RGI), which uses 
curated antimicrobial resistance detection models to pre-
dict intrinsic antimicrobial resistance genes, dedicated 
resistance genes and acquired resistance from mutations 
in drug targets. RGI uses two antimicrobial resistance 
detection models: Protein Homologue Model for detec-
ting functional homologues of antimicrobial resistance 
proteins and Protein Variant Model for the detection of 
mutations conferring antimicrobial resistance in other-
wise sensitive targets. ARGs-OAP (v2)74 uses a cus-
tom database constructed from ARDB65 and CARD67, 
called SARG, with a hybrid UBLAST and BLASTX  
algorithm, reflecting the critical need for a comprehensive  

Metagenomic assembly
Deconvolution and assembly 
of sequencing reads from a 
metagenomic sample.

Box 2 | sequencing-based innovations

chromosome conformation capture assays
Chromosome conformation capture uses crosslinking, ligation and short-read 
sequencing to understand the spatial relationships of genetic material within cells149,150. 
these methods have been applied effectively in bacterial isolates and in metagenomic 
samples151–155. Using spatial information from chromosome conformation capture, 
researchers can increase their understanding of antimicrobial resistance gene 
regulation and begin to untangle more complicated resistance mechanisms. 
For example, these data may help resolve epistatic antimicrobial resistance gene 
relationships because gene spatial colocalization may indicate coordinated function. 
Chromosome conformation capture is also useful for identifying plasmid genes from 
chromosomal genes. this is important for antimicrobial resistance in particular because 
of the role of plasmids in horizontal gene transfer (HGt). Perhaps most interesting is the 
applicability of chromosome conformation capture to metagenomic samples. 
In addition to the points mentioned above, crosslinking information in metagenomic 
samples greatly reduces the complexity of metagenomic assembly because it enables 
researchers to group sequences by cell. thus, antimicrobial resistance annotation 
methods that rely on assembled contigs are more viable if chromosome conformation 
capture information is also available.

Long-read sequencing
Long-read sequencing by single-molecule real-time sequencing (SMRT-seq) or 
nanopore sequencing can yield reads from 10 kb to over 100 kb (reFS156,157). these long 
reads have several advantages over short reads for studying antimicrobial resistance in 
bacterial isolates and metagenomic samples. Long-read sequencing can greatly reduce 
the complexity of assembly for both bacterial isolates and metagenomic samples and, 
in some cases, can provide finished bacterial genomes (higher error rates than short 
reads means that sometimes a combination of short-read and long-read sequencing is 
needed to achieve these results)158–162. Better assemblies enable stronger interpretation 
of genomic context, providing similar benefits as with chromosome capture. 
Also similar to chromosome capture, long-read sequencing provides easier resolution 
of plasmid sequences, enabling more in-depth studies to understand antimicrobial 
resistance HGt. additionally, both approaches give information about DNa 
methylation, which can inform genome assembly in metagenomic samples162–164. 
Finally, long-read sequencing run times tend to be faster than short-read sequencing. 
this is useful for potential clinical deployments where speed may affect patient 
outcomes. Nanopore sequencing in particular excels in this area owing to its real-time 
data; these real-time data have already been used to provide rapid (within minutes) 
antimicrobial resistance gene-agnostic antimicrobial susceptibility testing (AST) 
predictions in Streptococcus pneumoniae165.

transcriptomics
Transcriptomics techniques such as RNA sequencing (RNA-seq) facilitate analysis of 
bacterial gene expression, and these expression data have the potential to fill 
antimicrobial resistance knowledge gaps166–169. One major area where transcriptional 
data can contribute to antimicrobial resistance understanding is in connecting 
genotypic antimicrobial resistance data to phenotypic antimicrobial resistance 
results170. In cases where antimicrobial resistance genes are present but no resistance 
phenotype is found or in cases where no obvious antimicrobial resistance genes are 
present but antimicrobial resistance is confirmed, transcriptomic data may bridge the 
knowledge gap and point to novel antimicrobial resistance genes169,171–173. 
transcriptomics also has the potential to identify combinatorial gene effects resulting 
in antimicrobial resistance174. Finally, transcriptomics can successfully identify cases in 
which non-coding regulatory RNAs result in resistant bacterial phenotypes168,175.
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database combined with lower identity matching for anti-
microbial resistance gene annotation of metagenomic  
sequence data.

Species-specific databases exist for  pathogenic or 
model bacteria such as M. tuberculosis (for example, 

Tuberculosis Drug Resistance Database75 or MUBII-
TB-DB76) and E. coli (TABle 2). These species-specific 
databases are invaluable for understanding resistance in 
these specific organisms but also highlight the impor-
tance of considering antimicrobial resistance genes in 

Table 2 | summary of antimicrobial resistance reference databases

Database Description Link status

General databases

CARD67 • Ontology-based database that provides comprehensive 
information of AR genes and their resistance mechanisms

• Currently contains >2,200 protein homologues 
and includes a curated set of resistance-conferring 
chromosomal mutations in protein-coding genes

https://card.mcmaster.ca/ Active; launched 
in 2013; updated 
monthly

Resfinder72 Collation of AR genes involved in HGT events https://cge.cbs.dtu.dk//services/
ResFinder/

Active; started 
in 2012; update 
regularly ; last update 
in February 2019

ResfinderFG84 Collection of resistance gene variants identified in multiple 
functional metagenomics studies

https://cge.cbs.dtu.dk/services/
ResFinderFG/

Active; last update 
in November 2016

Resfams26 A profile HMM-based curated database confirmed for AR 
function

http://www.dantaslab.org/resfams/ Active; last update 
in January 2015

ARDB65 • First centralized resource of AR gene information
• Manually curated; contains >4,500 AR sequences

https://ardb.cbcb.umd.edu/ Archived; last 
updated in 2009

MEGARes178 • Collation of multiple databases (CARD, ARG-ANNOT and 
ResFinder) to avoid redundancy between entries

• For high-throughput screening and statistical analysis

https://megares.meglab.org/ Active; last update 
in December 2016

NDARO • Collated and curated data from multiple databases (CARD, 
Lahey , Pasteur Institute β-Lactamases and ResFinder)

• Contains 4,500 AR sequences

https://www.ncbi.nlm.nih.gov/
bioproject/PRJNA313047

Active; started in 
2016

ARG-ANNOT66 • Repository of >1,800 AR sequences collated from scientific 
literature and online resources

• Also includes point mutation data for select AR-associated 
chromosomal genes

Not available Archived; last update 
in May 2018

Mustard85 Resource containing 6,095 AR determinants from 
20 families, including curated sets of AR genes identified 
in functional metagenomics studies

http://mgps.eu/Mustard/ Active; last update 
in November 2018

FARME database83 Curated set of microbial sequences functionally screened 
to confer resistance in various functional metagenomics 
studies of different habitats

http://staff.washington.edu/jwallace/
farme/

Active; last update 
in 2017

SARG (v2)74 • Hierarchical structured database derived from ARDB, 
CARD and NCBI-NR database

• Contains >12,000 AR genes; also includes profile HMMs 
for 189 AR genes subtypes

http://smile.hku.hk/SARGs Active

Lahey list of 
β-lactamases70

First initiative to compile known β-lactamases and assign 
nomenclature to novel ones

http://www.lahey.org/Studies/ Archived; last update 
in 2015

BLDB179 Manually curated database for AR enzymes classified by 
class, family and subfamily

http://bldb.eu/ Active; last update 
in November 2018

LacED68,69 Curated database of TEM and SHV β-lactamases, including 
a curated set of known TEM and SHV variants

http://www.laced.uni-stuttgart.de/ TEMLacED active: 
last update in 2017; 
SHVED archived: last 
update in April 2010

CBMAR71 Database that identifies and characterizes novel 
β-lactamases on the basis of Ambler classification

http://proteininformatics.org/mkumar/
lactamasedb/

Last update in 
September 2014

Species-specific databases

MUBII-TB-DB76 Database of mutations associated with AR in Mycobacterium 
tuberculosis

https://umr5558-bibiserv.univ-lyon1.fr/
mubii/mubii-select.cgi

Last update in 
December 2013

u-CARE180 User-friendly , comprehensive AR repository for Escherichia 
coli

http://www.e-bioinformatics.net/ucare Last update in 2016

AR , antimicrobial resistance; ARDB, Antibiotic Resistance Genes Database; ARG-ANNOT, Antibiotic Resistance Gene Annotation; BLDB, β-Lactamase Database; 
CARD, Comprehensive Antibiotic Resistance Database; CBMAR , Comprehensive β-Lactamase Molecular Annotation Resource; FARME, Functional Antibiotic 
Resistance Metagenomic Element; HGT, horizontal gene transfer ; HMM, hidden Markov model; LacED, Lactamase Engineering Database; NDARO, National Center 
for Biotechnology Information (NCBI) Bacterial AR Reference Gene Database/National Database of Antibiotic Resistant Organisms.
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their phylogenetic context, especially as some bacteria 
can have intrinsic resistance to some antimicrobials 
(reviewed previously77). Species-centric databases ena-
ble rapid and effective curation of new antimicrobial 
resistance genes and chromosomal mutations and can 
offer quick preliminary screening for characterization. 
Such screening has proved highly effective for pathogens 
such as M. tuberculosis in which HGT events are rare 
and drug resistance originates mainly from chromo-
somal mutations78. The CRyPTIC Consortium and 
100,000 Genomes Project demonstrated this effective-
ness in M. tuberculosis with resistance predictions with 
over 90% sensitivity and specificity for all four first-line  
anti-tuberculosis drugs79.

While these tools are all steps in the right direction, 
a continuously updating and comprehensive database 
with extensive gene metadata and the ability to find 
both point mutation matches and remote homologues 
is needed.

Hidden Markov model-based databases. One major 
limitation of these databases is that the antimicro-
bial resistance genes they contain are heavily biased 
towards human pathogens and easily cultivable model 
organisms, making it difficult to identify remote homo-
logues or novel resistance sequences present in fastid-
ious or uncultured bacteria80. This bias complicates 
antimicrobial resistance gene identification across less 
commonly studied bacteria, a difficulty that is magni-
fied by the diverse and complicated mechanisms that 
cause resistance81. One potential solution to overcome 
this bias is to use hidden Markov model (HMM) data-
bases. Derived from the multiple sequence alignment 
of known sequences, an HMM can find sequences 
with similar function but low sequence identity82. 
Resfams26 is an HMM database of antimicrobial 
resistance proteins derived from multiple sequence 
alignments of manually curated sets of representative 
antimicrobial resistance protein sequences obtained 
from the generalized CARD and the specialized 
LacED69 and Lahey database70 (TABle 2). The authors 
of the Resfams26 database showed that it can identify 
a substantially greater number of novel antimicrobial 
resistance genes and remote homologues of known 
antimicrobial resistance genes than other databases 
such as ARDB and CARD that rely on BLAST-based 
methods for gene identification. A direct comparison 
of manually curated antimicrobial resistance gene 
sets showed that Resfams26 identified 64% more anti-
microbial resistance genes in both soil and human gut 
microbiota than the BLAST-based search of CARD and 
ARDB. This increased sensitivity demonstrates the 
versatility of the HMM in annotating sequences from 
non-clinical samples with sparser representation in 
publicly available resistance gene databases. However, 
HMM-based approaches may have poor specificity 
(yield higher number of false-positive hits) and may 
not be able to distinguish between protein families 
with closely related functions. This could occur owing 
to the higher probability of selecting sequences from 
other subfamilies on the basis of domains common to 
the family. To mitigate the lack of specificity, Resfams26 

(like the Pfam database) uses curated thresholds (for 
example, a gathering threshold) for each profile HMM. 
These profile-specific gathering threshold values set an 
inclusion or exclusion bit score cut-off by comparing 
it with test data sets containing negative sequences. 
Currently, Resfams26 contains 166 profile HMMs that 
represent major antimicrobial resistance gene families. 
HMM-based antimicrobial resistance databases could 
be valuable in identifying large and diverse arrays of 
resistance determinants in understudied environmen-
tal samples compared with BLAST-based databases. 
However, current HMM-based databases do not 
identify resistance arising from chromosomal muta-
tions. To further facilitate the detection of antimicro-
bial resistance genes in large complex environments, 
the Functional Antibiotic Resistance Metagenomic 
Element (FARME)83 database comprises a curated set 
of microbial sequences excluded from current data-
bases but functionally screened to confer resistance 
in various functional metagenomics studies of differ-
ent habitats. Apart from predicted protein-coding 
 antimicrobial resistance sequences, the FARME data-
base also includes regulatory elements, mobile genetic 
elements and  predicted proteins flanking antimicrobial 
resistance genes.

A similar database, the functional resistance database 
(ResfinderFG)84, was built by aggregating data from four 
functional metagenomics studies selected against 23 
antimicrobials. When comparing this database with the 
Resfinder72 database, the authors noted that they found 
different results by total antimicrobial use; this observa-
tion may represent a difference in how resistance is con-
ferred when putative resistance determinants are cloned 
into E. coli as compared with when they are expressed in 
their native bacterial host.

The Mustard85 antimicrobial resistance determinants 
database uses an innovative approach of incorporating 
3D protein structure to help predict resistance genes. 
When this approach was applied to predicted pro-
teins from metagenomic samples, it predicted >6,000 
resistance genes compared with 67 genes identified 
by BLASTP and 50 by Resfinder72, suggesting higher 
sensitivity.

Remaining challenges. Considerable developments in 
biocuration of antimicrobial resistance sequences have ena-
bled the identification and characterization of antimicro-
bial resistance genes from genomes and metagenomes,  
but several limitations still preclude cost-effective and 
rapid antimicrobial resistance surveillance. One major 
bottleneck is the lack of effective curation strategies. 
With few exceptions, antimicrobial resistance databases 
lack efficient and sustainable curation pipelines, so they 
tend to receive active maintenance for a few years before 
becoming outdated.

Many antimicrobial resistance genes can be assigned 
names on the basis of nucleotide sequences and pro-
tein sequences, leading to conflicting naming schemes. 
Conflicting gene names and synonyms create redun-
dancy across databases and confuse users (for exam-
ple, dihydrofolate reductase is referred to as dhfr in 
some databases and dfrA in others)86. This problem is 

Hidden Markov model
(HMM). A probabilistic model 
of antimicrobial resistance 
process where hidden states 
emit observable outputs. These 
models are commonly used for 
sequence annotation.

Microbiota
A community of 
microorganisms from a given 
habitat or sample.

Functional metagenomics
A biological assay in which a 
metagenomic library of DNA is 
expressed in a naive host and 
then the host is exposed to a 
selection pressure to select for 
DNA that confers a fitness 
advantage against the 
selection pressure.

Biocuration
The collection and organization 
of biological data in a data 
structure useful for future 
analysis.
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exacerbated by assigning gene names by sequence iden-
tity. A plethora of different sequence identity-based 
systems exists for assigning nomenclature to a new 
resistance gene. These systems offer different cut-offs 
and are not in consensus with the reference87.

Antimicrobial resistance genomic data are an ever 
expanding data source. HGT events and selection 
pressures that proliferate new antimicrobial resistance 
mutations require active biocuration strategies whereby 
entries can be curated as they are recognized. The pro-
pagation of new colistin resistance mechanisms such as 
mcr-1, which was first described in 2016 from Chinese 
bacterial isolates9 and then subsequently identified 
worldwide in newly collected and previously stored iso-
lates88–96, demonstrates the need for frequent database 
updating and curation. When properly implemented, 
they facilitate rapid collection of epidemiological 
data for recently discovered resistant determinants97. 
Indeed, antimicrobial resistance annotation should be 
a continuous effort, as all downstream analyses depend 
on the accuracy of reference databases. Establishing 
best practices for biocuration, systematically assigning 
annotations to newly discovered genes and preventing 
misinterpretations will pay dividends for public health 
and basic science.

Another important limitation of current antimicrobial 
resistance databases is their focus on the identification 
and characterization of protein-coding resistance genes; 
they ignore other potential antimicrobial resistance 
mechanisms such as genomic changes or de novo muta-
tions in ribosomal RNA (rRNA) genes and regulatory 
elements and drug target mutations. Recent efforts by 
CARD67 and Resfinder72 have tried to address this issue.

Functional metagenomics
In addition to sequence-based metagenomics, func-
tional metagenomics is a powerful, culture-independent, 
sequence-unbiased approach for characterizing resi-
stomes98,99. In this method, a metagenomic library is gen-
erated by cloning the total community DNA extracted 
from a sample into an expression vector. This library 
is transformed into a susceptible indicator host strain 
and is assayed for antimicrobial resistance by plating 
on selective media that are lethal to the wild-type host. 
The selected inserts from the surviving recombinant, 
antimicrobial-resistant host cells are then sequenced, 
and resulting sequences are subsequently assembled and 
annotated (Fig. 3). Parallel Annotation and Reassembly 
of Functional Metagenomic Selections (PARFuMS)100 is 
a custom computational pipeline that assembles reads 
from functional metagenomic selections into contigs 
using the Velvet28 and Phrap101 assemblers and annotates 
the assemblies for antimicrobial resistance genes using 
MetaGeneMark102 and Resfams26. This approach enables 
high-throughput analysis of large genomic content (up 
to 50 Gbp of unique metagenomic DNA interrogated 
per library), and antimicrobial resistance phenotypes 
can be associated directly with causative genes, obviating 
the need to culture individual antimicrobial resistance 
gene carriers.

Functional metagenomics has enabled the discovery 
of several new antimicrobial resistance mechanisms and 

their related genes103. One such example is the recently 
discovered tetracycline resistance mechanism by tetra-
cycline destructases104, whereby soil functional metage-
nomics led to the discovery of nine genes that confer 
tetracycline resistance through enzymatic inactivation. 
Further analysis and biochemical characterization 
revealed that these enzymes catalyse tetracycline oxida-
tion in an FAD-dependent manner, thereby  inactivating 
tetracycline104.

While the preceding study shows the strength and 
usefulness of functional metagenomics, this approach 
has certain limitations. For example, a gene has to be 
functional outside its native microbial host to be iden-
tified by functional metagenomic selections. Many 
times, differences between a recombinant expression 
host such as E. coli and the original host (for example, 
some Gram-positive organisms) do not confer the same 
pheno type for the same gene. This problem was high-
lighted by studies showing effects of different hosts on 
the same metagenomic libraries97,105. Thus, there is a 
need to include a phylogenetically diverse group of hosts 
that can be used for functional metagenomic selections. 
In addition, genes outside their genomic context, such 
as syntenic regulatory elements, may have different 
pheno types in the recombinant expression host from 
those in the original host106. Thus, it is important that 
novel antimicrobial resistance genes identified by func-
tional metagenomics screens be characterized micro-
biologically and biochemically. Extension of the current 
functional metagenomics approach and development of 
new techniques to discover novel resistance genes are 
 deserving research directions.

Machine learning for resistance prediction
Numerous studies have explored machine learning 
algorithms for studying antimicrobial resistance, 
highlighting its role in predicting resistance phenotype 
directly from genotype. Machine learning approaches 
can be implemented as supervised learning or unsuper-
vised learning approaches. In supervised learning, the 
training data set with outcome of interest can be uti-
lized to build a prediction model that can be further 
applied to query sequences to predict their outcome. 
Several studies have used gene presence or absence 
and AST outcomes as features to create the train-
ing set for models. In one study, a logistic regression 
approach was used to develop a model based on 14 
gene parameters and 3 molecular typing markers that 
can differentiate between vancomycin-susceptible and 
vancomycin-intermediate Staphylococcus aureus using 
publicly available genomic data and patient isolates107. 
The model performance was tested by a leave-one-out 
validation method, and it showed 84% classification 
accuracy. Although this accuracy level does not meet 
clinical standards, the approach provides an important 
proof of concept that motivates the development of 
more sophisticated models for identifying antimicro-
bial resistance. Another study evaluated a rules-based 
and a machine learning-based approach (that is, logis-
tic regression) for predicting antimicrobial resistance 
profiles and showed that the machine learning-based 
approach had higher accuracy with novel variants 
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Fig. 3 | Functional metagenomics to interrogate acquired resistance 
genes in different environments and human pathogens. A summary of 
experimental and computational steps involved in functional 
metagenomics. First, sample collection and extraction occur. Metagenomic 
DNA is isolated from the sample (for example, soil or faeces). Second, 
functional selection using an expression vector and the host system is 
performed. The metagenomic DNA is sheared to a target size of 2–5 kb, and 
the fragments are then cloned into an expression vector and transformed 
into a host system (for example, Escherichia coli). The transformants are then 
selected using antimicrobials at concentrations that are inhibitory to the 
wild-type host system. Third, barcoded sequencing of pooled DNA 
fragments is performed. The resistance-conferring fragments are PCR 

amplified, barcoded and pooled together for sequencing. The sequencing 
reads are computationally demultiplexed using barcode assembly and 
quality trimmed to obtain high-quality clean reads. Fourth, iterative 
assembly of sequencing reads by sample is performed. The clean reads are 
assembled with computational pipeline Parallel Annotation and Reassembly 
of Functional Metagenomic Selections (PARFuMS), in which 
ensemble-based assembly is performed using multiple rounds of a 
short-read assembler (Velvet), and intermediate contigs are then used in  
a long-read assembler (Phrap) to give full-length contigs. Finally , resistance 
gene annotation of assembled reads is performed. The annotation of 
contigs is accomplished using BL AST-based and hidden Markov model 
(HMM)-based databases.
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in known antimicrobial resistance genes than the 
rules-based approach24.

Recent studies and tools use k-mers derived from whole 
genomes of antimicrobial-resistant and antimicrobial- 
susceptible species along with their AST outcomes to 
develop prediction models. Mykrobe predictor108, a fast 
k-mer screening tool, is used to identify antimicrobial 
resistance genes and SNPs in S. aureus and M. tuberculosis.  
It utilizes the curated genetic information of resistant 
and susceptible alleles of the same species to build refer-
ence graphs (DBG) of these two categories and to map 
k-mers derived from sequencing reads to these graphs. 
Mykrobe predictor showed 99.1% and 82.6% sensitiv-
ity and 99.6% and 98.5% specificity for S. aureus and  
M. tuberculosis, respectively, on an independent valida-
tion set and provided important insights on potential 
antimicrobial resistance elements.

By contrast, Rapid Annotation using Subsystem 
Technology (RAST)109 is a k-mer-based tool that uses 
a machine learning classifier (AdaBoost) based on the 
Pathosystems Resource Integration Center (PATRIC) 
database to identify target-specific antimicrobial resis-
tance genes in a specific collection of pathogens. RAST 
is trained on k-mer data derived from the contigs of each 
genome. These k-mer counts were converted to a binary 
matrix of 1s and 0s to depict whether a particular k-mer 
is present in that genome or not. The binary matrix 
along with AST outcome is then used to form a classi-
fier model as well as to identify putative k-mers associ-
ated with resistance. The RAST classifier could identify 
carbapenem resistance in Acinetobacter baumannii,  
methicillin resistance in S. aureus and β-lactam and 
co-trimoxazole resistance in Streptococcus pneumoniae 
with accuracies of 88–99%109.

One major shortcoming of any machine learning clas-
sifier is its dependency on the training data or existing 
knowledge base. To apply machine learning classifiers in 
clinical diagnostics, a large data set of curated antimicro-
bial resistance genes that contains accurate genotypic 
data linked to curated AST data (Box 1) will be required 
to build an effective and robust machine learning-based 
classifier for antimicrobial-resistant organisms. In addi-
tion to differentiating between an antimicrobial-resistant 
and antimicrobial-susceptible organism, machine learn-
ing approaches are currently being applied to predict 
antimicrobial resistance genes in metagenomic data. 
DeepArgs110 is a newly established tool that applies 
deep learning111 to identify antimicrobial resistance genes. 
On the basis of curated data sets of CARD and ARDB 
combined with Uniprot protein data, DeepArgs built a 
dissimilarity matrix between antimicrobial resistance 
proteins and non-antimicrobial resistance proteins and 
used it to train two deep-learning models: DeepArg-LS 
for assembled genes and DeepArg-SS for short reads. 
These models can be used to predict antimicrobial 
 resistance genes in new test data.

Although the application of machine learning to 
antimicrobial resistance prediction and classification is 
promising, these techniques have a long way to go before 
they can be used for rapid diagnostic purposes and 
replace traditional culture techniques and AST, which 
can take days or weeks to yield results.

Conclusions and future perspectives
Antimicrobial resistance is a major public health threat. 
Monitoring and understanding the prevalence, mecha-
nisms and spread of antimicrobial resistance are priori-
ties for both individual patient care and global infection 
control strategies. Despite stellar advancements, hurdles 
for antimicrobial resistance detection and understanding 
persist. Costs are decreasing for sequencing and for auto-
mated antimicrobial resistance detection instruments, 
but start-up and operation costs still outstrip many 
health-care budgets. Further cost reductions for these 
technologies will be important for widespread adoption.

The accurate identification of resistance determi-
nants and the correlation of antimicrobial resistance 
gene profiles to antimicrobial treatment outcomes will 
facilitate personalized approaches to developing treat-
ment regimens. The success of this approach depends 
heavily on the comprehensiveness and quality of pub-
lic antimicrobial resistance gene databases, which have 
major roles in the development of biological assays and 
computational tools that expand our ability to detect 
resistance genes in single isolates and in microbial 
communities. While progress has been made in build-
ing comprehensive antimicrobial resistance gene data-
bases, lack of standardization across databases and long 
update intervals hold back their potential. Moreover, 
complex resistance mechanisms (Fig. 1b) are difficult 
to capture in antimicrobial resistance databases. For 
example, resistance can arise from epistatic relationships  
between multiple genes such as in the case of carba-
penem resistance, which can arise from the combina-
tion of extended-spectrum β-lactamases and efflux 
pumps or porin impermeability112. Resistance can even 
occur via overexpression of normal genes such as those 
encoding efflux pumps, and detection of these resistance 
mechanisms requires transcriptional measurements113,114 
(Fig. 1b,c). These complex resistance mechanisms, cou-
pled with the fact that known antimicrobial resistance 
genes may not always be expressed, contribute to the 
difficulty in accurately predicting phenotypic antimicro-
bial resistance from genotypic antimicrobial resistance 
data. Machine learning algorithms have made headway 
in using isolate genomic sequence data and antimicro-
bial resistance gene databases to predict phenotypic 
resistance, but these techniques tend to be specialized 
to specific bacteria or are not accurate and consistent 
enough for general clinical deployment. To realize the 
goal of making phenotypic predictions from genotypic  
data, we need more comprehensive databases that link 
specific antimicrobial resistance genes to specific AST 
results. Importantly, these databases should include a  
broad diversity of bacteria with full sequence and anti-
microbial resistance gene prediction metadata and 
report AST results with exact zone sizes or minimum 
inhibitory concentrations (Box 1) rather than categori-
cal guideline interpretations. Parallel improvements in 
AST and sequence-based antimicrobial resistance gene 
prediction will augment efforts to mitigate the clinical 
impact of antimicrobial resistance.

Although techniques for novel antimicrobial resist-
ance gene discovery exist, such as functional meta-
genomics, these techniques still have major caveats in 

Carbapenem resistance
resistance against the 
broad-spectrum carbapenem 
class of β-lactam 
antimicrobials, which are often 
used as drugs of last resort.

Methicillin resistance
resistance against methicillin, 
a narrow-spectrum penicillin 
derivative. Methicillin 
resistance is often seen in the 
context of methicillin-resistant 
Staphylococcus aureus 
(MrSA), a common human 
pathogen. This resistance is 
commonly gained by horizontal 
transfer of a modified target 
protein (see Fig. 1b and 1c).

Deep learning
An extension of 
representational machine 
learning methods where the 
algorithm uses multiple 
transformation layers between 
raw data and output rather 
than one layer. This often 
improves results for more 
complex machine learning 
tasks.
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the types of antimicrobial resistance genes that they 
can detect. Innovative methods to determine other 
anti microbial resistance gene mechanisms are sorely 
needed. Moreover, robust models to predict which 
resistance genes will spread both on the local level within 
a health-care setting and on the global scale between 
countries are needed. These models will likely need to 
incorporate not only the antimicrobial resistance gene 
sequence and mechanism but also the genomic context, 
host bacterial species and geographic location.

Rapid and accurate identification of resistance genes 
in isolate and metagenomic samples would augment the 
ability of clinicians to make treatment plans for bacterial 
infections, facilitating a future where sequence-based 
personized medicine is routine. It would also ease anti-
microbial resistance surveillance efforts and enable 
low-resource areas to benefit more fully from rapidly 
decreasing sequencing costs.
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